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Abstract

The genome of Buzura suppressaria nucleopolyhedrovirus (BusuNPV) was sequenced by 454 pyrosequencing technology.
The size of the genome is 120,420 bp with 36.8% G+C content. It contains 127 hypothetical open reading frames (ORFs)
covering 90.7% of the genome and includes the 37 conserved baculovirus core genes, 84 genes found in other
baculoviruses, and 6 unique ORFs. No typical baculoviral homologous repeats (hrs) were present but the genome contained
a region of repeated sequences. Gene Parity Plots revealed a 28.8 kb region conserved among the alpha- and beta-
baculoviruses. Overall comparisons of BusuNPV to other baculoviruses point to a distinct species in group II
Alphabaculovirus.
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Introduction

The Baculovirdae is an insect-specific family of viruses with

double stranded circular DNA genomes of 80 kb –180 kb. Among

the so far sequenced baculoviruses, Xestia c-nigrum granulovirus

(XecnGV) has the largest genome (178,733 bp) with the smallest in

the Neodiprion lecontei nucleopolyhedrovirus (NeleNPV,

81,755 bp) [1,2]. With the exception of members of Gammabacu-

lovirus, two distinct progeny phenotypes are produced, the budded

virus (BV) that disseminates systemically and the occlusion derived

virus (ODV) required for oral infectivity [3]. The occlusion bodies

(OBs) afford the embedded virions a certain amount of protection

against environmental inactivating conditions such as UV lights

and rainwater. The number of predicted ORFs in a single

baculovirus range from 89 (NeleNPV) to 183 (Pseudaletia

unipuncta GV, PsunGV) [2]. Among all the baculovirus predicted

ORFs, 37 have been identified as core genes that exist in all

sequenced baculoviruses and are essential for the viral life cycle

[4,5].

The family Baculoviridae is classified into 4 genera: Alphabaculovirus

(NPVs isolated from Lepidoptera); Betabaculovirus (GVs isolated

from Lepidoptera); Gammabaculovirus (NPVs isolated from Hyme-

noptera) and Deltabaculovirus (NPVs isolated from Diptera) [6,7].

The Alphabaculovirus are further clustered into groups I and II based

on phylogenetic analyses and the presence or absence of the gp64

gene. Only group I contains gp64 gene while group II has a gene

encoding fusion protein (F) [8–11].

Buzura suppressaria is a pest insect of tea, tung oil, citrus and

metasequoia plants. The Buzura suppressaria NPV (BusuNPV)

was first isolated from dead larva of B. suppressaria and

subsequently used as an insecticide against this pest [12,13]. The

virus is a single nucleocapsid NPV with a genome size of

approximately 120 kb. So far, only a few of the BusuNPV genes

have been identified, including those encoding polyhedrin [12,14],

ecdysteroid UDP-glucosyltransferase (egt) [15], polyhedron enve-

lope protein gene (pep), the conotoxin-like protein gene (ctl), the

inhibitor of apoptosis (iap), superoxide dismutase (sod) [16], and

P10 [17]. A physical map of viral DNA was determined [12] and

about 43.5 kb dispersed regions of the genome have been

sequenced showing a distinct gene arrangement of BusuNPV

[13]. In this manuscript we report the complete genome of

BusuNPV. Sequence analysis showed that BusuNPV is a group II

Alphabaculovirus with a genome distinct from other so far sequenced

baculoviruses.

Results and Discussion

Sequencing and Genome Characteristics
The genome of BusuNPV was sequenced using the Roche 454

GS FLX system with shotgun strategy. A total of 97,246 reads

were obtained with the average length of 340 bp. The BusuNPV

genome was assembled by Roche GS De Novo assembler software

and assisted by the published restriction maps [13]; the genome

was covered 217 times.

The size of the BusuNPV genome is 120,420 bp with a G+C
content of 36.8% (Table S1) and 127 hypothetical ORFs of more

than 150 bp. The polyhedrin gene was defined as the first ORF and

the A of its initiation codon as the first nucleotide (nt) of the

genome. So far, 78 baculoviral genomes have been completely

sequenced including BusuNPV (Table S1). BusuNPV contains the
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37 core genes conserved in all baculoviruses (shown as red in Fig. 1)

and 25 other genes that are present in all sequenced lepidopteran

baculovirus (shown as blue in Fig. 1). The genome also contains 59

additional genes commonly found in a variety of baculoviruses

(shown as grey in Fig. 1) and also has 6 unique genes (shown as

open arrows, Fig. 1). A restriction map of HindIII is presented in

Fig. 1, which corroborates the previous physical map [13]. A

region appears to be conserved in alpha- and beta-baculoviruses

(see below) is also presented in this figure.

Classification of BusuNPV
Phyogenetic analysis on the 37 core proteins from the 62

representing baculoviruses placed BusuNPV in group II of the

genus Alphabaculovirus (Fig. 2), which is consistent with the previous

reports [13,16]. It formed a subclade with other six NPVs

including Ectropis obliqua NPV (EcobNPV), Apocheima cinerar-

ium NPV (ApciNPV), Euproctis pseudoconspersa NPV

(EupsNPV), Hemileuca sp. NPV (HespNPV), Clanis bilineata

NPV (ClbiNPV) and Orgyia leucostigma NPV (OrleNPV) [18,19].

Comparison to other Baculoviruses
The nucleotide identities between the ORFs of BusuNPV and

other representative baculoviruses are shown in Table S2. The

overall genomic nucleic acid identity to EcobNPV, EupsNPV,

OrleNPV, HespNPV, ClbiNPV and ApciNPV was about 27.2%,

27.0%, 26.7% 22.0%, 24.2% and 27.4%, respectively. The

observed low identities imply that BusuNPV is evolutionarily

quite divergent from the fully sequenced baculoviruses.

Gene-parity plots of BusuNPV against the other 6 viruses in the

same subclade demonstrated colinearity with some inversions over

the whole genome (Fig. 3a). Some colinearity was also found with

representatives of group I alphabaculoviruses and betabaculo-

viruses, but almost no colinearity with those from gamma- and

deltabaculoviruses (Fig. 3b). Interestingly, a 28.8 kb region from

Busu55 to Busu79 is almost totally collinearly conserved in alpha-

Figure 1. Genomemap of BusuNPV. ORFs are indicated by arrows with a displayed name. Arrows also signify transcription directions. Red arrows
represent core genes, blue represent genes present in all lepidopteron baculoviruses, gray represent baculoviral common genes and open arrowers
represent unique genes of BusuNPV. The pink square represent a repeat structure. The inner circle indicates genome scale position by 20 kb. HindIII
restriction map is shown in the middle dark red circle. A region collinearly conserved in alpha- and betabaculoviruses is also shown.
doi:10.1371/journal.pone.0086450.g001

Buzura suppressaria Nucleopolyhedrovirus Genome
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and betabaculoviruses (Table 1, Fig. 1). This region contains 25

ORFs in BusuNPV, 20 of which are conserved in all baculoviruses

(Table 1, Fig. 1). It is likely that this region existed in the common

ancestor of alpha- and betabaculoviruses.

Figure 2. Phylogenetic tree using 37 core proteins of 62 sequenced baculoviruses based on Maximum Likelihood method. It tested
by Bootstrap method with a value of 1000. The bootstrap values greater than 50% are showed in front of every nodes. Arrow points to BusuNPV.
doi:10.1371/journal.pone.0086450.g002

Buzura suppressaria Nucleopolyhedrovirus Genome
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Repeat Structures
Homologous repeated sequences (hrs) were supposed to be

characteristic for many baculovirus genomes. The hrs are repeat

regions with palindrome structure interspersed in the genome. Hrs

consist of similar repeat sequence with varying length in a genome,

but the hr sequence vary widely in different baculoviruses [20]. Hrs

were suggested to be origins of DNA replication in baculovirus

[21,22], however, a contrasting study showed deletion individual

hr had no effect on the replication of AcMNPV [23]. Other studies

attributed an enhancer function to hrs. They appear to bind to ie1

in AcMNPV and promote the transactivation level of IE1 [24–26].

Hrs are absent from the BusuNPV genome.

A non-hr origin was also suggested to initiate replication which

contains palindromic and repetitive sequences in a complex

organization [21,27]. A repeat sequence was detected from nt

101325 to 101469 in the BusuNPV genome and contained two

complete repeats and a truncated repeat. The repeat is 59 nt

(Fig. 4a), high in A+T content (71.7%) and probably forms a

hairpin structure (Fig. 4b). Whether this is a functional non-hr

origin for BusuNPV needs further analysis.

Replication Genes
Although the mechanism of baculovirus genome replication is

not totally clear, several viral genes have been identified as

important for DNA replication [28]. BusuNPV encodes genes

essential for replication including DNA polymerase (Busu58),

Figure 3. Gene-parity plot analysis. a. Gene-parity plots of
BusuNPV with OrleNPV, EupsNPV, ApciNPV, HespNPV, ClbiNPV and
EcboNPV based on ORF order. The gene cluster marked by alphabet
sorted by their order in BusuNPV. b. Gene-parity plot of BusuNPV with
AcMNPV, HearNPV G4, CpGV, NeleNPV and CuniNPV based on ORF
order.
doi:10.1371/journal.pone.0086450.g003

Table 1. Collinearly conserved region in alpha- and
betabaculoviruses#.

Gene name ORF position

BusuNPV AcMNPV HearNPV LdMNPV CpGV

PIF-6* 55 68 64 80 114

LEF-3 56 67 65 81 113

Desmoplakin* 57 66 66 82 112

DNA-pol* 58 65 67 83 111

ORF-59 59 75 69 84 108

ORF-60 60 76 70 85 107

VLF-1* 61 77 71 86 106

P78/83* 62 78 72 87 105

GP41* 63 80 73 88 104

AC81* 64 81 74 89 103

TLP-20
$ 65 82 75 90 102

VP91/p95* 66 83 76 91 101

VP39* 67 89 78 92 96

LEF-4* 68 90 79 93 95

P33* 69 92 80 94 93

P18* 70 93 81 95 92

ODV-E25* 71 94 82 96 91

Helicase* 72 95 84 97 90

ODV-E28/PIF-4* 73 96 85 98 89

38K* 74 98 86 99 88

LEF-5* 75 99 87 100 87

p6.9* 76 100 88 101 86

C42* 77 101 89 102 85

P12 78 102 90 103 84

P45* 79 103 91 104 83

#The collinearity was shown by the ORFs orders in BusuNPV, AcMNPV, HearNPV
G4, LdMNPV and CpGV. Conserved ORF of all baculovirus are marked by ‘*’.
$
TLP means Telokin-like protein.
doi:10.1371/journal.pone.0086450.t001

Buzura suppressaria Nucleopolyhedrovirus Genome
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DNA helicase (Busu72), late expression factor-1 (lef-1, Busu126),

lef-2 (Busu104) and lef-3 (Busu56). Other genes related to DNA

replication include very late factor-1 (vlf-1, Busu61), DNA binding

proteins-1,2 (dbp-1, Busu11 and dbp-2, Busu26), lef-11 (Busu28),

alkaline exonuclease (alk-exo, busu116) and me-53 (Busu22) [29]

have also identified in BusuNPV.

Transcription Genes
Like all other baculovirus, BusuNPV encodes all four subunits

of RNA polymerase [30], lef-4 (Busu68), lef-8 (Busu50), lef-9

(Busu35) and P47 (Busu25). The lef-5 (Busu75) and vlf-1 (Busu61) are

two other core genes involved in transcription. In addition, four

non-core transcription related gene: 39k/pp31 (Busu29), lef-6

Figure 4. Repeat structure of BusuNPV. a. Sequence comparing of repeat regions. Blank background shows same bases between 3 compared
regions, gray indicates same bases only in 2 regions. b. Predicted secondary structure of overlap repeat region. Numbers on both sides of the chains
are the base position in the genome.
doi:10.1371/journal.pone.0086450.g004

Buzura suppressaria Nucleopolyhedrovirus Genome
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(Busu10), lef-11 (Busu28), Protein kinase-1 (pk-1, Busu3) are

present in BusuNPV. The early transcription genes found in

BusuNPV are Immediate early gene (ie-1, Busu14) and ie-0

(Busu21) [31,32].

Structural Genes
BusuNPV contains all structural core genes identified in other

baculoviruses. In the alphabaculoviruses, p6.9 (Busu76) encodes a

nucleocapsid protein and participates in DNA condensation. VLF-

1 (Busu61) is a structural protein in both ODV and BV required

for very late genes expression and is essential for nucleocapsid

production [33,34]. Other core genes related to the viral

nucleocapsid include 38K (Busu74), 49k (Busu20), odv-ec27

(Busu18), odv-e43 (Busu82), odv-e18 (Busu19), vp39 (Busu67),

vp91/p95 (Busu66), vp1054 (Busu42), desmoplakin (Busu57), Ac53

(Busu45), p18 (Busu70) and gp41 (Busu63). The p33 (Busu69)

encodes a type of a sulfhydryl oxidase in baculoviruses [35].

Proteins encoded by c42 (Busu77) and pp78/83 (Busu2) participate

in nuclear actin polymerization [36]. Busu62 encodes a protein

similar to Ha72, which be verified essential for ODV occlusion

and BV production [37].

Other non-core structural proteins encompass the F protein

(Busu120), which is essential for virus entry and budding and

VP80 (Busu80), which is involved in nucleocapsid packaging and

trafficking [38]. Busu98 is a homologue of Calyx/PEP and is the

major protein of polyhedron envelope that enhances the stability

of OBs [39,40]. Busu7 encodes P10 [17] and is involved in the

process of OB envelopment and nuclear lysis at the late stages of

infection [41].

Oral Infectivity Factors
So far 7 conserved genes were identified to be essential for oral

infectivity of baculovirus including p74 (Busu23), per os infectivity

factors-1 (pif-1, Busu111), pif-2 (Busu101), pif-3 (Busu90), pif-4

(Busu73), pif-5/odv-e56 (Busu6) and pif-6(Busu55) [42,43].

Busu34 is a homologue of the gene encoding viral enhancing

factor (VEF) that dissolves the peritrophic membrane (PM) of the

midgut [44]. A study in LdMNPV found it helps ODV envelopes

[45].

Auxiliary Genes
Ubiquitin is encoded by most baculoviruses as well as

BusuNPV. Like most alphabaculoviruses and some betabaculo-

viruses, BusuNPV also encodes cathepsin (Busu24) and chitinase

(Busu51), both are involved in liquefaction of insect and OB

release [46,47]. A fibroblast growth factor (FGF, Busu114) aids

virus dissemination through the tracheal system [48,49]. The egt

gene which prevents larvae molting and pupation [50,51] was

found in BusuNPV (Busu124) [15] and the baculovirus with

deficiency egt gene kill the infected larvae faster than wild type

stains [52,53]. BusuNPV also contains a sod (Busu92) and three iap

genes (iap-1, Busu48; iap-2, Busu54; and iap-3, Busu93). Three

Baculovirus repeated orf (bro) genes have also been found. The

absence or duplication of these genes is common in baculovirus,

although between stains with closer affinity [54]. A study on

BmNPV showed that mutant bro-d or double mutant bro-a and

bro-c could not be isolated, it suggested bro takes essential

functions in BmNPV [55]. Another study indicated bro genes

encode a protein with DNA binding activity, especially to single

stranded DNA [56]. BusuNPV encodes poly (ADP-ribose)

glycohydrolase (parg, Busu88), which is conserved in group II

alphabaculoviruses with a function of poly (ADP-ribose) catabo-

lism [29]. A study in HearNPV G4 showed it affects oral infectivity

of OBs [57].

Unique Genes
Six unique ORFs (Busu5, Busu15, Busu47, Busu100, Busu 109

and Busu110) with no homology to other baculovirus ORFs were

identified and potentially encode functional proteins.

The Busu100 encodes a 532 aa protein with low homology to

tryptophan repeat gene family in entomopoxvirus (minimum E

value = 0.012). Busu109 encodes a 155 aa protein sharing a very

low homology to 5-methyltetrahydropteroyltriglutamate–homo-

cysteine methyltransferase in some bacteria (minimum E val-

ue = 2.1).

In summary, the genome sequence revealed BusuNPV is a

distinct species in group II Alphabaculovirus. Phylogenetically, it is

most closely related to EcobNPV, EupsNPV, OrleNPV and

ApciNPV. It does not contain typical baculovirus hrs, but contain a

new repeat structure, the function of which needs to be further

characterized. A 28.8 kb conserved region was identified among

alpha- and betabaculoviruses.

Materials and Methods

Viral DNA Extraction
BusuNPV was propagated in B. suppressaria larvae and OBs were

purified by differential centrifugation [12]. DNA was extracted as

described previously [16].

Sequencing and Bioinformatic Analysis
The genome was sequenced with the Roche 454 GS FLX

system by using shotgun strategy. The reads were assembled with

Roche GS De Novo assembler software. Contigs assembly was

assisted by previously generated restriction maps [13]. A few

regions that were not assembled into the contigs were further

amplified by PCR, cloned and sequenced. The genome sequence

data was uploaded to GenBank (GenBank accession number:

KF611977).

Hypothetical ORFs were predicted by softberry FGENESV

program (http://www.softberry.com/berry.phtml) [58] to contain

the standard ATG start, and a stop codon and potentially encode

at least 50 amino acids. Gene-parity plot analysis [13] was

performed using Microsoft Office Excel to draw scatter diagram

with using BusuNPV ORFs number as the X-axis and other

baculovirus ORFs as the Y-axis. Gene annotation and compar-

isons were done with NCBI protein-protein BLAST algorithm

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Repeat structures were

detected by BLAST alignment of two sequences (http://blast.ncbi.

nlm.nih.gov/Blast.cgi). The identity among homologous genes was

done with MegAlign software using clustalW with default

parameters. Regulatory regions and promoter motifs were

identified as described previously [29].

Restriction sites were predicted by MapDraw software. Genome

map framework drawn with genomeVX [59].

Phylogenetic Analysis
The Phylogenetic analysis was based on amino acid sequences

of 37 core genes form BusuNPV and the other 61 baculoviruses

listed in NCBI genome database (Table S1). All the sequences

were linked by a stationary order and multiple alignments using

clusterW method with MEGA5 by using default settings. A

phylogenetic tree was constructed by MEGA5 using Maximum

Likelihood method based on the JTT matrix-based model [60,61].

Phylogeny tested by Bootstrap method with a value of 1000 [62].

Prediction of Secondary Structure
Secondary structure was drawn by Predict a Secondary

Structure online server (http://rna.urmc.rochester.edu/

Buzura suppressaria Nucleopolyhedrovirus Genome
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RNAstructureWeb/Servers/Predict1/Predict1.html) with default

setting of DNA Nucleic Acid Type [63].

Supporting Information

Table S1 Basic informationof all sequenced baculovirus genome

in Genbank (October, 2013). NP means no published. Genomes

used to build phylogeny tree marked by ‘ *’.

(DOCX)

Table S2 The ORF positions in the genomeof BusuNPV. E or L

means early or late promoter motif and ORF directionrepresented

by+ or –.* stands for stain HearNPV G4. a, position of granulin in

CpGV genome. b, BJDP stands for DnaJ domain protein. c, PKIP

stands forProtein kinase interacting.

(DOCX)
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