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Editorial

The role of dosimetry audit in achieving high quality radiotherapy

1. Introduction

Dosimetry audit is a key component in quality management pro-
grammes in radiotherapy, playing an important role in the safe im-
plementation of new treatment modalities and techniques [1–4]. Na-
tional and large scale audits provide data which can help to create,
sustain and increase standards as well as have the potential to identify
issues which may cause harm to patients, thus improving both quality
and safety [1,4–13]. They can also help to reduce variability in dose
delivered to the patient both nationally, internationally and within
multi-institutional trials [3,13–16]. At an institutional level, an external
dosimetry audit provides an independent check of the local approaches
and thus supports the implementation of novel and complex techniques
[6,7,13,15,17–20]. Where multiple centres have been included in the
audit, the process of comparison with other centres facilitates aware-
ness and understanding of issues which may exist and which may not be
identified by a single centre alone [5,6,21]. Furthermore this sharing of
experience allows benchmarking of centres with similar equipment and
thus increases the knowledge of what is achievable with a particular
combination of equipment [22,23].

There are multiple challenges in designing and running effective
dosimetry audits, including an ever expanding horizon, with new
techniques and new equipment combined with increasingly high ex-
pectations from both patients and professionals in outcomes and safety
[24]. This leads us to question whether the same things still need au-
diting or whether assumptions can be made on previously validated
techniques [25]. However, the design must still consider what needs to
be tested, where the highest risks lie, how the auditing equipment will
work, e.g. if the detector will work with the chosen phantoms, as well as
whether the process is appropriate.

There are different types of audit from postal to an on-site visit and
from basic measurements in reference conditions through to a full end-
to-end audit where an anthropomorphic phantom takes the place of the
patient and follows the full pathway from imaging, through planning
and to complex dose distribution delivery [1]. The development of
techniques for dosimetry audit can include the development of new
materials [26], development of anthropomorphic phantoms [27,28] as
well as characterisation of detectors prior to audit use [29,30].

The special issue available online at https://www.sciencedirect.
com/journal/physics-and-imaging-in-radiation-oncology/special-issue/
10S8T6FN296, presents an extensive range of dosimetry auditing ac-
tivity and highlights the different approaches, including whether an
external measurement is needed or whether data measured by the local
centre can be assessed externally for a dosimetry audit [31–34]. The
papers in the issue represent efforts on regional, national and

international levels, each of which has been designed to focus on a
specific problem or technique where variation in implementation or
practice is known or issues with beam modelling capabilities may exist,
thus creating a comprehensive set of publications in a single location.

2. Beam output

Measurement of beam output is the most fundamental measurement
which confirms whether the machine has been correctly calibrated [8].
Existing errors will create a systemic error for every patient treated on
the machine and therefore have the potential to create systematic dif-
ferences in treatment outcomes. Worldwide dosimetry audits are or-
ganised in different ways, often for geographical, economic or political
reasons [35] but fundamentally are checking the same thing. Over re-
cent decades the variability between centres has generally reduced
[9,36], however globally there are still findings outside tolerance (e.g.
of± 5%) [35] that can be attributed to a wide range of causes, in-
cluding equipment failures, errors in setup, and incorrect im-
plementation of the calibration protocol [37–39]. Several of these could
create a systematic error for every patient treatment on a given ma-
chine. However data from centres that strictly follow a code of practice
(such as the Belgian-Dutch NCS-18 CoP [40]) can give very high stan-
dards of compliance [10].

3. Advanced techniques

One of the strengths of external dosimetry audit is the ability to in-
dependently verify, and thus give confidence in, a new technique which
has been recently commissioned in a centre. Ideally this should take
place between the end of commissioning and the beginning of clinical
practice. Recent advances in radiotherapy have posed many challenges
for radiotherapy centres to use techniques which use extreme conditions
which no longer fit comfortably into the routine protocols and codes of
practice. An example of this is the expanding use of small fields which
are too small to adhere to the standard codes of practice. This has been
recently addressed by the publication of the IAEA code of practice [41]
but the accurate modelling of small fields and how the correct detector is
used to collect the commissioning data is still challenging. Several groups
[11,12,21] conducted national and multi-national audits respectively, of
calculated small field output factors by comparing with standardised
data published by the IROC-Houston QA center at MD Anderson
[22,23,42] and found that not all centres were modelling these fields
well. The audits found that the deviations increased with decreasing field
size and the treatment planning system commonly overestimated in
comparison with the reference data. Several of the centres adjusted their
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calculation data following these audits, thus improving their beam
models for small fields.

Another technique which is rapidly expanding, due to the increased
interest in hypo-fractionated regimens, is that of stereotactic ablative
body radiotherapy (SBRT). This is a higher risk technique as greater
doses are given in fewer fractions and therefore there is less room for
error correction. The most common site for SBRT is in the lung and
several trials have been run to assess the effect on treatment outcome of
this approach. Tsang et al. [14] found that although the clinical trial
plans pre-treatment verifications were within the tolerance of +/3%,
there were certain scenarios of basic beam tests using single beams
which failed, indicating that care must be taken in commissioning as
although results may be good for some beam combinations, this may
not be the case for all scenarios, depending on the algorithm used
[13,15–17,43].

There are also more specialised techniques being implemented
which may only be used by a few centres. The safety issue here is that
there is little data about what can and should be achieved with these
systems. An example is rectal contact brachytherapy where no specific
code of practice exists and hence a kV code is often used. A national
audit for rectal contact brachytherapy was carried out in the UK [44] to
assist users to optimize their own practice, thus providing reassurance
that the implementation had been performed within the standards
stated in previously published audit work and recommendations for kV
and electronic brachytherapy units. However, it was recommended that
optimised and standardised quality assurance testing could be achieved
by reducing some methodological differences observed between the
centres.

4. Future directions

As radiotherapy techniques become more complex and less in-
tuitive, there is a potentially greater risk for errors to be missed. This is
particularly true in places which may not have an established culture of
peer-to-peer review. Thus there is a need for wider access to audit in a
cost effective and efficient manner. Several groups have investigated
methods for remote auditing including the use of local EPID data which
can be analysed centrally [45]. Further approaches have suggested the
use of locally measured QA data, however there is still a debate as to the
sensitivity and specificity of the local detection of errors in comparison
with independent measurements [31,32]. Alternative approaches could
include collection of log-files for continued assessment of quality [25],
which could be of particular value in clinical trials. Alternative methods
for efficiency of audit include the use of complexity metrics to pre-de-
termine which plans should be investigated, however no metric appears
to yet exist which gives a robust response across all planning and/or
delivery systems [46].

5. The role for ESTRO in dosimetry audit

Dosimetry audit has been identified in the ESTRO physics strategy
as being a topic of high importance which can support quality im-
provement through standardisation of radiotherapy practice across
Europe. Two workshops have been held during 2017 to address this
subject to identify how existing groups, including IAEA and clinical
trials QA groups, can work together to develop methods to address
specific issues as well as to encourage new national groups to start
running regional dosimetry audits. The combined body of data from
dosimetry audits published in this special issue and elsewhere, re-
presents an opportunity to share protocols and best practice, with ex-
amples of how to start a regional audit system, thus augmenting the
potential for increased quality of radiotherapy. Furthermore the dosi-
metry audit data can be combined to create datasets for meta-analysis
which can identify issues for investigation into beam modelling and
measurement methodologies that need further research, which would
not be seen in smaller studies.
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