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Abstract

Complex network theory has been successful at unveiling the topology of the brain and

showing alterations to the network structure due to brain disease, cognitive function and

behavior. Functional connectivity networks (FCNs) represent different brain regions as the

nodes and the connectivity between them as the edges of a graph. Graph theoretic mea-

sures provide a way to extract features from these networks enabling subsequent character-

ization and discrimination of networks across conditions. However, these measures are

constrained mostly to binary networks and highly dependent on the network size. In this

paper, we propose a novel graph-to-signal transform that overcomes these shortcomings to

extract features from functional connectivity networks. The proposed transformation is

based on classical multidimensional scaling (CMDS) theory and transforms a graph into sig-

nals such that the Euclidean distance between the nodes of the network is preserved. In this

paper, we propose to use the resistance distance matrix for transforming weighted func-

tional connectivity networks into signals. Our results illustrate how well-known network

structures transform into distinct signals using the proposed graph-to-signal transformation.

We then compute well-known signal features on the extracted graph signals to discriminate

between FCNs constructed across different experimental conditions. Based on our results,

the signals obtained from the graph-to-signal transformation allow for the characterization of

functional connectivity networks, and the corresponding features are more discriminative

compared to graph theoretic measures.

Introduction

The human brain is a highly interconnected network. While early studies of neurophysiologi-

cal and neuroimaging data focused on the analysis of isolated regions, i.e. univariate analysis,

most of the recent work indicates that the network organization of the brain fundamentally

shapes its function [1]. Complex network theory has contributed significantly to the character-

ization of the topology of FCNs, in particular in the assessment of functional integration and

segregation [2, 3]. Thus, generating comprehensive maps of brain connectivity, also known as
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connectomes, and characterizing these networks has become a major goal of neuroscience [4,

5]. There has been a lot of recent work on classifying different disorders using FCNs as the fea-

ture vectors [6, 7]. In this line of work, first a lower dimensional discriminative feature vector

is extracted from FCNs using different metrics, then these low-dimensional vectors are fed

into a classifier [7]. The major disadvantages of this approach are that original FCNs may be

noisy and contain redundant information, and the dimensionality reduction methods are usu-

ally supervised which requires the availability of a large number of samples for each class for

reliable feature selection.

Recently, this problem has been addressed by using graph theoretic measures which do not

depend on the size of the training data set. Specifically, graph theoretic measures such as the

path length and clustering coefficient have helped to characterize small-world brain networks

[8–10], and the degree distribution has been utilized to characterize scale-free networks [11].

Over the last decade, the study of FCNs through complex network theory has provided new

means for discriminating between different neural dysfunctions such as epilepsy [12, 13],

depression [14, 15], Alzheimer’s Disease [16, 17], and Parkinson’s Disease [18].

Although graph theoretical approaches provide an elegant way to describe the topology of

functional brain networks, these measures suffer from several major shortcomings. First, most

network measures are optimally suited for sparse and binary networks. Early work in the area

of graph theoretic measures focused on binary networks, leading to the thresholding of net-

works constructed from neuroimaging studies. However, thresholding poses the problem of

over-simplifying FCNs and more importantly, there is no generally accepted criterion to select

the threshold [10, 19]. Moreover, the size and density of the thresholded network varies based

on the chosen threshold value [2]. Recent studies show that the significance of the difference

between groups is strongly dependent on the threshold parameter, i.e. the power of the statisti-

cal analysis varies with the threshold [20]. Recently, extensions of graph theoretic measures

have been proposed for weighted networks to address some of these issues [21–23]. Second, it

has been shown that graph theoretic measures, such as the clustering measure and the small-

world parameter, are very sensitive to the size of the network, i.e. the number of nodes, and the

density of the connections. Thus, comparing two networks with different edge density may

lead to wrong conclusions making it difficult to disentangle experimental effects from those

introduced by differences in the average degree [10, 24]. Third, graph theoretic measures are

in general non-unique. An example is the small-world measure as two very different network

structures may yield similar small-world parameters [25]. Finally, graph theoretic measures do

not necessarily reflect the actual mechanism for flow of information in the underlying net-

work, especially for weighted networks such as FCNs. For example, FCNs may not necessarily

rely on shortest paths for communication between the nodes, and measures like the character-

istic path length and the global efficiency are unable to capture this type of connectivity pat-

terns [2, 26].

In this paper, we propose an alternative approach for feature extraction from FCNs based

on graph-to-signal transformation. Unlike graph theoretic measures which often result in a

single number, transforming graphs into signals results in as many signals as nodes, and thus

can be considered as a lossless transformation. In addition, by transforming graphs into signals

it is possible to apply traditional signal processing techniques on the resulting signals in order

to extract information from the networks. Two different approaches, i.e. probabilistic [27] and

deterministic [28, 29] methods, have been developed to transform networks into signals. The

deterministic methods are based on classical multidimensional scaling transforming binary

networks into time series [28, 29]. With this transformation, the nodes of the network map

into time indices in the resulting signals [28–30].
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In this paper, we extend deterministic graph-to-signal transformations from binary to

weighted networks using the resistance distance [31]. Some advantages of the resistance dis-

tance include invertibility and accounting for the global structure of the graph, thus incorpo-

rating information about multiple paths. The resulting signals provide information about the

topology of the network which can be used to extract descriptive features from the network. In

this paper, we propose to implement well-known signal features such as entropy and statistical

moments for these graph-to-signals. The extracted features are naturally low dimensional and

are unsupervised, thus do not depend on the quality and the size of the training data unlike

FCN based features. Finally, we apply this new transform and the accompanying features to

FCNs constructed from an EEG speeded-reaction task experiment. The results obtained from

this data set indicate that the proposed graph-to-signal transformation can identify the brain

regions central to error-related negativity (ERN). Furthermore, the features extracted from

these signals are more discriminative compared to conventional graph theoretic measures and

FCN based classification.

Background

Phase synchrony

Weighted connectivity networks were constructed from EEG data using a measure of phase

synchrony. Each electrode was considered as a vertex of the graph and the weights between

vertices were obtained by computing the phase synchrony between two regions. In this paper,

the pairwise phase synchrony was computed by using a recently introduced time-frequency

phase synchrony (TFPS) measure based on the reduced interference Rihaczek (RID-Rihaczek)

time-frequency distribution [32]. For a signal xi(t), the RID-Rihaczek distribution is defined as

[32]:

Ciðt; f Þ ¼
Z 1

� 1

Z 1

� 1

exp �
ðytÞ

2

s

� �

exp j
yt

s

� �

Aðy; tÞe� jðytþ2pf tÞdtdy; ð1Þ

where exp � ðytÞ
2

s

� �
is the Choi-Williams kernel, [33], exp j yt

s

� �
is the kernel function for the

Rihaczek distribution [34] and A(θ, τ) is the ambiguity function of the given signal xi and is

defined as:

Aðy; tÞ ¼
Z 1

� 1

xiðuþ
t

2
Þx�i ðu �

t

2
Þejyudu: ð2Þ

The instantaneous phase of xi is computed from Ci(t, f) as:

�iðt; f Þ ¼ arg
Ciðt; f Þ
jCiðt; f Þj

� �

: ð3Þ

The phase difference between two signal xi and xj can then be computed as:

�i;jðt; f Þ ¼ arg
Ciðt; f ÞC�j ðt; f Þ
jCiðt; f ÞjjCjðt; f Þj

" #

: ð4Þ

Phase Locking Value (PLV), which quantifies the phase synchrony between two signals xi
and xj, is defined as the consistency of the phase differences ϕi,j(t, f) across trials and can be

Graph-to-signal transformation based classification of functional connectivity brain networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0212470 August 22, 2019 3 / 22

https://doi.org/10.1371/journal.pone.0212470


computed as [35]:

PLVi;jðt; f Þ ¼
1

K

XK

k¼1

exp ðj�k
i;jðt; f ÞÞ

�
�
�
�
�

�
�
�
�
�
; ð5Þ

where K is the total number of trials, i.e. the number of times a given stimulus is repeated, and

�
k
i;jðt; f Þ is the phase difference for the kth trial between xk

i and xk
j as defined by (4). Once the

pairwise PLV values are computed between all pairs of electrodes, the weighted adjacency

matrix corresponding to the FCN can be constructed as the average of PLVi,j(t, f) within the

time interval and frequency band of interest. Thus, the connectivity matrix W is constructed

such that Wij = ∑t225−75ms∑f2θband PLVi,j(t, f), i.e. the average connectivity within 25-75 ms time

window and theta (θ: 4 − 8Hz) frequency band.

Graph theory

An undirected graph G = (V, E) is defined by a set of N nodes, vi 2 V, and a set of edges, eij, i, j
2 {1, . . ., N}. The relationships between the nodes of the graph is represented by the adjacency

matrix A = [Aij] for binary graphs, and W = [Wij] for weighted graphs. In binary graphs, Aij =

1 when nodes i and j are connected and Aij = 0 when the nodes are not connected. For

weighted graphs, Wij represents the weight of the edge between nodes i and j and equals

to zero when i = j. The degree matrixΔ is defined as the diagonal matrix with entries

Dii ¼
PN

j¼1
j6¼i

Aij, where Δii is the degree of node vi. Similarly, the degree matrix Δw for weighted

networks has diagonal entries D
w
ii ¼

PN
j¼1
j6¼i

Wij.

For binary graphs the combinatorial Laplacian L is defined as L = Δ − A. The elements of L

are:

Lij ¼

Dii; i ¼ j ;

� 1; ði; jÞ 2 E;

0; otherwise;

8
>>><

>>>:

ð6Þ

whereΔii is the degree of node vi. Similarly, the Laplacian for weighted graphs is defined as

Lw = Δw − W.

Graph theoretic measures

Complex networks can be characterized using graph theoretic metrics such as the clustering

coefficient, characteristic path length, global efficiency, small world parameter and small world

propensity [36, 37]. In this paper, we use graph theoretic measures defined for weighted net-

works as features for classification. Using graph theoretic measures defined for weighted net-

works circumvents the shortcomings associated with thresholding [2, 19, 20]. The features

considered in this paper are as follows.

Clustering coefficient: The mean clustering coefficient is a measure of segregation and

reflects mainly the fraction of clustered connectivity available around individual nodes. The

clustering coefficient for a weighted network is defined as [38]:

Cw ¼
1

N

X

i2V

2twi
kiðki � 1Þ

; ð7Þ
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where twi is the weighted geometric mean of the triangles around a node i defined as

twi ¼
1

2

P
j;h2VðWijWihWjhÞ

1
3 and ki is the degree of node i.

Characteristic Path Length: The characteristic path length of the network is the average

shortest path length between all pairs of nodes in the network. Path length in the brain net-

work represents the potential routes of information flow between two different brain regions

and quantifies the potential for functional integration [2]. For a weighted network, the charac-

teristic path length is calculated as [2]:

Lw ¼
1

N

X

i2V

P
j�V;j6¼id

w
ij

ðN � 1Þ
; ð8Þ

where dw
ij is the shortest weighted path length between node i and j defined as

dw
ij ¼

X

auv2gi$w j

f ðwuvÞ; ð9Þ

f refers to a map (e.g. an inverse function) from weight to length and gi$w j is the shortest

weighted path between i and j.
Global Efficiency: The average inverse shortest path length is defined as the global efficiency

of a network. It is a measure of functional integration similar to characteristic path length but

can also be computed meaningfully for disconnected networks as an infinite path length

results in zero efficiency [39]. The global efficiency for a weighed network is given by [39]:

Ew ¼
1

N

X

i2V

P
j2V;j6¼iðd

w
ij Þ
� 1

ðN � 1Þ
; ð10Þ

where dw
ij is the shortest weighted path length between node i and j defined by Eq (9).

Small-World Parameter (SW): A network that has significantly more clusters than a ran-

dom network but approximately the same characteristic path length as a random network is

formally defined as a small-world network [40]. Small-world networks are simultaneously

strongly clustered and integrated. This phenomenon of small worldness is captured by the

small-world parameter which is the ratio of the normalized clustering coefficient to the nor-

malized path length. For a weighted network, the small-world parameter is given as [2, 41]:

sw ¼
Cw=Cw

rand

Lw=Lw
rand

; ð11Þ

where C and Crand are the clustering coefficients of the network and a random network with

the same degree distribution, respectively, and L and Lrand are the characteristic path lengths of

the network and a random network with the same degree distribution, respectively. The ran-

dom networks are generated using the Erdos-Renyi model with the same number of nodes

and connection density.

Small-World Propensity (SWP): Small world propensity is a measure that quantifies the

level of small-worldness displayed by a network while accounting for the variation of network

density [24]. SWP is measured by computing the deviation of the observed network’s cluster-

ing coefficient and characteristic path length from random (Crand, Lrand) and lattice (Clat, Llat)
networks designed with the same degree distribution and same number of nodes as follows:

SWP ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2

C þ D
2

L

2

r

; ð12Þ

where DC ¼
Clat � C

Clat � Crand
, and DL ¼

L� Lrand
Llat � Lrand

.
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In this work, we computed all of these well-known graph theoretic measures and compared

them with the graph signal features.

Methods

Graph-to-signal transformation based on the resistance distance matrix

The goal of CMDS is to find a projection of the high-dimensional data into a lower dimen-

sional space such that the Euclidean distances between points are preserved [42]. In particular,

for our application of transforming graphs into signals, the goal is to obtain coordinate vectors

that preserve the functional connectivity between the different brain regions [29].

In order to extract these coordinate vectors, first, the adjacency matrix A of a given network

is transformed into a squared distance matrix, D(2), which is consequently double centered as

B ¼ �
1

2
JN D

ð2Þ JN ; ð13Þ

where D(2) = D �D is the entry-wise squared Euclidean distance matrix also known as the

Hadamard product, JN is a centering matrix defined as JN ¼ IN � 1

N 1N1
T
N , IN is an N × N iden-

tity matrix, 1N is a N × 1 vector of ones, and T denotes the transpose. In order to preserve the

positive definiteness of B, the matrix D has to be a valid distance matrix and conditionally neg-

ative definite. CMDS has been used in literature for the transformation of binary [28, 43] and

weighted networks [44]. For the binary network, the distance D is based on the binary adja-

cency matrix A.

In this paper, we propose a graph-to-signal transformation of the weighted graphs

using the resistance distance, R. The resistance distance was introduced by Klein and

Randic as an alternative to the shortest path distance for applications in chemistry [45]. It is

inspired by basic circuit theory, where each edge on the graph represents a resistor with

value 1

Wij
[46]. The resistance distance between node i and node j is defined as Rij, and is com-

puted for complete graphs through the Moore-Penrose pseudo inverse of the Laplacian, L,

L† [28], as

Rij ¼ Lyii þ Lyjj � 2Lyij: ð14Þ

Each entry Rij in R corresponds to the squared Euclidean distance between nodes i and j
[47]. For a connected graph, Rij� d(i, j), where d(i, j) is the shortest path distance, and equality

condition will hold when there is only one path between i and j [48]. R is a valid squared

Euclidean distance matrix as each entry Rij satisfies the following rules [49]:

Rij � 0 for all i; j with equality if and only if i ¼ j;

Rij ¼ Rji;

Rij þ Rjk � Rik:

ð15Þ

As a result, R can be directly substituted in (13) to obtain the corresponding Gram matrix B

as

B ¼ �
1

2
JN R JN : ð16Þ

It can be shown that the resulting matrix B is a positive semi-definite matrix with rank(B) =

C, C� N. Therefore, B has C number of nonzero eigenvalues, and N − C number of eigenval-

ues equal to zero.
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The next step in graph-to-signal transformation is to perform the spectral factorization of

B, resulting in B ¼ PLPT ¼ PL
1
2

� �
� PL

1
2

� �T
¼ XXT , where Λ = diag(λ1, λ2, . . ., λC) corre-

sponds to the nonzero eigenvalues of B, with λ1� λ2� � � � � λC, P 2 RN�C, and X 2 RN�C.

Based on X, a total of C signals of length N corresponding to the columns of X are obtained.

The ith signal xi 2 R
N�1

is defined as the ith column of X with i = 1, 2, . . ., C. In this paper, we

will refer to xis as the signals representing the network.

If the generated signals X are not distorted, it is possible to get back to the original network

from the signals. First, the resistance distance matrix R can be inferred from the graph signals

xis by computing the squared Euclidean distance between the points as follows

R̂ ij ¼
XC

c¼1

ðxcðiÞ � xcðjÞÞ
2
; ð17Þ

where R̂ is the estimated R, C corresponds to the total number of components and xc(i) and

xc(j) correspond to the ith and jth entries of the cth component. The original adjacency matrix

can then be recovered from R̂, for both weighted and binary graphs following the procedure

detailed in [50].

Graph signal features

In this section, we describe several well-known features adapted to graph signals. Along with

common signal measures like Shannon Entropy (ShEn), skewness and kurtosis, we propose a

new measure named graph spectral entropy (GSE) for quantifying the structural information

of graphs based on the signals obtained from the networks. The extracted features are

explained below.

Shannon Entropy (ShEn): Shannon entropy is a standard entropy measure widely used for

signal analysis. It quantifies the order state of a signal through the probability density function

of the distribution. Shannon entropy of the ith graph signal is computed as [51]:

Hi ¼ �
XN

n¼1

Qi½n� log 2ðQi½n�Þ; ð18Þ

where Qi is the probability density function for the ith graph signal obtained through the histo-

gram of the signal values. ShEn was computed for each of the graph signals, xi[n], i = 1, 2, . . .,

C, generated through the graph-to-signal transformation. The average entropy, H ¼
PC

i¼1
Hi

C

over all signals was extracted as a feature for consequent analysis.

Skewness and Kurtosis: Skewness (S) [52] and Kurtosis (Ku) [53] of a signal are measures

of the third and fourth moments, respectively and are defined as Si ¼
m3i
si

and Kui ¼
m4i
si

, where

μ3i is the third central moment, μ4i is the fourth central moment and σi is the standard devia-

tion of the ith signal. The nth central moment can be computed as

mni ¼
PN

k¼1
ðxi½k� � miÞ

nQi½k�, where μi is the mean of the ith signal and Qi is the probability

density function for the ith graph signal. The average skewness S ¼
PC

i¼1
Si

C and average kurtosis

Ku ¼
PC

i¼1
Kui

C measured over all the signals were considered as two features of the graph signal.

Graph Spectral Entropy: We propose a new graph entropy measure based on the spectra of

the graph signals. In particular, we propose to compute the graph entropy based on the nor-

malized power spectrum of xi½n�; i ¼ 1; 2; :::; ~C, where we consider the ~C < C signals with

highest energy. This parameter is selected empirically similar to the selection of the total
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number of factors in Principal Components Analysis (PCA). The magnitude spectrum of the

ith signal is defined as Mi½k� ¼ jFfxigj
2
, where F denotes the discrete Fourier transform,

Ffxig ¼
PN

n¼1
xi½n�e�

j2pnk
N . The normalized power spectrum of the ith signal for the positive fre-

quencies is computed as Pi k½ � ¼
Mi½k�PbðN� 1Þ=2c

k¼0
Mi ½k�

, where k = 0, 1, . . ., b(N − 1)/2c corresponds to

discrete frequency bins [54]. The normalized graph entropy for the ith graph signal is defined

as

Hi ¼ �
1

log ðbðN � 1Þ=2cÞ

XbðN� 1Þ=2c

k¼0

Pi k½ � log 2ðPi½k�Þ; ð19Þ

where i ¼ 1; 2; :::; ~C [54]. Since (19) refers to the Shannon entropy, it is bounded as 0�Hi�

log(N2/2). We propose to use the normalized power spectrum rather than the original signals

for entropy computation since computing the Shannon entropy directly on the signals does

not necessarily provide information about the network’s structural content. For example, for a

structured network such as the ring network, the corresponding signals are pure sinusoids [28,

55], with almost uniform histograms resulting in high entropy. On the other hand, the power

spectrum of a sine wave is well localized at a particular frequency thus its Shannon entropy is

theoretically zero. This is consistent with the intuition that a ring network is deterministic and

thus, should exhibit low entropy. Thus, the lower bound of Hi is achieved when the distribu-

tion is an impulse, and the upper bound occurs when the distribution is uniform. In terms of

graph structures, the lower bound corresponds to the ring lattice and the upper bound corre-

sponds to a random network.

In order to account for the variation in the network entropy as the probability of attach-

ment varies, we propose to weigh the entropy of each graph signal using its energy using

weights wi ¼
kxik1ffiffiffi
N
p
kxik2

:wi 2 ½
1ffiffiffi
N
p ; 1�, using the fact that kxk2 � kxk1 �

ffiffiffiffi
N
p
kxk2. These weights

are normalized across signals as ~w¼
wiffiffiffi
~C
p

kwk2
, where w ¼ ðw1;w2; :::;w~CÞ. We define the

weighted graph spectral entropy (GSE) as

GSE ¼
X~C

i¼1

~wiHi: ð20Þ

This definition of network entropy is independent of graph theoretic measures and the

eigenspectrum of the adjacency matrix. The structural information of the network is thus

obtained from the signals that already contain the network topological information.

Illustration of the proposed measure

Proposed graph to signal transformation is illustrated step by step for a toy example in Fig 1.

Here a 5 × 5 weighted network was generated and transformed through proposed graph-to-

signal transformation for extracting the graph signal features. Fig 1(a) shows the plot of the

generated toy graph. The step-wise signal generation procedure is illustrated in Fig 1(b). The

adjacency matrix was generated in the first step followed by the generation of the Laplacian

matrix L (from (6)). The resistance distance matrix R was computed using (14). The Gram

matrix B was computed from R following (16). In step 5, graph signals are obtained through

spectral factorization of B. As described above, four graph signal features namely graph

spectral entropy, Shannon entropy, skewness and kurtosis were extracted from these signals in

step 6.
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Fig 1. An example of graph to signal transformation and corresponding feature extraction for a 5 × 5 network. (a) Plot of the

generated graph; (b) Step by step graph-to-signal transformation for graph features extraction.

https://doi.org/10.1371/journal.pone.0212470.g001
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Results

Simulations

Graph-to-signal transformation for binary networks. We first compare the proposed

distance measure, R, with respect to D for binary networks. For this purpose, we qualitatively

compare the signals obtained from multiple binary networks. First, we simulate two k-regular

graphs with N = 128 nodes and average degrees K = 2 and K = 10. Fig 2(a) and 2(b) show the

graph signals with the highest eigenvalue obtained from R and the distance D, respectively. As

expected, the signals based on the resistance distance matrix are sinusoidal signals (Fig 2(a)).

From these figures, it is observed that the amplitude of signals obtained from R is inversely

proportional to the average degree, K, yielding a higher amplitude when K = 2 and a smaller

amplitude when K = 10. On the other hand, D cannot distinguish between k-regular graphs

with varying average degrees.

We also compared both methods for an Erdős-Rènyi binary graph for a probability of

attachment p equal to 0.5. For the original distance matrix D, the signals are random signals

(Fig 2(d)), as previously shown in [56]. On the other hand, signals estimated from R still

exhibit a random structure, with peaks that are inversely proportional to p (Fig 2(c)). The loca-

tion of these peaks corresponds to the nodes with the smallest degree, i.e. the largest peak

occurs in the first signal and corresponds to the node with the smallest degree. For the resis-

tance distance, a node with small degree will have a high resistance distance between it and the

remaining nodes in the network. Therefore, signals obtained from the transformation of

binary networks through the resistance distance are more informative than those obtained

from D.

Fig 2. Signal representation of binary network. Top: Signal representation of a k-regular graph with degree K = 2 and

K = 10; a. Resistance distance measure (R), b. Distance measure (D); Bottom: Signal representation of an Erdős-Rènyi

network with probability of attachment p = 0.5; c. Resistance distance measure (R), d. Distance measure (D). For all

networks N = 128.

https://doi.org/10.1371/journal.pone.0212470.g002
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Graph-to-signal transformation for weighted graphs. The proposed transformation was

also assessed on weighted networks. Fig 3(a) shows the signals resulting from a small-world

network with average degree K = 6, and N = 128 nodes. As seen in Fig 3(a), for a network with

a low rewiring probability, p = 0.1, the resulting signals are sinusoidal signals with some noise.

This is consistent with previous work on binary networks [28], where it has been shown that

the small-world network is equivalent to a k-regular graph network plus noise.

In addition to the small-world network, we investigated the graph-to-signal transformation

of a weighted stochastic block network consisting of 200 nodes and with fixed probability of

attachment, p = 0.3 and 3 clusters (Fig 3(b)). The weighted stochastic block network general-

izes the stochastic block model to networks with edge weights drawn from any exponential

family distribution [57]. Using this model, each node i belongs to one of K blocks or commu-

nities. i, and each edge Aij exists with a probability ij that depends only on the group member-

ships of the connecting vertices. Nodes in the same block are stochastically equivalent,

indicating their equivalent roles in generating the network’s structure. The stochastic block

model is fully specified by a vector z denoting the group membership of each vertex and a K ×
K matrix of cluster connection probabilities. Weighted stochastic block model extends this by

allowing the edges to have some weight values. The weights are assigned randomly from the

uniform distribution in the interval [0, 1]. It can be observed from these figures that the first

K − 1 signals reveal the clusters’ structure, and the Kth signal is an impulse. In addition, the size

of each cluster can be inferred from the support of the constant regions in the first K − 1 sig-

nals. Thus, the proposed approach effectively transforms weighted networks into signals and

reflect structural properties of the networks.

EEG data

In this paper, we analyze an EEG dataset from a previously published cognitive control-related

error processing study [58]. The study was designed following the experimental protocol

approved by the Institutional Review Board (IRB) of the Michigan State University. The data

collection was performed in accordance with the guidelines and regulation established by this

protocol. Written and informed consent was collected from each participant before data

collection.

Fig 3. Signal representation of weighted network. First three signals from a. A weighted small-world network with

K = 6, and N = 128 nodes; b. A weighted stochastic block network with probability of attachment p = 0.3, and N = 200

nodes.

https://doi.org/10.1371/journal.pone.0212470.g003
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The experiment consisted of a speeded-reaction Flanker task [59] in which subjects identi-

fied the middle letter on a five-letter string, being congruent (e.g. MMMMM) or incongruent

(e.g. MMNMM) with respect to the Flanker letters. Flanker letters (e.g. MM MM) were shown

during the first 35 ms of each trial, and during the following 100 ms the Flanker and target let-

ters were shown on the screen. This was followed by an inter-trial interval of variable duration

ranging from 1200 ms to 1700 ms. A total of 6 blocks consisting of 80 trials composed the

experiment, and letters were changed between blocks. EEG responses were recorded by the 64

electrode ActiveTwo system (BioSemi, Amsterdam, The Netherlands). The sampling fre-

quency was 512 Hz. The EEG channel locations are given in Fig 4.

Trials containing artifacts were rejected and volume conduction was reduced through the

Current Source Density (CSD) Toolbox [60]. A total of 18 subjects and 58 channels were con-

sidered for the analysis, for which the total number of error trials ranged from 20 to 61. The

same number of correct responses was chosen randomly. Fig 5 shows the event-related

Fig 4. EEG channel locations used for constructing the FCNs.

https://doi.org/10.1371/journal.pone.0212470.g004
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potentials for error and correct responses, i.e. error-related negativity (ERN) and correct-

related negativity (CRN), from electrode FCz averaged over trials and subjects. As can be seen

from this figure, ERN has a larger negative amplitude with the peak within 0-100 ms, where 0

refers to the response time.

In this paper, we are interested in studying the differences in the FCNs corresponding to

error-related negativity (ERN) and the correct-related negativity (CRN) through a classifica-

tion task. Previous studies have shown that the ERN is associated with increased synchroniza-

tion in the theta band (4-8 Hz) between electrodes in the central and lateral frontal regions

[58, 61, 62]. For this reason, a FCN was constructed for each subject by averaging the PLV

over the time window 25-75 ms and the frequency bins corresponding to the theta band per

subject and response type. This results in two FCNs of size 58 × 58 per subject, one corre-

sponding to error responses and the other to correct responses. A total of 58 signals are

extracted from the graph-to-signal transformation of each FCN. The mean ± standard devia-

tion of stress function for the two response types are 4.19−19 ± 1.12−18 (CRN) and 3.70−19 ±
1.16−18 (ERN).

Graph-to-signal transformation of FCNs. FCNs constructed for ERN and CRN

responses were first averaged to obtain representative networks and then transformed into sig-

nals using (16). For illustration purposes, we show the first six graph signals corresponding to

the correct and the error responses in Fig 6(a) and 6(b), respectively. We focus on the first six

signals obtained from this transformation as the eigenvalues of the matrix B in (16) drop off

significantly after the sixth eigenvalue. As the graph signals are a function of the nodes or dif-

ferent electrodes, the location of the peaks of the graph signals signify the distribution of spatial

activity. It can be observed from Fig 6 that while the energy of the graph signals from CRN is

distributed uniformly across the 58 brain regions, the energies of the ERN graph signals are

more concentrated within the first 20 electrodes, which correspond to the frontal and frontal-

central regions. This implies that right after an error response most of the brain activity cen-

tralizes within the frontal regions. This is line with prior work indicating the role of prefrontal

cortex during ERN [62, 63].

Fig 5. Average error and correct responses at FCz electrode across all trials and all subjects.

https://doi.org/10.1371/journal.pone.0212470.g005
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Fig 7(a) and 7(b) show the magnitude spectra of the signals corresponding to average error

and correct FCNs. For the average FCN constructed from error responses, the frequency con-

tent of the signals increases with the signal number, suggesting an organized structure such as

k-regular graph networks. On the other hand, the spectra of graph signals corresponding to

correct responses suggest a random network structure.

Feature extraction. For both ERN and CRN networks, graph theoretic and graph signal

features were extracted for each network constructed for each subject and response type, i.e. a

total of 36 networks. A total of 5 graph theoretic features (clustering coefficient, characteristic

path length; global efficiency; small world parameter and small world propensity) were

extracted for each network corresponding to each subject resulting in a feature matrix of

dimension 36 × 5. On the other hand, for graph signals, four features named graph spectral

entropy, skewness, kurtosis and Shannon entropy were extracted for each signal and then aver-

aged across the graph signals corresponding to each network resulting in a feature matrix of

dimension 36 × 4.

Classification of FCNs. In this section, we evaluate the classification power of the features

extracted from graph signals and compare these features with conventional graph theoretic

measures as well as the full FCNs used as feature vectors. For a comprehensive comparison, we

employed a set of classifiers including support vector machines (SVM), linear discriminant

analysis (LDA), logistic regression and k-nearest neighbor (kNN) (with k = 20).

As we have a small dataset (n = 18), the accuracy of each classification method was deter-

mined based on its prediction accuracy on leave-one-out prediction technique. Leave-one-out

method for validation is a particular case of cross-validation where all test subsets comprise of

a single instance. As reported by Kotsiantis et al., this type of validation considers all the

instances and computationally more expensive, but is beneficial when the most accurate

Fig 6. Graph signal representation. The first six signals obtained from graph-to-signal transformation of a. CRN

networks; b. ERN networks.

https://doi.org/10.1371/journal.pone.0212470.g006
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approximation of a classifier’s performance is required [64]. Though this method is computa-

tionally expensive, we have used this method to ensure the most accurate estimate of the classi-

fier’s error rate.

Since the operation involves binary classification, sensitivity and specificity defined as fol-

lows were used as performance measures in addition to accuracy.

Sensitivity ¼
TP

TPþ FN
; ð21Þ

where TP = True Positive; FN = False Negative; and

Specificity ¼
TN

TN þ FP
; ð22Þ

where, TN = True Negative and FP = False Positive.

In order to determine which measure, as a continuous test statistics, best discriminates

between error and correct networks, we also computed receiver operating characteristic

(ROC) curve for each measure as shown in Fig 8. In the ROC curve, the sensitivity or true

Fig 7. Magnitude spectrum representation. Magnitude Spectrum for each signal obtained through graph-to-signal transformation for a. Error

responses; b. Correct responses. The spectrum of error response suggests an organised structure as the frequency content of the signals increases with

the signal number whereas the spectrum for the correct responses suggest a random network structure.

https://doi.org/10.1371/journal.pone.0212470.g007
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positive rate is plotted as a function of the 1-Specificity or false positive rate for different

threshold values. As a result, each point of the ROC plot represents a sensitivity/specificity pair

that corresponds to a decision threshold. The overall accuracy of the test point can be detected

from the proximity of its ROC plot to the upper left corner [57]. For our experiment, the

threshold values were computed through threshold averaging method [65]. For each ROC

curve, the area under the curve (AUC) was also computed as it serves as a quantitative measure

of the discrimination power of the test statistics.

Table 1 shows the classification performance for full network as feature matrix along with

graph theoretic (clustering coefficient, path length, global efficiency, small world and small

world propensity) and graph signal (proposed graph spectral entropy, Shannon entropy, skew-

ness and kurtosis) features in terms of accuracy, sensitivity, specificity and AUC for different

classifiers. From these results, it can be seen that the classification accuracy is much lower

when the FCNs are used as features. This is due to the fact that FCNs may be noisy making it

hard to discriminate between the two response types. For the graph theoretic features, the

small world propensity is the most effective feature. An overall accuracy of 94.4% was obtained

by linear SVM using all the graph theoretic features. Moreover, the FCNs constructed from

error responses exhibited significantly increased small-world (p = 0.00203, Wilcoxon rank-

sum test with p< 0.01) and small-world propensity (p = 0.0008280, Wilcoxon rank-sum test

with p< 0.01) measure compared to the FCNs from correct responses. This finding of

decreased small-world characteristics in correct response networks is indicative of increased

randomness and is in line with previous studies that reported increased small-worldness for

ERN compared to CRN [23]. For the graph signal features, it can be seen that the graph spec-

tral entropy was the most effective graph signal feature. An overall accuracy of 97.2% was

obtained by linear SVM using all features for discriminating between ERN and CRN connec-

tivity networks. Along with the overall 3% improvement of accuracy, the AUC also increased

from 0.95 to 0.99 compared to the graph theoretic measures. Moreover, FCNs from correct

responses show higher entropy than FCNs from error responses and this difference is signifi-

cant (p = 0.0000554, Wilcoxon rank-sum test with p< 0.01). This is consistent with the fact

Fig 8. ROC curves for all features. a. Graph Theoretic Features; b. Graph Signal Features.

https://doi.org/10.1371/journal.pone.0212470.g008
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that the error-related negativity is associated with increased synchronization which results in

less random networks and hence lower network entropy.

Comparing the graph theoretic and graph signal features in Table 1, we can see the graph

spectral entropy has the highest AUC, indicating that among all features, graph spectral

entropy is the most effective test statistic to discriminate between the two response types.

Therefore, graph spectral entropy is more sensitive to the structural changes in the network

compared to small-world and small-world propensity measures in this study.

In order to illustrate the differences between weighted FCNs vs. thresholded binary FCNs

for classification, proposed analysis was performed for thresholded FCNs as well. We gener-

ated thresholded FCNs using the data driven orthogonal minimal spanning trees (OMSTs)

approach described in [66]. For the binary FCNs, we used the distance matrix D to be the orig-

inal adjacency matrix whereas we use the resistance matrix R for the weighted FCNs. The

same features were extracted for the graph signals for both binary and weighted FCNs. The

results are given in Table 2. As it can be seen from this Table 2, the graph signal features are

more discriminative for weighted FCNs compared to the binary ones with a difference in accu-

racy around 6% and AUC of 0.91 vs. 0.88. This is due to the fact that some information is lost

through the process of thresholding.

Although the proposed approach has several merits as illustrated in this paper, the analysis

is limited to a single data set with a small sample size. As such, the methodology proposed here

can be used to guide similar studies with larger sample sizes so that more rigorous quantitative

Table 1. Classification of ERN and CRN functional connectivity networks using graph theoretic and graph signal features.

Features Linear SVM LDA Logistic Regression KNN

FCN 58.30% (Se:50%,

Sp:67%, AUC:0.52)

55.6% (Se:61%,

Sp:50%, AUC:0.5)

69.40% (Se:72%,

Sp:67%, AUC:0.67)

61.10% (Se:61%,

Sp:33%, AUC:0.46)

CC 58.30% (Se:61%,

Sp:56%, AUC:0.60)

44.40% (Se:44%,

Sp:44%, AUC:0.56)

52.80% (Se:50%,

Sp:56%, AUC:0.56)

47.30% (Se:33%,

Sp:61%, AUC:0.47)

PL 61.10% (Se:56%,

Sp:67%, AUC:0.60)

52.80% (Se:50%,

Sp:56%, AUC:0.55)

55.60% (Se:44%,

Sp:67%, AUC:0.48)

38.90% (Se:44%,

Sp:33%, AUC:0.46)

GE 55.60% (Se:47%,

Sp:64%, AUC:0.64)

52.80% (Se:39%,

Sp:67%, AUC:0.63)

50.10% (Se:44%,

Sp:56%, AUC:0.55)

44.40% (Se:61%,

Sp:28%, AUC:0.59)

SW 81.70% (Se:84%,

Sp:79%, AUC:0.86)

78.90% (Se:79%,

Sp:79%, AUC:0.71)

76.10% (Se:79%,

Sp:73%, AUC:0.71)

81.70% (Se:96%,

Sp:85%, AUC:0.81)

SWP 84.20% (Se:88%,

Sp:81%, AUC:0.94)

80.10% (Se:82%,

Sp:78%, AUC:0.77)

77.20% (Se:80%,

Sp:74%, AUC:0.73)

80.40% (Se:86%,

Sp:75%, AUC:0.83)

All GTF 94.40% (Se:100%,

Sp:89%, AUC:0.95)

91.70% (Se:89%,

Sp:94%, AUC:0.88)

88.90% (Se:83%,

Sp:94%, 0.56, AUC:0.92)

94.10% (Se:99%,

Sp:89%, AUC:0.86)

GSE 85.90% (Se:88%,

Sp:83%, AUC:0.97)

71.40% (Se:69%,

Sp:72%, AUC:0.97)

81.50% (Se:80%,

Sp:83%, AUC:0.95)

76.10% (Se:80%,

Sp:72%, AUC:0.94)

ShE 66.70% (Se:89%,

Sp:56%, AUC:0.76)

63.90% (Se:85%,

Sp:43%, AUC:0.77)

77.80% (Se:89%,

Sp:67%, AUC:0.76)

61.10% (Se:61%,

Sp:61%, AUC:0.58)

S 77.20% (Se:80%,

Sp:74%, AUC:0.83)

71.70% (Se:83%,

Sp:68%, AUC:0.80)

74.50% (Se:72%,

Sp:77%, AUC:0.80)

44.40% (Se:56%,

Sp:33%, AUC:0.61)

Ku 80.60% (Se:78%,

Sp:83%, AUC:0.83)

80.60% (Se:94%,

Sp:67%, AUC:0.83)

77.80% (Se:72%,

Sp:83%, AUC:0.81)

75.00% (Se:78%,

Sp:72%, AUC:0.72)

All GSF 97.20% (Se:100%,

Sp:94%, AUC:0.99)

97.20% (Se:100%,

Sp:94%, AUC:0.99)

94.50% (Se:100%,

Sp:90%, AUC:0.94)

94.20% (Se:94%,

Sp:94%, AUC:0.97)

Se: Sensitivity; Sp: Specificity; AUC: Area Under the Curve; CC: Clustering Coefficient; PL: Characteristic Path Length; GE: Global Efficiency; SW: Small World

Parameter; SWP: Small World Propensity; All GTF: All Graph Theoretic Features; GSE: Graph Spectral Entropy; ShE: Shannon Entropy; S: Skewness; Ku: Kurtosis; All

GSF: All Graph Signal Features.

https://doi.org/10.1371/journal.pone.0212470.t001
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and qualitative analysis can be performed. It is important to note that the major novelty of the

current paper is the introduction of a new framework to analyze FCNs rather than the intro-

duction of new feature extraction and classification methods. With graph theoretic metrics,

the whole network is reduced to a single number, e.g. small-world parameter. Although this

may be attractive for purposes of data reduction and summarizing network topology, this

approach also results in some loss of information. Graph-to-signal transformation, on the

other hand, results in as many vectors or signals as the number of nodes in the network. More-

over, it is possible to reconstruct the network from these signals unlike graph theoretic metrics.

Therefore, graph theoretic metrics can be thought of as lossy compression applied on the net-

work whereas graph-to-signal transformation is a lossless operation. Any well-known signal

processing algorithm and feature extraction method can be easily applied to these graph sig-

nals. Consequently, future work could explore extracting different types of features like energy,

bandwidth, spectral features and other features like Hurst exponent, Lyapunov exponent,

Hjorth parameters, correlation coefficients etc. [67] from signals obtained by the proposed

graph-to-signal transformation. Exploration of different features may lead to the interpretation

of more subtle characteristics of the complex networks which is not possible using the conven-

tional graph theoretic features.

Conclusion

In this paper, we introduced a new graph-to-signal transformation for weighted FCNs. The

signals obtained from this transformation were used to characterize the networks and to

extract discriminative features. Results acquired from this study indicate that the features

extracted from graph signals are more discriminative compared to conventional graph theo-

retic measures and the original FCNs for classifying between error and correct responses. In

particular, the graph spectral entropy decreases during the ERN interval, while the entropy

increases after correct responses. This implies that ERN has a more modular structure imply-

ing increased segregation. This finding is in line with previous research showing more local-

ized activity during ERN compared to CRN [68]. Therefore, accumulated evidence from this

study suggests that the proposed graph-to-signal transformation based approach can be used

to successfully characterize the dynamics of the functional connectivity networks.
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