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ABSTRACT
Background. The genusAllium (Family: Amaryllidaceae) is an economically important
group of crops cultivated worldwide for their use as a vegetable and spices. Alliums are
also well known for their nutraceutical properties. Among alliums, onion, garlic, leek,
and chives cultivated worldwide. Despite their substantial economic and medicinal
importance, the genome sequence of any of the Allium is not available, probably
due to their large genome sizes. Recently evolved omics technologies are highly
efficient and robust in elucidating molecular mechanisms of several complex life
processes in plants. Omics technologies, such as genomics, transcriptomics, proteomics,
metabolomics, metagenomics, etc. have the potential to open new avenues in research
and improvement of allium crops where genome sequence information is limited. A
significant amount of data has been generated using these technologies for various
Allium species; it will help in understanding the key traits in Allium crops such as
flowering, bulb development, flavonoid biosynthesis, male sterility and stress tolerance
at molecular and metabolite level. This information will ultimately assist us in speeding
up the breeding in Allium crops.
Method. In the present review, major omics approaches, and their progress, as well as
potential applications in Allium crops, could be discussed in detail.
Results. Here, we have discussed the recent progress made in Allium research using
omics technologies such as genomics, transcriptomics, micro RNAs, proteomics,
metabolomics, andmetagenomics. These omics interventions have been used in alliums
for marker discovery, the study of the biotic and abiotic stress response, male sterility,
organ development, flavonoid and bulb color, micro RNA discovery, and microbiome
associated with Allium crops. Further, we also emphasized the integrated use of these
omics platforms for a better understanding of the complex molecular mechanisms to
speed up the breeding programs for better cultivars.
Conclusion. All the information and literature provided in the present review throws
light on the progress and potential of omics platforms in the research of Allium crops.
We also mentioned a few research areas in Allium crops that need to be explored using
omics technologies to get more insight. Overall, alliums are an under-studied group of
plants, and thus, there is tremendous scope and need for research in Allium species.
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INTRODUCTION
Allium crops are cultivated globally due to their importance as a vegetable, condiment, and
spice with medicinal properties. The genus Allium belongs to the family Amaryllidaceae
of the order Asparagales. Telomerase sequence variation is responsible for the divergence
of Allium from other genera belonging to Asparagales. The genus Allium comprises
more than 920 species (Seregin, Anačkov & Friesen, 2015), and among them, onion,
garlic, bunching onion, leek, and shallots are widely cultivated because of their economic
importance. The total production value of Allium crops in 2014 was US$61348 million
(http://www.fao.org/faostat/en/#data/QC), of which dry onion and garlic contributed a
major share of 70% and 25%, respectively. China, India, and the United States of America
are among the major Allium producing countries.

The biannual life cycle, high cross-pollination, and inbreeding depression in onion
and vegetative propagation, and lack of flowering, especially in garlic, are the main
barriers to the conventional breeding of these major Allium crops. Alliums are known to
possess one of the largest genomes (10–30 pg/1C) among vegetable crops (Ricroch et al.,
2005). Thus, sequencing and assembling of these genomes become difficult, leading to
limited availability of markers (Chinnappareddy et al., 2013; Khosa et al., 2016a; Khosa et
al., 2016b). Therefore, mapping and genomics-assisted breeding in Allium crops are lagging
(Shigyo, Khar & Abdelrahman, 2018) compared with other crops, such as rice, wheat, and
tomato. Presently, we are witnessing tremendous developments and data generation from
various omics experiments such as genomics, transcriptomics, proteomics, metabolomics,
and metagenomics. These approaches have the potential to increase the speed and accuracy
of analysis ofthe complex molecular process, ultimately leading to the development of new
strategies in breeding programs for Allium improvement.

Next-generation sequencing (NGS) has recently been used for transcriptome analyses of
hundreds ofmodel aswell as non-model plant species (Martin et al., 2013). RNA sequencing
(RNA-seq) is a rapid and inexpensive technique that is independent of genome complexity,
and thus, NGS has emerged as a method of choice for expression analyses in crops where
genome sequence information is unavailable. In alliums, RNA-seq was used for studying
telomeres, molecular mechanism underlying male sterility, flowering, abiotic stress, and
bulb color, and for marker discovery (Duangjit et al., 2013; Abdelrahman et al., 2015;
Kamenetsky et al., 2015; Fajkus et al., 2016; Baek, Kim & Kim, 2017; Yuan et al., 2018). The
mRNA expression profile differs from the pattern of protein levels, and the correlation
between them is often reported in the range of 0.3–0.5 (Voelckel, Gruenheit & Lockhart,
2017). It may be due to protein degradation, post-transcriptional and post-translational
regulations (Voelckel et al., 2010). Protein levels are often closely associated with the trait
compared to the transcript profile, and therefore, proteomics can be more reliable for
studying plant development and responses to stress. Proteomics is an excellent research
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Figure 1 Various omics approaches and their potential application in study of different areas of Al-
lium crops improvement.

Full-size DOI: 10.7717/peerj.9824/fig-1

tool when genome sequence information is limited. A few proteomic studies have been
conducted in Allium crops to determine abiotic stress tolerance (Chen et al., 2013; Qin et
al., 2016) and garlic fertility (Shemesh-Mayer et al., 2015). Nowadays, metabolomics is used
to gain insights into metabolites involved in specific cellular and developmental processes
and stress responses in plants. Because of its rapid and accurate analyses, metabolomics can
be used for selecting superior genotypes based on the quantity of metabolites of interest
in the breeding program. Metabolomics has a vast potential for the characterization of
flavonoids and sulfur (S) compounds in Allium crops. Garlic and onion metabolomes were
studied for antimicrobial compounds (Farag et al., 2017), authentication of genotypes
(Hrbek et al., 2018), and S-containing compounds (Nakabayashi & Saito, 2017). Thus,
overall, omics approaches have a massive potential in Allium research (Fig. 1). Because
Allium crops are yet unexplored in terms of omics compared with other crops, omics
approaches can assist improvement in these crops.

SURVEY METHODOLOGY
An extensive literature survey for published research papers in the area of omics
approaches in Allium crops was conducted using different databases (e.g., Pubmed,
Google Scholar, Science Direct, and Scopus). To collect all relevant information, we
built our literature search by using the following keyword combinations: genomics and
alliums, transcriptomics and alliums, proteomics and allium s, metabolomics and alliums,
metagenomics, and alliums. These articles were critically studied and used as references
for the present review article. Our literature survey was not limited to specific time, area,
institute, and authors, and thus, a comprehensive and unbiased review was ensured.
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Genomics
During the 19th century, the breeding approach, particularly in onions, was based only on
mass selection. Further, the discovery of male sterility led to the development of F1 hybrids
during the mid-20th century (McCallum et al., 2008). Recently, hybrids, as well as open-
pollinated varieties, have considerably increased onion productivity. However, overall,
limited improvement is observed in Allium crops due to some inherent reasons, such as
high heterozygosity, inbreeding depression, sexual sterility in garlic, clonal propagation,
sensitivity toward photoperiod, and temperature. The whole-genome sequence assembly,
which can be a crucial resource for functional genomics in Allium crops, is not yet available
for any of the Allium members.

Recently, NGS platforms have been routinely used for the discovery of markers such
as SSRs and SNPs. Baldwin et al. (2012a) developed advanced genomic SSR markers using
NGS for the double dhaploid population; 921 SSRs were recognized from the genomic
sequence of 6.6Mbp.Whole-genome scanningmethods have developed numerous SNPs in
onion. Advanced genotyping technologies and doubled haploid in onion allowed frequent
identification of SNPs (Kim et al., 2014; Finkers et al., 2015; Shigyo, Fujito & Sato, 2019).
The frequency of SNPs in onion is 1.7 SNPs/Kb, which is similar to that in other plant
species. In massive onion germplasm, SNPs were validated, and the existing linkage map
was mapped (Duangjit et al., 2013). A high-throughput genotyping approach, such as
genotyping-by-sequencing (DArTseq), was utilized for the first time for diversity and
structure analyses of a large garlic population with 417 accessions. These analyses have
enabled in identifying unique and redundant accessions (Egea et al., 2017). Jo et al. (2017)
developed an onion genetic map by using the genotyping-by-sequencing approach. High-
fidelity SNPs that satisfied the segregation ratio criteria were used for mapping the F2 onion
population (NW-001 XNW-002). Themap generated was 1383 cM in length,with amarker
interval of 8.08 cM. Markers developed from the genic region have greater transferability
than those from noncoding areas. Recently, the double digest restriction site-associated
DNA sequencing (ddRAD-seq) approach was used for SNP discovery in inbred lines of
Korean short-day onion. A total of 1904 SNPs were discovered and used in population
structure analyses and genetic relationship studies (Lee et al., 2018). Such SNPs or SSRs
developed using NGS technologies can be helpful in developing precise linkage maps and
managing genetic resources in onion as well as other related Allium species.

Nuclear genome
Onion possesses a genome of 1C=16.75 pg, which is several times larger than the rice
genome (1C=0.6 pg) (Bennet & Smith, 2002). Other Allium species also exhibit larger
genome sizes ranging from 7.4 Gb in Allium sibiricum to 72.9 Gb in A. validum (Shigyo,
Khar & Abdelrahman, 2018). Among alliums, researchers have attempted sequencing the
onion genome because of the economic importance of onions. Suzuki, Do & Mukai (2002)
developed an onion BAC library consisting of 48,000 clones, which covered 0.39% of the
genome.Kuhl et al. (2004) sequenced a normalized cDNA library yielding 18,388 sequences.
The onion genome is low in GC content, and majority of the genome comprises repetitive
sequences (75%–80%) (Do, Suzuki & Mukai, 2004). Among plants, the gene density of
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onion is the lowest (1 gene/168 Kb), as confirmed by BAC-mediated and whole-genome
shotgun sequencing projects. Pilot onion genome sequencing of two BACs revealed
AT-rich (64.8%) sequences and long transposable elements, as evidenced in other larger
plant genomes. Utilizing themethyl filtration technique potentially reduces unspecified and
transposon sequences and produces approximately 10% higher gene encoding sequences
(Jakše et al., 2008). The SEQUON project was recently initiated by Netherland to sequence
the onion genome; under this project, four TrueSeq genomic DNA libraries were sequenced
using IlluminaHiSeq 2500 (Finkers et al., 2015). The resulted assembly was 10.8 Gb with 6.2
M contigs. Such a higher proportion of the genome coverage indicates the genome-wide
distribution and sufficient divergence of ancient repeats, which can be assembled efficiently.
In the present study, the authors propose that recently developed long-read sequencing
platforms can further improve the assembly.

As mentioned earlier, majority of the Allium genome comprised repetitive sequences
(Do, Suzuki & Mukai, 2004) that are composed of satellite DNA, tandem repeats, and
transposable elements. A repeatome is the total quantity and types of repetitive DNA in the
genome. The repeatome plays a crucial role in the evolution and organization of genomes
(Maumus & Quesneville, 2014). Repeat DNA sequences in Allium crops were identified and
mapped using cytogenetic techniques such as FISH (Kiseleva, Kirov & Khrustaleva, 2014;
Mancia et al., 2015; Kirov et al., 2017). Hertweck (2013) performed comparative analyses
of transposable elements from Asparagales and reported conservation as well as wide
variation in the repeatomes of different taxa in Asparagales. Recently, repeatomes of few
Allium species were studied using low-coverage genome sequencing by employing NGS
and bioinformatic tools. More than 90% of the onion genome has been reported to be
repetitive in nature (Fu et al., 2019). Repeatomes of A. cepa, A. sativum, and A. ursinum
were dissected using NGS technology,and the most prevalent repeat was Ty3/gypsy
elements. Comparative analyses revealed that these repeats are significantly diverged in
these species; hence, the authors could not detect common clusters during the analyses
(Peška et al., 2019; https://www.ibp.cz/local/data/allium/). Studies on repeatome scan help
in understanding speciation and karyotype evolution processes in Allium species. Further,
knowledge of repeated DNA can be exploited for marker discovery and breeding in alliums.

Telomere sequences play a key role in the phylogenetic divergence of Asparagales.
The last switch is responsible for the divergence of Allium from other genera. The omics
approach was used to study telomeres in Allium species. Fajkus et al. (2016) used RNA-
seq data and other techniques to characterize unusual telomeric sequences in Allium
species. Recently, Fajkus et al. (2019) characterized the telomerase RNA of different
species in Asparagales by using transcriptome and CRISPR/Cas-mediated genome editing
(https://www.ibp.cz/ local/data/telomeraserna/). Interesting findings of these studies can
facilitate the understanding of the functions of telomerase and telomere in the divergence
of various taxa.

Mitochondrial genome
Researchers have recently completed the sequencing of the mitochondrial genome of
onion varieties (Table 1); the data obtained can help in understanding the male sterility
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Table 1 List of mitochondrial and chloroplast genome sequence of Allium species.

Species Genome Platform Length (bp) GC% References

Allium cepa Mitochondria NextSeq500 316,363 N.A. Kim et al. (2016)
Allium cepa Mitochondria NextSeq 500 316,363 and 339,180 N.A. Kim, Yang & Kim (2019)
Allium cepa Mitochondria GS FLX 316288 45.3 Tsujimura et al. (2019)
Allium cepa chloroplast 454 FLX 153 538 and 153 355 36.8 Von Kohn, Kiełkowska & Havey (2013)
Allium cepa Chloroplast HiSeq2000 153,529, 153,440,

and 153,568
N.A. Kim et al. (2015)

Allium
victorialis

Chloroplast HiSeq2000 154,074 36.48 Lee et al. (2017)

Allium prattii Chloroplast Hiseq2000 154,482 37.02 Jin et al. (2018)
Allium obliquum Chloroplast HiSeq 1500 152,387 36.8 Filyushin et al. (2018)
Allium sativum Chloroplast HiSeq 1500 153,172 N.A. Filyushin et al. (2016)
Allium
fistulosum

Chloroplast HiSeq 2500 153,164 36.8 Yusupov et al. (2019)

Allium
monanthum

Chloroplast Hiseq 2500 154,804 37 Xie et al. (2019a); Xie et al. (2019b)

A. chrysanthum Chloroplast Hiseq 2500 153,621 36.8 Xie et al. (2019a); Xie et al. (2019b)
A. rude Chloroplast Hiseq 2500 153,697 36.7 Xie et al. (2019a); Xie et al. (2019b)
A. xichuanense Chloroplast Hiseq 2500 153,673 36.7 Xie et al. (2019a); Xie et al. (2019b)
A. chrysocephalum, Chloroplast Hiseq 2500 153,710 36.8 Xie et al. (2019a); Xie et al. (2019b)
A. maowenense, Chloroplast Hiseq 2500 153,608 36.8 Xie et al. (2019a); Xie et al. (2019b)
A. herderianum Chloroplast Hiseq 2500 153,605 36.8 Xie et al. (2019a); Xie et al. (2019b)
A. fistulosum Chloroplast HiSeq 4000 153,162 36.8 Huo et al. (2019)
A. tuberosum Chloroplast HiSeq 4000 154,056 36.9 Huo et al. (2019)
A. sativum Chloroplast HiSeq 4000 153,189 36.7 Huo et al. (2019)
A. cepa Chloroplast HiSeq 4000 153,586 36.8 Huo et al. (2019)
Allium
ovalifolium

Chloroplast HiSeq 4000 153,635 37 Sun et al. (2019)

mechanism in onion and its further use in breeding programs. The mitochondrial genome
of onion (316 kb) containing the CMS-S male-sterile cytoplasm was sequenced using the
Illumina NextSeq500 platform. They also identified cox1 as part of chimeric orf725, which
is one of the candidate genes for CMS (Kim et al., 2016). The mitochondrial genome of the
CMS-S-type onion variety ‘‘Momiji-3’’ was characterized which have amulti-chromosomal
structure resulting from recombination events. Examination of transcript data revealed
RNA editing at 635 positions, and a candidate gene for CMS in ‘‘Momiji-3’’ was also found
to be orf725 (Tsujimura et al., 2019). Similarly, Kim, Yang & Kim (2019) compared the
mitochondrial genome of two recently diverged cytoplasms—male-fertile and male-sterile
CMS-T-like cytoplasms and obtained almost identical sequences. They also identified
a chimeric gene, orf725, as a candidate gene for CMS. The mitochondrial genome of
more Allium species with different cytoplasms should be sequenced for an improved
understanding of the mitochondrial genome.
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Chloroplast genome
The chloroplast genome is known for its conserved nature, maternal inheritance, and
collinear gene order. Therefore, the chloroplast genome is widely used for phylogeny
and diversity analyses in plants. The chloroplast genome of several Allium species have
been characterized using NGS platforms (Filyushin et al., 2018; Xie et al., 2019a; Yusupov
et al., 2019) and used for marker discovery (Lee et al., 2017; Kim, Park & Yang, 2015),
phylogenetic analyses (Xie et al., 2019b; Huo et al., 2019), and the study of male sterility
(Von Kohn, Kiełkowska & Havey, 2013; Kim, Park & Yang, 2015; Table 1). The complete
chloroplast genome is 152,387–154,482 bp in length,with a GC content of 36%–37%
(Filyushin et al., 2016; Lee et al., 2017; Xie et al., 2019a; Xie et al., 2019b; Yusupov et al.,
2019). Minor variations in the length of the chloroplast genome, among the Allium species,
might be due to the occurrence of indels. The number of genes in this genome ranges from
114 to 141. Repeat analyses revealed that all chloroplast genomes contain similar repeat
sequences (Huo et al., 2019). Information generated from chloroplast genome sequencing
could be harnessed for studying and improving Allium crops.

Transcriptomics
Transcriptomes are being routinely studied using the RNA-seq approach because of
the affordability of sequencing and availability of analyses pipelines for extracting
meaningful and useful information. Transcriptomes facilitate transcript profiling of a
tissue at a specific stage or time and enable validation and annotation of these putative
differentially expressed transcripts. Sun et al. (2013) and Baldwin et al. (2012b) performed
transcriptome characterization in garlic and doubled haploid onion respectively for the
first time. Thereafter, several published articles have reported the use of RNA-seq for
studying organ development, male sterility, marker discovery, abiotic stress response,
and flavonoid synthesis in various Allium species (Table 2). Kim et al. (2015) attempted
structural annotation of onion RNA-seq by using an integrated structural gene annotation
pipeline. Similarly, Sohn et al. (2016) developed a draft reference transcript for onion by
using long-read sequencing technology, suggesting that further progress in sequencing
chemistry will help in whole-genome sequencing in alliums. Kazusa DNA Research
Institute and Yamaguchi University, Japan, have developed a transcriptome database for
Allium species—‘‘AlliumTDB’’ (http://alliumtdb.kazusa.or.jp/). This database harbors
transcriptome data of 12 different libraries of root, stem, bulb, and leaves of different
species and their doubled haploids. It is a vital resource of genetic information in
Allium crops. The desired information can be retrieved from the ‘‘KEYWORD’’ page
(http://alliumtdb.kazusa.or.jp/keyword.html) by searching the keywords as genes, TFs etc.
This key word search results into various available information on the searched terms
from many databases like TAIR, NCBI NR, and RAP-DB. To discriminate sequences of
transcription factors in AlliumTDB, we searched for the important transcription factors
like WRKY (645), AP2/ERF (863), NAC (735), Myb (1970), DOF (293), HSF (256), ARF2
(123), ARF1 (95), LFY (6), C2H2-type zinc finger (1193), Basic-leucine zipper (759),
GATA type Zinc finger (405) etc. The results have been summarized in to File S1 having
the set name of unigene (DB), sequence name of unigene (AC), % identity (Iden) and
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Table 2 List of the RNA seq analyses performed in Allium species.

Species Platform Tissue Purpose/observation Reference

Allium sativum Illumina HiSeq 2000 Dormant and sprouting
bud

Discovery of genes in sulfur
assimilation

Sun et al. (2012)

Allium sativum Illumina HiSeq 2500 Whole plant of 10 and
45 days old

Developed SSR marker in
garlic and studied their trans-
ferability to other Allium
species

Liu et al. (2015)

Allium sativum MiSeq
v3 platform

Leaves, basal plate, roots
inflorescence, flowers,
cloves

Organ specific transcrip-
tome for identification key
gene and mechanism of organ
development

Kamenetsky et al. (2015)

Allium sativum Roche 454-FLX Leaves, pseudostems,
and roots

SNPs and indels discovery Havey & Ahn (2016)

Allium sativum Illumina HiSeq 2000 Flower buds of male
sterile and fertile lines

Energy deficiency of tapetum
cells might be reason of male
sterility in garlic

Shemesh-Mayer et al. (2015)

Allium sativum Illumina HiSeqTM 2000 Shoot apex Genes differentially expressed
in shoot apex were identified

Sun et al. (2013)

Allium cepa Illumina HiSeq 2500 Leaf Discovery of NAC transcrip-
tion factor in onion

Zheng et al. (2016)

Allium cepa Illumina HiSeq 2000 Outer, intermediate and
inner scale

Programmed cell death in
onion skin formation

Galsurker et al. (2017)

Allium cepa Illumina HiSeq 2000 Bulb ISGAP was used for higher
accuracy of transcript annota-
tion

Kim et al. (2015)

Allium
cepa

Roche 454 FLX platform Bulbs, tissue
from leaves,
unopened umbels,
bulbs, and roots

SNP development based on
saturated map

Duangjit et al. (2013)

Allium cepa Illumina HiSeq 2000 Leaf Differentially expressed genes
were identified at freezing
temperature and develop-
ment of SSR and SNPs mark-
ers

Han et al. (2016)

Allium cepa HisSeqTM 2500 Bulb Dissected sucrose metabolism
during bulb formation

Zhang et al. (2016)

Allium cepa Illumina HiSeqTM 2000 Anthers at the tetrad
stage

Identification of differentially
expressed gene in anthers of
sterile and maintainer line

Yuan et al. (2018)

Allium cepa Illumina HiSeq 2000 Bulb The AcPMS 1 involved
in DNA mismatch
Repair, is the best candidate
for fertility restoration

Kim et al. (2015)

Allium cepa 454TM GS-FLX Leaves and shoot Developed toolkit for bulk
PCR marker designing from
transcriptome data

Baldwin et al. (2012b)

(continued on next page)
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Table 2 (continued)

Species Platform Tissue Purpose/observation Reference

Allium cepa Illumina HiSeq 2000 Scales Studied differential response
of outer and inner scales to
the heat treatment

Galsurker et al. (2018)

Allium cepa Illumina
HiSeq 4000

Bulb Variation in bulb colour Zhang et al. (2018)

Allium cepa
and interspecific hybrids

Illumina HiSeq2000 Leaves Develoment of SNP markers
from interspecific hybrids for
introgression breeding

Scholten et al. (2016)

Allium cepa PacBio_RSII platform,
P4-C2 chemistry

Flowers, leaves, bulbs
and roots

Long read sequencing was
used to construct a draft ref-
erence transcripts

Sohn et al. (2016)

Allium porrum Illumina HiSeq 2500 Leaves Identification of CONSTANS-
like genes which play role in
flowering

Liu et al. (2018)

Allium porrum Illumina MiSeq Leaves and cloves Elucidation of organosulfur
metabolic pathway

Mehra et al. (2019)

Allium fistulosum Illumina HiSeq 2500 Bulb Study of saponin biosynthetic
pathway and their possible
role in fusarium resistance

Abdelrahman et al. (2017)

Allium fistulosum Illumina HiSeq 2000 Leaves, false
stem, basal plate
and root

Gene for sulfur and selenium
metabolism were identified,
SSR marker were developed

Sun et al. (2016)

Allium fistulosum GS-FLX and HiSeq 2000 2-week-old seedlings,
leaf, roots, basal
meristem, immature
flower bract,
mature bract, opened
flowers, immature fruits
and sliced pseudostem

EST markers were devel-
oped for mapping and these
marker will enable compari-
son with bulb onion

Tsukazaki et al. (2015)

Allium fistulosum Illumina HiSeq 2000 Leaves Identified four genes for wax
content and developed 1,558
SSR markers

Liu et al. (2014)

Allium fistulosum Illumina HiSeq 2000 Inflorescences Differential gene expression
in CMS and maintainer line

Liu et al. (2016)

A. fistulosum, shallots and
8 monosomic addition
lines

HiSeq 2500 Bulbs Found hot spot for flavonoid
synthesis on chromosome 5A

Abdelrahman et al. (2019)

Allium tuberosum
Rottler ex
Spr

Illumina HiSeq 2000 Leaves, shoots and roots Performed gene annotation
and SSR identification in Chi-
nese chive

Zhou et al. (2015)

A. sativum, A. porrum,
A. tuberosum, A.
Fistulosum, A.
ascalonicum, A.
cepa, A. cepa var.
agrogarum, A. chinense, A.
macrostemon

Illumina HiSeq 2500 Leaf PCD might involve in devel-
opment of fistular leaves

Zhu et al. (2017)

(continued on next page)
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Table 2 (continued)

Species Platform Tissue Purpose/observation Reference

A. ursinum, A. cepa, A.
angulosum, A. cernuum,
A. ericetorum, A.
fistulosum, A.
nutans, A. sativum,
A. scorodoprasum,
A. senescens
and A. vineale

Illumina HiSeq 2000 Leaves and roots Reported that the unusual
telomeric sequence present in
Allium species, demonstrated
the synthesis of telomere by
telomerase

Fajkus et al. (2016)

A. nutans, A. cepa,
A. ursinum, A.
angulosum, A.
ericetorum, A. fistulosum,
Tulbaghia violacea,
Scilla peruviana,
and Cestrum elegans

Illumina NextSeq500 Leave sand root Studied telomeres in order
Asparagales

Fajkus et al. (2019)

unigene length (Annotation) etc. The sequences of WRKY4 TFs were filtered and aligned
on Mega6 Software (Tamura et al., 2013) using Maximum Likelihood method (Nei &
Kumar, 2000) under the JTT matrix-based model (Jones, Taylor & Thornton, 1992). The
sequence diversity of all the sequences from A. cepa transcripts is presented in Fig. 2.

Marker discovery
The limitation of DNA markers is one of the hurdles in the breeding ofAllium crops and
their improvement (Chinnappareddy et al., 2013; Khosa et al., 2016a; Khosa et al., 2016b).
The RNA-seq approach has been widely used in the discovery of microsatellites SSRs and
SNPs in several species. In alliums, few attempts have been made to develop markers from
transcriptome data and linkage maps. Baldwin et al. (2012a) and Baldwin et al. (2012b)
performed RNA-seq of the doubled haploid bulb onion ‘‘CUDH2150’’ and the genetically
distant ‘‘Nasik Red’’ by using 454TM sequencings, and the mapping of reads revealed 16836
indels and SNPs. These markers have been further used for developing a linkage map of
more than 800 cM covering all marker linkage groups. Transcriptomes of two inbred lines
of onion were sequenced on the Roche-454 platform, and 3364 SNPs were identified on
1716 cDNA contigs. These SNPs were further used in the genetic mapping of different
mapping populations (Duangjit et al., 2013). RNA-seq was used for identifying SNPs from
male-fertile and male-sterile onion genotypes. From 141 contigs, 430 homozygous SNPs
were identified and further used for identifying candidate genes formale sterility (Kim et al.,
2015). Similarly, Shigyo, Fujito & Sato (2019) highlighted the use of RNA-seq-derived SNP
markers in the development of high-density maps. A garlic transcriptome was sequenced
using the Illumina platform that yielded 135360 unigenes. The EST data were used for
developing 1506 SSR markers (Liu et al., 2015).
Similarly, microsatellite, SNP, and indel markers were discovered from the transcriptome

data of garlic (Havey & Ahn, 2016; Chand et al., 2015). Tsukazaki et al. (2015) used the
transcriptome shotgun assembly and Illumina HiSeq 2000 for RNA-seq analyses in A.
fistulosum. Analyses of 54904 unigenes led to the discovery of 2396 SSRs, 9002 SNPs, and
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Figure 2 Inferred Ancestral Sequences ofWRKY4 like sequences from AlliumTDB.
Full-size DOI: 10.7717/peerj.9824/fig-2

4335 indels. Thesemarkers were used in the geneticmapping ofA. fistulosum in comparison
with bulb onion due to the availability of common markers. Similarly, EST-SSR markers
were developed for Welsh onion (Yang et al., 2015) and Chinese chive (Zhou et al., 2015)
from their respective transcriptome data.

Male sterility
Cytoplasmic male sterility is one of the most crucial traits of Allium crops and is
routinely exploited for hybridization. However, the mechanism of male sterility is not
well characterized at the molecular level in alliums. In onion, several molecular markers
have been developed for selecting CMS genotypes.Kim et al. (2015) used BSA and RNA-seq
analyses to identify candidate genes for restoring fertility. Several SNPs that differentiate
male-sterile and male-fertile bulks were identified, along with 14 contigs that showed their
perfect association withthe Ms locus. Among these contigs, AcPMS1 involved in the DNA
repair mechanism is the best candidate gene and the most reliable marker for selecting the
restorer line. Further, the transcriptome of the tetrad stage anther from male-sterile and
maintainer lines was analyzed. Five genes that are associated with male sterility in onion
were identified, of which two were cytoplasmic (atp9 and cox1) and three were coded by
the nucleus (SERK1, AG, and AMS) (Yuan et al., 2018). Differential gene expression in
male-sterile and maintainer lines of Welsh onion was investigated using the transcriptome
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approach, andmore than 4000 unigenes were found to be differentially expressed, including
genes known for their role in male sterility, such as F-type ATPase , NADH dehydrogenase ,
and cytochrome c oxidase (Liu et al., 2016). These studies have revealed that CMS in alliums
is governed by both mitochondrial as well as nuclear genes and the interaction between
them. The male-sterile garlic genotype showed tapetal hypertrophy, which is a cause of
sterility. Integrated transcriptome and proteome analyses revealed several differentially
expressed genes and proteins in male-sterile and fertile genotypes. These candidate genes
(AP3, ms2, mmd1, gpat2, nad7, ccmC, cox2, 18S rRNA, flavanol synthase , and sod) were
involved in male sterility in garlic. Physiological and molecular analyses indicated that
respiratory restriction or non-regulated programed cell death (PCD) might result in
energy deficiency, and in turn, sterile pollens (Shemesh-Mayer et al., 2015).

Abiotic stress
Plants are consistently subjected to various types of environmental stress because of their
sessile nature and due to weather uncertainty in the field. This stress is responsible for
significant yield reduction and economic loss of up to 50% (Atkinson & Urwin, 2012).
Because climate change affects crops, we need to develop stress-tolerant and climate-smart
varieties of crops. Roots of Allium crops are shallow, with a maximum root depth of 0.18
meter, and thus, a slight deepening of the water level renders onion prone to drought stress
(Drinkwater & Janes, 1955). Flooding, waterlogging, and salinity severely affect the yield of
Allium crops (Yiu et al., 2009; Sta-Baba et al., 2010).

The abiotic stress response in Allium crops has not been studied in detail; RNA-seq has
enormous potential in elucidating these stress response mechanisms. The shallot is well
adapted to abiotic stress compared with onion (Currah, 2002). Differential transcriptomic
and metabolomics analyses were performed in the doubled haploids of onion and
shallots. Genes involved in amino acid, osmoprotectant, and flavonoid biosynthesis were
significantly upregulated in the doubled haploids of shallot (Abdelrahman et al., 2015).
These genes might play a role in improved adaptability of shallot to abiotic stress, and thus,
they may be used as candidate genes in onion breeding for stress tolerance. The response
of cold-tolerant and -susceptible onion genotypes was studied using a transcriptomic
approach at cold and freezing temperatures. A total of 491 genes were differentially
expressed at freezing temperatures among cold-tolerant and susceptible onions (Han
et al., 2016). These genes need to be explored further for better adaptation of onion
crops growing at high altitudes to low temperature. Dufoo-Hurtado et al. (2013) reported
the upregulation of phenolic metabolism-related genes in garlic after low-temperature
conditioning of ‘‘seed’’ cloves. NAC (NAM, ATAF, and CUC) transcription factors play an
essential role in plant stress response as well as development. Zheng et al. (2016) identified
39 NAC genes from onion leaves by using RNA-seq and classified them into five groups of
NAC transcription factors.

Biotic stress
Majority of alliums constitute economically important cash crops, and significant losses
occur due to diseases and pests in these crops. Agrochemicals applied to manage biotic
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stress lead to an increase in the cost of production, ultimately reducing the income of
farmers. There are minimal resistance genes available in Allium crops. RNA-seq can prove
to be an excellent tool for discovering novel genes for pest and disease resistance in crops
such as Allium, where the draft genome sequence is not available. Till date, no single report
has published on transcriptome analyses in alliums concerning biotic stress responses. In
onions, limited resistance sources are available, and therefore, related or wild species need to
be explored for disease resistance . Scholten et al. (2016) performed transcriptome analyses
of interspecific hybrids of A. roylei and A. fistulosum and onion varieties. SNP markers
developed from these data were used for linkage and QTL mapping. QTL for resistance to
Botrytis squamosawas identified on the 6th chromosome of A. roylei. Steroidal saponins are
involved in plant defense against different biotic stress. Abdelrahman et al. (2017) isolated
the saponin compound called alliospiroside A from the monosomic addition lines of A.
fistulosum and reported its antagonistic activity against Fusarium. RNA-seq analyses of
these monosomic lines and normal lines led to the identification of 50 unigenes for saponin
biosynthesis and found the upregulation of these genes in the monosomic addition line
of A. fistulosum. Cuticlar and epicuticular wax depositions on onion leaves are known to
involve in biotic stress tolerance, especially against onion thrips (Damon, Groves & Havey,
2014; Silva et al., 2015). RNA-seq analyses of a waxy and non-waxy mutant of Welsh onion
revealed differential expression of 798 genes. Four of these genes were validated using
qPCR, and COG annotation revealed that they were involved in lipid biosynthesis and
defense response in plants (Liu et al., 2014). Such studies might help in understanding
wax deposition in other Allium species and thus in developing pest- and disease-resistant
varieties. Another report on garlic reported the identification of the presence of four
known garlic allexiviruses; A, C, E, and X from transcriptome data (Kamenetsky et al.,
2015). Thus, transcriptome analysis is a highly sensitive method for identifying known and
unknown viruses infecting Allium crops. It can be used for studying plant–virus interaction
in a tissue-specific manner. Mohapatra & Nanda (2018) identified chitinase genes from
transcriptome data by using an in silico approach. Similarly, RNA-seq data deposited in
databases could be mined for the discovery of genes involved in plant defense response.

Organ development
Organ development in plants is a highly organized and precisely regulated process
in response to indigenous signals as well as environmental cues. Flowering and bulb
development is a critical process in Allium crops. Gene regulation plays a vital role in a
smooth transition of growth phases in the life cycle of the plant; however, little information
is available about gene interaction and regulation. Expression analyses using transcriptome
has enabled extraction of this information for a large number of genes at the global level in
less time and at reduced costs. Therefore, in non-model crops, such as alliums, NGS-based
expression analyses helped in understanding the mechanism of plant development.

Transcriptome analyses of dormant and sprouting garlic shoot apices were performed
to elucidate differential gene expression and reveal the role of genes in dormancy as well as
sprouting in garlic.More than 20000 unigeneswere found to be upregulated in the sprouting
shoot apex. Several candidate genes (ENHYDROUS, DAG1, DAM, DTH8, etc.) involved in
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dormancy and sprouting of the shoot apex were identified (Sun et al., 2013). Kamenetsky
et al. (2015) developed an organ-specific transcriptome catalog for fertile garlic. Different
organs exhibited a variation in gene expression profiles, and the highest number of organ-
specific reads were reported from the flower. Genes in organosulfur metabolism exhibited
an organ-specific profile, whereas several genes involved in flowering and bulb formation
were also expressed in leaves, indicating the role of signal transduction. Flowering is a
major challenge in garlic breeding, and thus, such studies in fertile garlic will open avenues
for understanding the genetic mechanism underlying the reproductive process in garlic
as well as other alliums. The CONSTANS and CONSTANS -like (COL) genes are known
for their prime role in flowering. Transcriptome analyses of leek led to the identification
of 17 putative ApCOL genes, some of which exhibited high similarity with COL genes
from other species involved in the modulation of flowering and heading date (Liu et al.,
2018). Different leaf morphologies are observed in alliums, such as flat, solid, and fistular.
Cellular studies have revealed that fistular leaves arise from a solid precursor by PCD
(Ni et al., 2015). A molecular evidence for this finding was provided using transcriptome
analyses of nine important species of Allium with different leaf morphologies (Zhu et al.,
2017). Phylogenetic analyses of transcriptome revealed that genes associated with PCD
presented rapid diversification in fistular leaf species or showed conserved nature in solid
leaf species in evolutionary history. Several potential genes involved in plant PCD were
subjected to positive selection or evolved in species having fistula-type leaves. This varying
selection pattern of PCD-related genes might play an essential role in the development
of cavities in fistular leaves. FLOWERING LOCUS T (FT ) is the major component of the
floral signal molecule as well as other plant development processes. Transcriptome analyses
of the doubled haploid onion led to the discovery of six FT -like genes that play a role
in flowering and bulb formation. AcFT2 promotes flowering, whereas AcFT1 favors bulb
formation, and AcFT4 is antagonistic to AcFT1 (Lee et al., 2013). These functions of AcFT
genes were further confirmed through transgenic studies in Arabidopsis. Thus, FT -like
gene regulation should be studied in non-flowering and non-bulb-forming alliums and
their wild relatives for a further in-depth understanding of their role in alliums. Khosa et al.
(2016a) andKhosa et al. (2016b) performed RNA-seq analyses for the doubled haploid bulb
onion ‘‘CUDH2107’’ from leaves, various stages of flowering, and roots. They identified
several genes involved in flowering and male fertility in onion, which are the orthologs of
rice genes. Sucrose metabolism during onion bulb development is a crucial phenomenon
(Mallor et al., 2011). Zhang et al. (2018) identified key genes expressed during sucrose
metabolism through transcriptome analysis. They performed RNA-seq analyses in three
bulb stages (15, 30, and 40 days after bulb swelling), and KEGG analyses revealed that
‘‘sucrose and starch metabolism’’-related genes were dominant. Expression of the sucrose
transporter was the highest during early stages. Sucrose synthase and invertase seem to be
involved in sucrose breakdown. Fructose and glucose contents gradually increased from
early to later stages, whereas sucrose content decreased. Sucrose metabolism and bulb
growth suggested that 30–40 DAS is a period of rapid expansion of bulb (Zhang et al.,
2018). . Desiccation and senescence processes lead to the formation of the onion bulb skin.
The bulb skin plays a crucial role in the storage and shelf life of the onion bulb and influence

Khandagale et al. (2020), PeerJ, DOI 10.7717/peerj.9824 14/34

https://peerj.com
http://dx.doi.org/10.7717/peerj.9824


its consumer acceptance (Chope et al., 2012). Scanning electron microscopy revealed that
the desiccation of the outer scale occurs from inside out, and DNA degradation indicated
the critical role of PCD in skin formation. Gene ontology enrichment of transcripts from
outer, intermediate, and inner scales revealed an increase in processes related to defense
response, PCD processes, carbohydrate metabolism, and flavonoid biosynthesis in the
outer scale, whereas the inner scale exhibited increased metabolism and developmental
growth processes (Galsurker et al., 2017). These results indicated that the metabolism for
bulb skin formation occurs only in the outer scales of onion.

Flavonoids and bulb color
Bulb color is one of the important quality traits in onion. Various bulb colors exist,
such as white, yellow, red, pink, chartreuse, and gold. Variation in this trait is governed
by mutations in structural and regulatory genes of the flavonoid biosynthesis pathway
(Khandagale & Gawande, 2019). Baek, Kim & Kim (2017) performed RNA-seq and bulk
segregant analyses of yellow and F2 white plants to develop a marker linked to the C locus
that determines the white bulb color in onion. Ninety-seven genes, including previously
identified genes of the flavonoid pathway, exhibited more than five-fold expression in the
yellow bulk.

Similarly, regulatory genes for the MBW complex were upregulatedin the yellow bulk.
SNPs in the gene coding for glutathione S-transferase revealed linkage with the C locus.
Transcriptome analyses of white and dark red onions led to the identification of 16 DEGs
that play a critical role in the flavonoid biosynthesis pathway. Flavonoid 3′, 5′-hydroxylase
(F3′5′H ) and dihydroflavonol 4-reductase (DFR) genes play crucial roles in the biosynthesis
of dark red bulbs. Further, the ratio F3′5′H : F3′H plays an essential role in the diversity of
bulb color (Zhang et al., 2018).

MicroRNAs
MicroRNAs (miRNAs) are a group of small, endogenous noncoding RNAs (ncRNAs)
comprising approximately 18–25 nucleotides that regulate gene expression in animals,
plants, and protozoans. miRNAs control approximately 60% protein-coding gene activities
and regulate numerous cellular processes (Bartel, 2009). miRNAs regulate gene expression
through translational repression or target mRNA degradation (Chekulaeva & Filipowicz,
2009). Among Allium crops, two reports have reported discovery of miRNA in garlic and
onion by using the in silico approach (Panda et al., 2014; Kohnehrouz, Bastami & Nayeri,
2018). Fusarium oxysporum f. sp. cepae (FOC) is the most devastating pathogen that infects
roots and basal plates of garlic. (Chand et al., 2017) performed small RNA sequencing
of a FOC-resistant line after infection and discovered 45 miRNAs responsive to FOC.
Overexpression of miR164a, miR168a, and miR393 resulted in decreased fungal growth as
well as upregulation of defense genes. Similarly, in an earlier study, Chand, Nanda & Joshi
(2016) reported that miR394 functions as a negative modulator of FOC resistance in garlic.
miRNA thus plays a huge role in the regulation of genes inAllium crops in response to stress
as well as development, and thus, for its application in crop improvement, more miRNAs
and their targets need to be discovered. Recently, we performed genome-wide identification
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of miRNA in Thrips tabaci, along with their expression profiling and target prediction
(Balan et al., 2018). These miRNAs and their targets can be used for the management of
onion thrips by using RNA interference technology.

Proteomics
Proteomics is the high-throughput study of proteins expressed in specific tissues in an
individual at a specific time or developmental stage. It plays a key role in interactive or
meta-omics analyses, as it complements gene expression and metabolomic studies and
hence is more helpful in crops, such as alliums, where limited genomic information is
available (Table 3). Proteome alteration in sprouts after low-temperature conditioning
of garlic cloves was studied (Dufoo-Hurtado et al., 2015). Differentially synthesized
proteins were analyzed using 2-DE and LC-ESI-MS/MS and were found to be involved in
various biological processes. This study complemented other studies reporting changes in
physiology, biochemistry, and molecular biology of cloves after low-temperature treatment
(Dufoo-Hurtado et al., 2013; Guevara-Figueroa et al., 2015). Proteomic changes during
freeze–thaw injury and recovery in onion scales were studied. Majority of injury-related
proteins (IRPs) were found to be antioxidants, stress proteins, molecular chaperones, and
proteins of energy metabolism; these IRPs were induced as a first response to mitigate
injury. Recovery-related proteins involved in injury repair facilitates cellular homeostasis,
cell wall remodeling, reactive oxygen species scavenging, defense against possible post-thaw
infection, and regulating the energy budget to sustain these processes (Chen et al., 2013).
Plant’s ability to recover from freeze–thaw injury is a critical factor contributing to tolerance
to this stress. Similarly, proteome level changes in response to toxic metals, such as copper
and sodium selenite, were also reported in onion (Qui et al., 2015; Karasinski et al., 2017).
2-DE and MS approaches identified 47 differential abundant protein spots between lower
and upper epidermis of scales in red and yellow onions; among these, 31 were reported
to be unique proteins. These differential proteins were involved in flavonoid synthesis,
response to stress, and cell division (Wu et al., 2016). While studying gametogenesis and
sterility in garlic, significant differences were observed in the 2-DE profile between sterile
and fertile genotypes. A variation was observed in protein maps of different stages of
microsporogenesis (Shemesh-Mayer et al., 2013). These differential proteins need to be
investigated using MS to elucidate their identity and potential role in fertility.

Metabolomics
Plants produce large numbers of metabolites of diversified structures and physical
properties in varying abundance. These metabolites vary with the genotype, plant
development, environmental conditions, storage, and processing. Metabolite profiling
has now been implemented on a broad range of plant species, including but not limited
to, tomato, potato, rice, wheat, strawberry, Medicago, Arabidopsis and Allium species.
Approximately, 13000 onion accessions are held in gene banks worldwide (Böttcher
et al., 2017), but only a small portion of this diverse Allium resource is exploited due
to the paucity of information (Soininen et al., 2014a; Soininen et al., 2014b; Soininen
et al., 2012). Allium crops are extensively consumed for their broad array of health-
promoting effects, which are assigned to the presence of different profiles of organosulfur
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Table 3 List of the proteomics analyses performed in Allium species.

Species Organ/tissue Platform Trait/aim Reference

Allium sativum L Garlic sprouts 2-DE, LC-ESI-MS/MS Low temperature condi-
tioning alters the proteome

Dufoo-Hurtado et al. (2015)

Allium cepa var. agrogarum Roots 2-DE, AutoFlex TOF/TOF II Proteomic response of
roots to Cu stress

Qin et al. (2016)

Allium sativum L Bulbs 2-DE, XCT mass spectrometer Characterizatio of Copper–
Zinc Superoxide dismutase

Sfaxi et al. (2012)

Allium cepa L Scale epidermis 2-DE, MALDI-TOF/TOF Studied differential protein
abundance in upper and
lower epidermis

Wu et al. (2016)

Allium cepa L Scales 2-DE, 4700 MALDITOF/TOF Studied the proteomic re-
sponse during and after re-
covery of freeze-thaw in-
jury

Chen et al. (2013)

Allium sativum L Anthers 2-DE Study revealed proteomic
differences between fertile
and sterile genotypes, de-
velopmental stages

Shemesh-Mayer et al. (2013)

Allium cepa L Roots nanoLC-ESI-QOrbitrap-MS Studied the effect of
sodium selenite at
proteome level

Karasinski et al. (2017)

compounds (OSCs), such asalk(en)yl cysteine sulfoxides, S-allyl cysteine, thiosulfinates
(mainly allicin), diallyl sulfides, vinyldithiins, and (E)- and (Z)-ajoene (Block et al., 2010;
Ramirez et al., 2017). Metabolites present in Allium species may represent their adaptation
to different environmental cues during the domestication process. They also govern
important characters in alliums, such as color, pungency, taste, stress tolerance, and
medicinal properties. A wide range ofmodern techniques, such as Liquid Chromatography-
Mass Spectrometry (LC–MS), Gas Chromatography–MS (GC-MS), Nuclear Magnetic
Resonance (NMR), LC-Fourier Transform Ion Cyclotron Resonance (FTICR)-MS,
LC-tandem quadrupole (QqQ)-MS, LC-Quadrupole Time-of-Flight (QTOF)-MS/MS,
and Ultrahigh Performance Liquid Chromatography-coupled Electrospray Ionization
Quadrupole Time-of-Flight Mass Spectrometry (UHPLC/ESI-QTOFMS), have been used
to explore, determine, and characterize the metabolic profile of Allium species (Soininen et
al., 2014a; Soininen et al., 2014b; Soininen et al., 2012; Nakabayashi et al., 2016; Böttcher et
al., 2017;Molina-Calle et al., 2017; Hrbek et al., 2018; Table 4).

Among alliums, metabolic profiling is so far performed in onion bulbs, considering
cultivars and cultivation year (Böttcher et al., 2018); change in organosulfur metabolites
after heat treatment in onion (Kim et al., 2016); differentiation profiling of black and
fresh garlics (Molina-Calle et al., 2017); low-temperature conditioning of ‘‘seed’’ cloves
(Dufoo-Hurtado et al., 2013); volatile profiling of onion and garlic after subjecting to
different drying methods (Farag et al., 2017); metabolic profiling of leaves, bulbs, roots,
and basal stems in A. roylei and A. porrum L. (Abdelrahman et al., 2014; Soininen et al.,
2014a; Soininen et al., 2012); authentication of the geographic origin of garlic (Hrbek et
al., 2018); bulb color and flavonoids (Zhang et al., 2018; Abdelrahman et al., 2019); and
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Table 4 List of the metabolomic analyses performed in Allium species.

Species Organ/tissue Platform Trait/aim Reference

Allium sativum Clove LC-MS/MS Low temperature conditioning
led to high phenolic and antho-
cyanin content

Dufoo-Hurtado et al.
(2013)

Allium cepa L. Bulb UHPLC/ESI-QTOFMS Variation in metabolite profiles
of bulbs due to genetic and en-
vironmental factors

Böttcher et al. (2018)

Finnish onions,, German
long shallot, French leek
and Chinese garlic

Bulb NMR and HPLCMS Quantification of metabolite in
Allium species

Soininen et al. (2014a)
Soininen et al. (2014b)

Allium sativum, Allium
cepa L.

Dried bulbs GC/MS, UPLC/MS Effect of drying methods on
chemical composition was in-
vestigated

Farag et al. (2017)

Allium sativum L. Cloves DART-HR-OrbitrapMS,
HPLC-ESI-HR-TOFMS

Authenticity of garlic from dif-
ferent geographical locations
was assessed

Hrbek et al. (2018)

Allium sativum L GC/MS, HPLC-MS/MS Developed rapid, simple and
efficient method for sensory
evaluation of garlic

Liu et al. (2019)

Allium cepa L. Fresh and
stored bulbs

NMR Highlighted the use of
Metabolomics for food
authentication

Saviano et al. (2019)

Allium cepa L. Farag et al. (2019)
Allium cepa Bulb LC/ESI-QTOFMS Metabolic profiling of onion

cultivars
Böttcher et al. (2017)

35 Allium species Bulb and leaves HPLC-ESI-HRMS and
NMR

Identification and
quantification of metabolite
with α-glucosidase
inhibitory activity

Schmidt, Nyberg & Staerk
(2014)

Allium sativum Cloves LC–QTOF MS/MS Analysed the differential com-
position of fresh and black gar-
lic

Molina-Calle et al. (2017)

Allium cepa, Allium
sativum, Allium
fistulosum

Bulbs LC-FTICR-MS Performed chemical assign-
ment of structural isomers of
S-containing metabolites

Nakabayashi et al. (2016)

Allium sativum Bulbs HPLC and
LC-FTICR-MS

Sulphur containing metabolites
were analysed

Yoshimoto et al. (2015)

Allium cepa Bulbs 1H NMR and LC–MS/MS Bioactive compounds were
identified

Soininen et al. (2012)

Allium porrum L bulbs 1H NMR and HPLC–MS Demonstrated metabolome
profile of different varieties

Soininen et al. (2014a)
Soininen et al. (2014b)

Allium roylei Leaves, bulbs, and
roots-basal stems

HPLC Bioactive compounds from dif-
ferent organs were analysed

Abdelrahman et al. (2014)

A. fistulosum, shallots and
8 monosomic addition
lines

Bulbs LC-QqQ-MS Metabolites in flavonoid path-
way were studied

Abdelrahman et al. (2019)
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metabolic profiling of fresh and stored onion bulbs (Saviano et al., 2019). Metabolomics,
along with the artificial neural network, was used for sensory evaluation of garlic and garlic
products by using 89 quality indicators (Liu et al., 2019). Farag et al. (2019) studied the
effect of the pickling process on onion metabolome and reported a decrease in secondary
metabolites; thus, pickling using brine negatively affects the health benefits of onion.
Functions and application of some metabolites are presented in Table S2. Onions produce
discrete metabolites, including fructo-oligosaccharides (Galdón et al., 2009), OSCs (Block
et al., 2010), and flavonoids (Olsson, Gustavsson & Vagen, 2010). In plants, flavonoids are
present as flavonoid aglycones, flavonoid O-glycosides, flavonoid C-glycosides, and/or
flavonoid O-, C-glycosides (Niessen, 2006). A total of seven different flavonols were
identified and characterized from red onions; however, concentrations of flavonoids vary
among genotypes and species (Bonaccorsi et al., 2005). These flavonoids determine the
color of the onion bulb and tolerance to biotic and abiotic stresses in alliums (Khandagale
& Gawande, 2019). The metabolomic approach in Allium is focused toward exploring
compositional difference, characterization of enzyme activity, and detection and chemical
assignment of metabolites in different genotypes and cultivars (Schmidt, Nyberg & Staerk,
2014; Yoshimoto et al., 2015; Nakabayashi et al., 2016; Molina-Calle et al., 2017). Little work
has been performed to explore the metabolic response of Allium with respect to abiotic and
biotic stresses, which affect plant growth and yield. Recently, Abdelrahman et al. (2016)
attempted the dissection of Trichoderma l ongibrachiatum-induced defense response of
onion against Fusarium through metabolite profiling. More than 25 metabolites were
accumulated in a significant amount in the plant when onion seeds were primed with T.
longibrachiatum. These metabolites are produced in abiotic and biotic stresses and increase
onion resistance to F. oxysporum. Therefore, there is a wide scope to explore these areas,
which might help to decipher resistance and/or tolerance mechanisms in alliums.

Microbial metagenomics
A large number of microorganisms inhabit around, on, or in plants in a natural ecosystem.
The interaction of the microbial community with plants leads to plant growth promotion
in different ways, such as nutrient mobilization and secretion of plant growth hormone,
enzymes, antibiotics, and other beneficial compounds (Verma et al., 2018). The exploration
of microbial diversity interacting with crop-specific plants is limited because only
a few percentage of microbes can be cultured and characterized; to explore a large
number of microbes, the metagenomics approach can be applied as it is independent
of culture (Krishna et al., 2019). Metagenomics approaches are being applied to explore the
significance of uncultivatedmicrobes interacting with differentAllium species (Yurgel et al.,
2018; Knerr et al., 2018; Qiu et al., 2018; Huang, 2018; Matthews, Pierce & Raymond, 2019).
A recent study conducted by Chen et al. (2018) revealed that the crop rotation of Chinese
cabbage (Brassica rapa subsp. pekinensis) with potato onion (A. cepa var. aggregatum Don.)
significantly reduces the incidence and disease index of clubroot disease caused by
Plasmodiophora (Plasmodiophora brassicae) in Chinese cabbage. A reduction in disease
was observed due to the reduction in secondary plasmodia of Plasmodiophora. A similar
study conducted by Nishioka et al. (2019) revealed that cucumber crop rotation and mixed
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cropping with Allium species (A. cepa and A. fistulosum) suppress the Fusarium wilt. 16S
rRNA gene sequencing by using Illumina MiSeq revealed the dominant presence of the
Flavobacterium genus. The predominance of Flavobacterium inhibits the multiplication
of pathogens in soil (Nishioka et al., 2019). The metagenomics study of Chinese leek
(A. tuberosum) by using high-throughput 16S rRNA gene Illumina sequencing revealed
the predominance of Proteobacteria, Acidobacteria, Bacteroidetes, Cyanobacteria , and
Planctomycetesmicrobial communities responsible for potential antifungal and nematicidal
activities (Huang, 2018). The metagenomics of onion bulb was conducted to study bulb-
rotting bacterial and fungal pathogens during storage; as under storage environment, a
significant amount of onion bulbs are affected by diseases. The metagenomics for potential
pathogen analysis, which was performed for both diseased and healthy bulbs under
storage conditions, revealed the abundance of the following bacterial and fungal taxa:
Acinetobacter, Burkholderia, Citrobacter, Enterobacteriaceae, Gluconobacter, Pseudomonas,
Botrytis, Nectriaceae, Penicillium, Wickerhamomyces and Candida. These taxa are also
abundant in the disease-free bulb, but the presence of various fermenters in diseased
bulbs suggests that fermenters play a crucial role in onion bulb rotting, along with abiotic
factors (Yurgel et al., 2018). These studies have highlighted the significance of alliums
metagenomics; in the future, alliums metagenomics should be further explored to identify
bacterial and fungal strains exhibiting bactericidal, fungicidal, nematicidal, and growth-
promoting activities as well asgenes and proteins for crop protection and production. Till
date, the rhizosphere ofAllium crops is largely unexplored, and themetagenomics approach
can help in discovering the diversity as well as an abundance of microbes associated with
Allium roots in varying soil type and climatic conditions.

Meta-omics approach
The information generated from these individual omics experiments needs to be correlated
with each other to draw meaningful and precise conclusions for further knowledge-based
breeding for elite crop development. The omics era has revolutionized research in complex
biological processes and traits in many model organisms. Thus, we need to perform
integrated omics studies in Allium crops for a quick and improved understanding of
molecular mechanisms of various traits (Fig. 3). Integrated transcriptome and proteome
have been performed in garlic for studying flower and pollen development (Shemesh-Mayer
et al., 2015).

Similarly, RNA-seq and metabolomics have been integrated into the study of the
abiotic stress response (Abdelrahman et al., 2015), onion bulb color (Zhang et al., 2018),
and flavonoids (Abdelrahman et al., 2019). From these studies, authors have suggested
that separate omics analyses by using any single approach can be insufficient for the
precise elucidation of various traits and their molecular mechanisms. These integrated
omics interventions further enable researchers to precisely associate genetic variation
with a metabolite or protein and thus ultimately help in selecting candidate genes with
greater confidence for future metabolic and protein engineering in Allium crops for the
development of noble varieties.
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Figure 3 Schematic representation of integrated ‘omics’ analyses in Allium crops.
Full-size DOI: 10.7717/peerj.9824/fig-3

Conclusion and future perspective
Although Allium crops are widely cultivated and consumed, research in these crops
is challenging due to their biennial nature, cross-pollination, inbreeding depression,
photoperiod sensitivity, and lack of flowering. However, with the development of advanced
omics technologies and their affordability, research in these crops is gaining attention and
pace by overcoming these challenges.

Due to the large size of the genome inAllium species, the availability of genome sequences
can be a major breakthrough in Allium research. Rapid progress in sequencing technologies
can definitely enable researchers to completeAllium sequencing projects. Increased number
of doubled haploid lines need to be developed for alliums growing in different photoperiod
conditions and used for genome sequencing. Genome sequencing projects for onion
and shallots are under progress at Wageningen University and Yamaguchi University,
respectively. To complete these daunting tasks, a coordinated effort is needed. The plastid
genome of several Allium species has been characterized and needs to be used for male
sterility and phylogenetic analyses. With the advancement in sequencing technologies
and reduction in cost, recently, the use of RNA-seq has significantly increased in diverse
alliums. These studies have attempted the elucidation of complex molecular mechanisms
involved in male sterility, bulb development, bulb color, flowering, and stress responses in
alliums. Several putative unigenes conferring the aforementioned traits have been identified
from RNA-seq datasets. Biotic and abiotic stresses are the key factors that affect both the
quality and yield of Allium crops; yet, limited information is available regarding molecular
response to stress in these crops. Thus, transcriptomic analyses under stress will help in
understanding the stress physiology and molecular biology of alliums. miRNAs play a
crucial role in gene regulation in plant development and stress response in plants; however,
information on small RNAs is also lacking in alliums. Generally, wild relatives harbor
several economically vital traits, such as abiotic stress tolerance, disease resistance, and
secondary metabolites. Thus, wild alliums need to be investigated using transcriptomics
to identify genes responsible for these traits as well as those for domestication. Further,
these domestication-associated genes can be modified using transgenic or genome editing
tools to cultivate these wild relatives. The level of proteins and metabolites often differ
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with the mRNA expression profile of corresponding genes. Therefore, proteomic and
metabolomic analyses are crucial because they analyze the end product of the central
dogma, and thus, these omics tools should be used in an integrated manner for the proper
unraveling of the trait. A few studies have reported the use of proteomics andmetabolomics
in understanding biological processes, such as stress response, flowering, and metabolic
profiling for geographic origin authentication and analyses of OSCs. However, these efforts
are not sufficient, and a few areas, such as bolting in onion; flowering in short-day garlic;
storability of onion and garlic; high TSS onion for processing, pungency; and aroma, disease
and pest resistance need to be addressed using these omics technologies. These studies need
to be conducted comparatively on short-day and long-day onions to obtain some clues
on the domestication of onion and garlic. Recently developed breeding techniques, such
as CRISPR, may be used in alliums for targeted genome editing of key genes involved
in haploid induction, male sterility, and virus resistance. However, to validate specificity
of mutations, a reference genome is required; thus,the research fraternity working on
Allium crops is eagerly waiting for the release of the draft sequence of onion. Availability
of sequence information can open new avenues and accelerate Allium research, such as
molecular breeding, functional genomics, and gene editing.
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