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1  |  INTRODUC TION

Mesenchymal stem cells (MSCs) are multipotent postnatal stromal 
cells that can be isolated from various adult tissues, such as bone 
marrow (BM),1 umbilical cord (UC),2 umbilical cord blood (UCB),3 ad-
ipose tissue (AD)4 and dental pulp.5 MSCs are plastic adherent and 
can be expanded in vitro. They possess several features, including 
self- renewability, multipotency, immune evasion or privilege, hom-
ing and immune regulation. MSC therapy has been adopted in vari-
ous conditions, such as ageing frailty,6 inflammatory diseases,7 lung 
diseases,8 liver diseases,9 renal diseases10 and neurodegenerative 

diseases.11 There were approximately 1300 studies of MSC ther-
apy registered on ClinicalTrials.gov by the end of 2021. MSCs have 
been generally proven to be safe and effective. Although significant 
progress has been made in MSC therapy, several hurdles limit their 
therapeutic efficacy, such as poor survival, homing and low engraft-
ment rates. Thus far, many strategies have been developed to en-
hance the therapeutic efficacy of MSCs, such as preconditioning, 
co- transplantation with graft materials and gene modification. Gene 
modification could enhance MSCs' characteristics and improve the 
production of desirable, beneficial gene products, ultimately opti-
mizing the therapeutic efficacy of MSCs.12– 14
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Abstract
Mesenchymal stem cell (MSC) therapy is considered a new treatment for a wide range 
of diseases and injuries, but challenges remain, such as poor survival, homing and 
engraftment rates, thus limiting the therapeutic efficacy of the transplanted MSCs. 
Many strategies have been developed to enhance the therapeutic efficacy of MSCs, 
such as preconditioning, co- transplantation with graft materials and gene modifica-
tion. Hepatocyte growth factor (HGF) is secreted by MSCs, which plays an important 
role in MSC therapy. It has been reported that the modification of the HGF gene is 
beneficial to the therapeutic efficacy of MSCs, including diseases of the heart, lung, 
liver, urinary system, bone and skin, lower limb ischaemia and immune- related dis-
eases. This review focused on studies involving HGF/MSCs both in vitro and in vivo. 
The characteristics of HGF/MSCs were summarized, and the mechanisms of their im-
proved therapeutic efficacy were analysed. Furthermore, some insights are provided 
for HGF/MSCs' clinical application based on our understanding of the HGF gene and 
MSC therapy.
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Hepatocyte growth factor (HGF) is a pleiotropic factor primarily 
secreted by mesenchymal cells15 that was first identified and cloned 
in the 1980s.16,17 HGF has mitogenic, motogenic, anti- apoptotic, 
morphogenic and immune regulation activities,18,19 which can pre-
vent fibrosis, apoptosis and inflammation, and promote angiogenesis 
in multiple conditions.20 It has been proven that MSCs' therapeu-
tic efficacy completely or partially depends on the secretion of 
HGF.21– 25 In 2003, our group first reported research about HGF 
gene- modified MSCs, in which the MSCs' therapeutic efficacy on 
myocardial ischaemia was improved by HGF gene modification.26 
Since then, dozens of studies about HGF gene- modified MSCs have 
been conducted. This review summarizes the characteristics of HGF 
gene- modified MSCs (HGF/MSCs). In addition, the mechanisms of 
their enhanced therapeutic efficacy were analysed, thus giving some 
insights into their clinical application.

2  |  CHAR AC TERISTIC S OF HGF/MSC IN 
VITRO

Up to now, seven kinds of HGF gene modification vectors have been 
used in preclinical studies, namely Ad- HGF, adeno- associated virus 
vector carrying HGF gene (AAV- HGF), lentivirus vector carrying HGF 
gene (Lenti- HGF), retrovirus vector carrying HGF (Retro- HGF), HGF 
plasmid, transcription activator- like effector nucleases (TALEN) sys-
tem and gene- delivery nano- system (Table S1). Ad- HGF, AAV- HGF, 
plasmid and gene- delivery nano- systems use non- integrating vec-
tors, and Lenti- HGF, Retro- HGF and TALEN systems use integrat-
ing vectors. The definition of cell characteristics is vital for stem 
cell- based therapeutic products. In 2006, the International Society 
for Cellular Therapy defined the minimal criteria characteristics of 
MSCs.27 For HGF/MSC application, it is important to clarify whether 
the HGF gene modification has changed these characteristics. 
According to the preclinical studies, the MSCs' phenotype was not 
changed by HGF gene modification. In the HGF/MSCs, the stem cell 
markers CD105, CD73 and CD90 are still positive, but the haema-
topoietic markers CD34, CD45, CD11b, endothelial marker CD31 
and major HLA II are negative. The expression percentages of these 
markers in HGF/MSCs are the same as in the unmodified MSCs.28– 37 
Also, HGF/MSCs were as multipotent as MSCs. They were capable 
of adipogenesis, osteogenesis and chondrogenesis under appropri-
ate induction.28,30,31,34,38,39 Some studies indicated that HGF gene 
modification by Ad- HGF vector might enhance MSCs' osteogenic 
and neurogenic differentiation abilities. The expression of osteo-
genic differentiation- related genes encoding alkaline phosphatase 
(ALP), runt- related transcription factor 2 (Runx2) and osteocalcin 
(OC) in dental pulp stem cells (DPSCs),40 and the expression of do-
paminergic neuron- related genes tyrosine hydroxylase (TH), dopa-
mine transporter (DAT) and dopamine (DA) in UC- MSCs41 were all 
upregulated by Ad- HGF modification. This enhancement might de-
pend on the multiplicity of infection (MOI) dosage. It was confirmed 
that the formation of mineralized extracellular matrix (ECM) in BM- 
MSCs infected with Ad- HGF at MOI = 10 or 50 was not significantly 

different from BM- MSCs infected with adenovirus vector lack of 
exogenous genes (Ad- Null). However, a significantly enhanced os-
teogenic differentiation was observed in BM- MSCs infected with 
Ad- HGF, which was higher than in those infected with Ad- Null when 
the MOI was elevated to 250.42

3  |  HGF OVERE XPRESSION BY HGF/MSC S

Although HGF/MSCs' characteristics did not show obvious differ-
ences by different modification vectors, the HGF overexpression 
varied (Table 1). Ad- HGF's infection acting time was the shortest; 
the HGF expression peak appeared at day 2 post- infection, and the 
overexpressing time was maintained for about 14 days.26,42– 45 AAV- 
HGF's infection acting time was the longest; the HGF expression 
peak appeared at day 11 post- infection, while the overexpressing- 
maintained time was the longest, too, about 31 days.46 However, 
when the HGF/MSCs fabricated by different MSCs and HGF vec-
tors were transplanted in vivo, they showed similar overexpressing- 
maintained time, about 3– 4 weeks.29,47– 52 The advanced therapeutic 
effect was maintained for about the same period,29,33,46,53– 56 indi-
cating that the in vivo survival of HGF/MSCs was barely affected by 
the MSC source and HGF modification method.

4  |  THER APEUTIC EFFIC ACY OF 
HGF/MSC S IN PRECLINIC AL STUDIES

HGF/MSCs showed a synergic therapeutic effect of MSC and HGF 
(Table 2). Both MSC therapy and HGF protein/gene therapy were 
beneficial to angiogenesis, organ structure recovery, organ function 
recovery and anti- fibrosis. In contrast, HGF/MSC therapy was more 
effective than either alone.26,44,47,50,57– 59 This review summarized 49 
preclinical studies that applied HGF/MSC therapy in various disease 
settings, such as myocardial infarction, hindlimb ischaemia, liver/
kidney fibrosis, pulmonary arterial hypertension, acute lung/kidney 
injury, osteoporosis and immune- related diseases. They all showed 
that HGF/MSCs had advanced therapeutic efficacy compared with 
MSCs or HGF protein/gene therapy (except for one study,60 which is 
mentioned in the ‘Discussion and perspectives’ section). The details 
about the preclinical studies of HGF/MSC therapy are summarized 
in Table S1. The main mechanisms of HGF/MSC therapy are summa-
rized in Figure 1, and they are further demonstrated below.

5  |  PROMOTING ENGR AF TMENT AND 
TISSUE REPAIRMENT

The proliferation and migration activities of the transplanted MSCs 
are related to their in vivo engraftment efficiency. HGF is a mitogen 
factor involved in organ development and regeneration.20 In preclin-
ical studies, HGF gene modification enhanced the therapeutic effect 
of MSCs on the organ structure recovery through enhancing soft 
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tissue re- epithelialization, restoring cell– cell connection and promot-
ing hard tissue regeneration. Epithelial cells are widely distributed 
between the external and internal surfaces of the host, thus playing 
an important role in organ physiological homeostasis.61 HGF/MSCs 
promoted the activities and reduced the apoptosis of epithelial cells 
in the diseased organs, including the injured intestine,54 transplanted 
trachea,55 involute thymi37 and burned skin.62 Cells are connected 
by tight junctions and gap junctions, while the tight junctions are 
only found among epithelial cells.63 Zonula occludens- 1 (ZO- 1) is a 
major component of tight junctions, and connexin 43 (Cx43) is a kind 
of gap junction protein.64 The expression of ZO- 154 and Cx4365 was 
upregulated by HGF/MSCs more efficiently than only MSCs. Other 
than enhancing re- epithelialization and restoring the cell– cell con-
nection, the bone regeneration was promoted by HGF/MSCs more 
than only MSCs in the diseased microenvironments.38,40,48

6  |  PROMOTING ANGIOGENESIS

All tissues should be nurtured by the extensive networks formed by 
blood vessels. The progression of various diseases correlates with 
tissue destruction, such as necrosis and ischaemic and inflammatory 
diseases.66 It was reported that HGF/MSCs promoted vascular en-
dothelial cell proliferation and blood vessel regeneration more effi-
ciently than MSCs and HGF protein.46,48,51,58,59,67,68 The endothelial 
marker CD31 was expressed by the transplanted HGF/BM- MSCs 
in the model of rats with hindlimb ischaemia,51 suggesting that the 
transplanted HGF/MSC might differentiate into endothelial cells in 
the host. Moreover, HGF/MSC also can upregulate the expression 
of proangiogenic cytokines. In mice with hindlimb ischaemia, FGF- 2 
expression in the limb can be induced by HGF/BM- MSCs and higher 
than BM- MSCs.58 HGF/MSCs might promote angiogenesis through 
the ERK1/2 signalling pathway. HGF/MSC promoted the expres-
sion of phosphorylated ERK1/2 both in vitro67 and in vivo,48 and 
the treatment with an ERK1/2 inhibitor decreased the capillary- like 
structures.67 Moreover, the expression of sphingosine 1- phosphate 
receptors 1 (S1PR1), one of the downstream proteins of the ERK1/2 
signalling pathway, was upregulated by HGF/BM- MSCs treatment in 
the injured lung.29

7  |  PROMOTING NEUROGENESIS

Both MSC and HGF are beneficial to neurogenesis. In addition, HGF 
gene modification could enhance the expression of the dopamin-
ergic neuron- related genes TH, DAT and DA in UC- MSCs.41 Three 
studies about HGF/MSCs addressed their therapeutic efficacy on 
the neural system. These studies showed that HGF/MSCs promoted 
the re- innervation in infarcted heart69 and ischaemic limb46 more ef-
ficiently than MSCs. Also, significantly more myelinated fibres were 
present in in intracerebral haemorrhage rats transplanted with HGF/
UC- MSCs than with UC- MSCs.39 Therefore, the HGF gene modifica-
tion enhanced the MSC potential of neurogenesis in vivo.TA
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8  |  PROMOTING ANTI-  FIBROSIS EFFEC T

Fibrosis is defined by the accumulation of excess ECM components, 
which can affect any organ and is responsible for up to 45% of all 
deaths in the industrialized world.70 It has been reported that HGF/
MSCs could reduce fibrosis efficiently in various diseased organs, 
including the heart,68,71 lung,29,55,72– 74 liver,47,52,56,75– 78 kidney,45,49 
bladder,79 bone48 and skin.62 Collagen (COL) is the most important 
component of ECM, hydroxyproline is the most important com-
ponent of COL, and fibronectin (FN) is the most important non- 
collagenous component of ECM. It has been shown that HGF/MSCs 
could reduce the expression of COL, hydroxyproline and FN more 
efficiently than MSCs.49,50,62,72 The matrix metalloproteinase (MMP) 

family can degrade a wide spectrum of extracellular matrix proteins, 
such as fibronectin and laminins. It has been reported that HGF/BM- 
MSCs transplantation could upregulate the expression of MMP- 14 
and downregulate the expression of the tissue inhibitors of MMP- 1 
(TIMP- 1) in the liver fibrosis, whereas BM- MSCs cannot.76 Therefore, 
HGF/MSCs could inhibit fibrosis by reducing ECM accumulation and 
promoting ECM degradation. Alpha- smooth muscle actin (α- SMA) in-
dicates activated hepatic stellate cells (HSCs) and fibroblasts, which 
are the major source of ECM. It was demonstrated that the expres-
sion of α- SMA was reduced by HGF/MSC transplant more than when 
only MSCs were transplanted.45,47,49,75,78 HGF/MSC administra-
tion could induce more HSC apoptosis than MSCs and Ad- HGF in 
liver fibrosis.47 Hence, HGF/MSCs could suppress the activities of 

F I G U R E  1  Main mechanisms of HGF/MSC therapy. HGF/MSCs were adopted in treatment for a variety of diseases, including ischaemic, 
heart, lung, liver, urinary system, bone and immune- related diseases. (1) HGF/MSC promote cell migration and engraftment, in which SDF- 
1α/CXCR- 4 axis and ERK1/2 signalling pathway were involved. (2) HGF/MSCs promote cell– cell connection restoration and soft tissue 
re- epithelialization. (3) HGF/MSCs promote angiogenesis and neurogenesis. (4) HGF/MSCs promote anti- fibrosis effect. (5) HGF/MSCs 
promote anti- inflammatory effect. They can deactivate Th1 and Th17 cells and activate Treg cells. (6) HGF/MSCs promote anti- apoptosis 
effect. (7) HGF/MSCs promote anti- oxidation effect. Bcl, B- cell lymphoma; COL, collagen; Cx43, connexin 43; CXCR4, chemokine (C- X- C 
motif) receptor 4; ERK1/2, extracellular regulated protein kinases 1/2; FGF, fibroblast growth factor; FN, fibronectin; GSH, antioxidant 
glutathione; ICAM, intercellular adhesion molecule; IFN- γ, interferon gamma; IL, interleukin; MDA, antioxidant metabolite malondialdehyde; 
MMP, matrix metalloproteinase; S1PR1, sphingosine 1- phosphate receptors 1; SDF- 1, stromal cell- derived factor- 1; Smad, small mothers 
against decapentaplegic; SOD, superoxide dismutase; TGF- β, transforming growth factor- beta; Th1, T helper 1 cell; Th17, interleukin 17 
(IL- 17)- secreting helper T; TNF- α, tumour necrosis factor alpha; Treg, regulatory T cell; VCAM, vascular cell adhesion protein; VEGF, vascular 
endothelial growth factor; ZO- 1, zonula occludens- 1; α- SMA, alpha- smooth muscle Actin; γ- GCS, gama glutamylcysteine synthetase.
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ECM- producing cells in fibrosis. HGF/MSCs downregulated the ex-
pression of transforming growth factor- beta (TGF- β) more efficiently 
than MSCs29,55,74,76,78 and Ad- HGF.47,50 TGF- β is the key activator 
of fibroblasts and the central cellular effector of fibrotic responses, 
which exerts its biological effects by activating downstream media-
tors, including small mothers against decapentaplegic (DPP) Smad2 
and Smad3, is negatively regulated by Smad7 expression.80 In the 
rats with liver fibrosis, the HGF/UC- MSC transplant downregulated 
the expression of TGF- β1, Smad2 and Smad3 more efficiently than 
UC- MSCs,78 suggesting that the advantageous therapeutic efficacy 
of HGF/MSCs might depend on the TGF- β/Smad signalling pathway.

9  |  PROMOTING ANTI-  INFL AMMATORY 
EFFEC T

Both MSCs and HGF possess anti- inflammatory properties. 
Inflammation is a complex set of interactions in response to trau-
matic, infectious, post- ischaemic, toxic or autoimmune injuries, 
which can lead to persistent tissue damage by leukocytes, lympho-
cytes or collagen.81 It was reported that HGF/MSCs were benefi-
cial to the survival of the graft in the host.43,44,47,55 The degree of 
inflammatory infiltration and the expression of infiltration indica-
tors, such as intercellular adhesion molecule (ICAM)- 1 and myelop-
eroxidase (MPO), were suppressed by the HGF/MSCs more than 
by the MSCs.28,29,47 Moreover, the pro- inflammatory factors IL- 1β, 
interferon- gamma (IFN- γ), TNF- α and IL- 17A were more downregu-
lated by HGF/MSCs transplantation, whereas the anti- inflammatory 
factors IL- 4 and IL- 10 were more upregulated.28– 32,54,55 IFN- γ and 
TNF- α are two of the cytokines mainly expressed by Th1 cells, IL- 
17A is one of the cytokines mainly expressed by Th17 cells, IL- 4 is 
one of the cytokines mainly expressed by (T helper 2) Th2 cells, and 
IL- 10 is one of the cytokines mainly expressed by Treg cells. When 
co- cultured with lymphocytes in vitro, HGF gene modification did 
not change the suppression effect of MSCs on the stimulated lym-
phocyte proliferation32,43 and did not change the activation effect 
of MSCs on the monocytes,43 but enhanced the suppression effect 
of MSCs on the activities of Th1 and Th17 cells, and enhanced the 
promotion effect of MSCs on the Treg cell activities.32 HGF/MSCs 
decreased the ratio of Th1 to Th2 cells in the spleen more efficiently 
than the MSCs,55 and downregulated the expression of transcription 
factor Th1, T- box transcription factor 21 (T- bet) and Th17 transcrip-
tion factor retinoic acid- related orphan receptor- γt (RORγt), but up-
regulated Treg transcription factor Foxp3 more efficiently.32 Above 
all, HGF/MSCs might reduce the inflammatory responses through 
regulating the polarization and activities of CD4+ T cells.

10  |  PROMOTING ANTI- APOPTOSIS 
EFFEC T

HGF gene modification not only could enhance the anti- apoptosis 
potential of MSCs in the microenvironments of hypoxia or 

inflammation in vitro, but it also could enhance their suppression 
effect on the apoptosis of parenchymal cells in vivo, such as car-
diomyocytes,34,69,82 lung epithelial cells,28,29 hepatocytes,44,47,75 
renal cells30 and intestinal epithelial cells.54 It was reported that the 
expression of caspase- 3 was suppressed by HGF/MSCs more than 
when only MSCs were used.30,35 Caspases are proteolytic enzymes 
known largely for controlling cell death and inflammation. The ap-
optotic caspases are subdivided into the initiators and the effectors. 
Initiator caspase activation during apoptosis is mediated mainly by 
the mitochondrial (intrinsic) and the death receptor (extrinsic) path-
ways. The intrinsic pathway is regulated by pro- apoptotic B- cell lym-
phoma (BCL)- 2 homology domain 3 (BH3) of the members (Bim, Bid, 
Puma, Noxa, Hrk, Bmf and Bad), pro- apoptotic effector molecules 
(Bax and Bak) and anti- apoptotic Bcl- 2 family proteins (Bcl- 2, Bcl- xL, 
Mcl1, A1 and Bcl- B). Once initiator caspases are activated through 
the extrinsic or intrinsic apoptosis pathways, they mediate the ac-
tivation of effector caspases, leading to cell structure destruction 
and apoptosis, and caspase- 3 is one of the effector caspases.83 It 
was reported that HGF/MSCs upregulated the expression of Bcl- 
231,35,69,82,84 and Bcl- xL,35 and downregulated the expression of 
BCL- 2- associated X (Bax)31,69 more efficiently than MSCs, indicating 
that HGF/MSCs could suppress the apoptosis through deactivation 
of the mitochondrial pathway. In addition, the expression of AKT35,82 
and p6531 was increased by HGF/MSCs treatment more than the 
MSCs. Akt can rescue the cells from apoptosis by the activation of 
anti- apoptotic factors, such as glycogen synthase kinase- 3 (GSK3), 
Bcl- 2, and inactivation of pro- apoptotic factors, such as BCL2- 
associated agonist of cell death (Bad), caspase- 9, and forkhead (FH) 
transcription factors.85 The heterodimer of p65 and p50 is the most 
abundant and canonical form of NF- κB. NF- κB has anti- apoptotic 
functions by downregulating the inflammation response.86 To sum 
up, HGF/MSCs could suppress the apoptosis of parenchymal cells by 
deactivating the mitochondrial (intrinsic) pathway, in which the AKT 
and NF- κB signalling pathways might be involved.

11  |  PROMOTING ANTI-  OXIDATION 
EFFEC T

Oxidative stress is implicated in various chronic/degenerative dis-
eases, resulting in macromolecular damage.87 There are two kinds 
of oxidant compounds, namely reactive oxygen species (ROS) and 
reactive nitrogen species (RNS), which introduce various oxidative 
insults to lipids, proteins and nucleic acids, with consequences rang-
ing from subtle modulation of cell signal transduction processes to 
apparent biomolecular damage and cell death.88 The antioxidant sys-
tem is composed of nonenzymatic antioxidants and enzymatic anti-
oxidants. The nonenzymatic antioxidants are low molecular weight 
compounds, including glutathione (GSH), vitamin C and β- carotene. 
The enzymatic antioxidants can be divided into two groups: the an-
tioxidant response element- driven enzymes and primarily or consti-
tutively acting antioxidant enzymes, such as superoxide dismutase 
(SOD), catalase and GSH peroxidase.89 It was reported that HGF/
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MSCs could upregulate the expression of SOD and downregulate 
the expression of malondialdehyde (MDA), GSH and γ- glutamyl 
cysteine synthetase (γ- GCS) more efficiently than the MSCs when 
transplanted in vivo.28,31 MDA is an indicator for lipid peroxidation, 
and γ- GCS is a rate- limiting enzyme of GSH synthesis within the cell. 
Therefore, HGF/MSCs could reduce oxidative stress by decreasing 
lipid peroxidation, probably through their ability to promote the ac-
tivity of SOD and the synthesis of GSH.

12  |  THER APEUTIC EFFIC ACY OF 
HGF/MSC APPLIC ATION IN A CLINIC AL 
STUDY

Silicosis is an irreversible disease characterized by lung fibrosis. A 
clinical study on HGF/MSCs therapy for silicosis concluded that the 
administration of HGF/BM- MSCs was safe and effective in some 
patients with silicosis. Briefly, HGF/BM- MSCs were prepared by 
transfecting autologous BM- MSCs with plasmid HGF. Then, HGF/
BM- MSCs were administered intravenously to four patients with 
pulmonary silicosis at a dose of 2 × 106 cells/kg weekly for three con-
secutive weeks. Two patients had dexamethasone- relievable fever 
after the administration, but no other abnormal symptoms were 
observed after the treatment for 6 months. The lung function in-
dicators, such as forced vital capacity (FVC), the forced expiratory 
volume averages at the first second (FEV1) and the arterial blood 
oxyhemoglobin saturation (SpO2), were improved; the ratios of 
peripheral blood CD4+/CD8+ cell concentrations were increased; 
the serum IgG levels were decreased to the normal range; and the 
average ceruloplasmin level was slightly decreased, indicating an 
improvement of lung function and a reduction of inflammation. 
Furthermore, the absorption of the nodular lesion was observed 
after treatment for 12 months in 2 patients, suggesting structural 
healing from the silicotic fibrosis.90

13  |  DISCUSSION AND PERSPEC TIVES

Gene- modified stem cells could be applied to the next generation 
of cell- based therapies. How to screen for the gene and cell source, 
the modification process, and the indications for the modified cell 
suitable for the therapies are three basic questions that need to be 
answered in gene- modified stem cell therapy. In Table 2, HGF/MSCs 
prepared by different MSCs and HGF vectors showed a similar 
overexpression lasting time in vivo. Therefore, in vitro infection ef-
ficiency and in vivo safety are the key factors for selecting a vector, 
cell source and modification processes. For now, the adenovirus is 
the most efficient vector for HGF gene modification. Ad- HGF modi-
fication did not change the cell genome, and the characteristics of 
Ad- HGF- modified cells are similar and fit the minimal criteria defini-
tion of MSCs. Therefore, MSCs are safe for clinical application at pre-
sent, and in this review, no safety issues about HGF/MSCs occurred. 

However, HGF is a tumour growth promotion factor. Therefore, the 
issue of HGF/MSCs safety still needs to be further explored.

This review summarizes 49 preclinical studies on HGF/MSC 
therapy. These studies demonstrated that HGF/MSCs showed a 
more conspicuous therapeutic efficacy than MSCs or HGF protein/
gene therapy. Except for one report, HGF/DPSCs and DPSCs were 
confirmed to possess an equal therapeutic effect on rheumatoid ar-
thritis in mice within the first 41 days. However, HGF/DPSCs dis-
appeared on day 41 after the administration, while the therapeutic 
effect of DPSCs was maintained.60 The reason might be that HGF 
played a role in joint angiogenesis and cartilage/bone destruction.91 
Therefore, HGF/MSCs are only suitable for the scenarios in which 
both MSCs and HGF are beneficial. MSCs can attenuate neuroin-
flammation, reduce neural degeneration, promote neural regener-
ation, nourish and protect neurons and preserve the blood– brain 
barrier.92 HGF is involved in the development of nervous system 
from prenatal to adult life, and HGF also attenuates neuroinflamma-
tion, reduces neurodegeneration, promotes neuro- regeneration, and 
nourishes and protect neurons.93 Hence, HGF/MSCs are beneficial 
to the recovery from nervous system diseases. However, few studies 
have adopted HGF/MSCs to treat neural diseases. It was shown that 
the culture supernatant of HGF/UC- MSCs could promote neural 
regeneration, reduce intracellular free calcium levels and promote 
the intracellular levels of bound calcium in a Parkinson's disease cell 
model.94 Also, the beneficial effect of HGF/UC- MSCs on myelin-
ation was confirmed in an intracerebral haemorrhage rat model.39 
Hence, the therapeutic efficacy of HGF/MSCs on neural diseases 
could be further explored.

The prominent therapeutic effect of HGF/MSCs comes from 
both HGF and MSC. HGF has angiogenesis, anti- fibrosis and anti- 
inflammation properties; the overexpression of HGF in vivo is 
beneficial to many conditions. HGF gene modification promotes 
the in vivo survival rate of MSC, hence improving the MSCs' ther-
apeutic effect. Furthermore, HGF/MSCs' therapeutic efficacy could 
be enhanced by prolonging the time for HGF overexpression by 
using HGF/MSCs cell sheet technology46 or HGF inducible micro-
gel preparation.59 Theoretically, multiple doses could also enhance 
HGF/MSCs' therapeutic efficacy. Only two preclinical studies ad-
opted multiple dosages of HGF/MSCs52,77; however, the authors did 
not compare the therapeutic efficacy with single doses. Therefore, 
the optimal dosage of HGF/MSCs needs to be explored further.

The HGF/MSC therapy mechanism is essential for the indica-
tion choice and its clinical application, thus being worth further and 
deeper exploration. Except for the mechanisms of HGF/MSC ther-
apy mentioned in the preclinical studies, there probably were some 
unexplored mechanisms for the advanced therapeutic efficacy of 
HGF/MSCs; for example, (1) the death receptor (extrinsic) path-
way might be involved in the anti- apoptosis effect of HGF/MSCs. 
Death receptor- mediated apoptosis is initiated following ligand- 
binding and activation of the death domain- containing tumour 
necrosis receptor superfamily, such as CD95 (Fas).83 At the same 
time, MSCs might inhibit the host cell apoptosis through the Fas 
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ligand (FasL)/Fas- mediated death pathway.95 In addition, HGF can 
promote cell survival by inhibiting Fas activation- mediated apop-
tosis.96 Hence, HGF/MSCs suppressed the apoptosis of parenchy-
mal cells through the mitochondrial (intrinsic) pathway and might 
also through the death receptor (extrinsic) pathway. (2) HGF gene 
modification might affect mitochondrial activities. Mitochondria 
are the energy- producing dynamic double- membraned organelles 
essential for cellular and organismal survival. Both the advanced 
anti- apoptosis and anti- oxidation effects of HGF/MSCs correlate 
with mitochondrial activities. Mitochondria can be transferred be-
tween transplanted MSCs and damaged host cells to regulate their 
biological functions, such as cellular metabolism, survival, prolif-
eration and differentiation.97 Also, MSC- derived extracellular ves-
icles could attenuate the mitochondrial damage of the host cell.98 
Whether the gene modification could affect the mitochondrial 
quality of MSCs, the host cells through mitochondrial transfer, and 
regulate the mitochondria quality of the host cells or not still need 
to be explored. (3) In this review, we demonstrated that HGF/MSC 
could reduce oxidation, apoptosis and inflammation. Oxidative 
stress could induce senescence99; senescence evolved alongside 
apoptosis100 and contributed to inflammation.101 Therefore, HGF/
MSC might be anti- senescence. It should be explored whether 
HGF modification could reduce MSC senescence and whether 
HGF/MSC could decelerate host senescence. Furthermore, 
there were other cytokines, such as fibroblast growth factor 21 
(FGF21),102 stem cell factor (SCF)103 and Erb- B2 receptor tyrosine 
kinase 4 (ERBB4),104 that could reduce senescence and apoptosis. 
Exploring the common and unique properties of HGF compared 
with these cytokines might be beneficial to the application of 
HGF/MSC. (4) The in vivo microenvironment affects HGF/MSCs' 
function. There were some controversial results of HGF/MSC 
therapy, such as HGF/MSC therapy decreased the expression of 
Col I in the trabeculae, but increased its expression in medullary 
cavities48; decreased the expression of α- SMA in fibrosis (Table 2), 
but increased its expression in the cavernous tissue.35 The rea-
son might be that the behaviour and activities of the transplanted 
HGF/MSCs could be affected by the surrounding physical (e.g. 
stiffness, elasticity, viscosity, hypoxia, fluid shear stress, hydro-
static pressure, bioelectricity and microgravity), chemical (e.g. 
ECM, chemokines and enzymes) and cellular (e.g. parenchymal 
cells, nonparenchymal cells and immune cells) microenvironments. 
To determine the changes in cell behaviours and activities be-
tween MSCs and gene- modified MSCs under the same microenvi-
ronment would provide new strategies for cell therapy.
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