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Simple Summary: The response of hepatocellular carcinomas (HCC) to transarterial chemoemboliza-
tion (TACE) is variable. In view of the dynamic development of treatment options for HCCs, an
early selection of the most effective therapy for maximizing individual treatment success has a high
medical need. We show that serum levels of circulating Dickkopf-related protein 1 (DKK-1) are
associated with a 12-week response to subsequent TACE in European patients. DKK-1 levels also
allowed for identification of responders in patients with normal levels of alpha fetoprotein. Our
findings are a step toward developing DKK-1 as a novel HCC response marker and an impulse to
investigate the mechanisms underlying the treatment response of HCCs.

Abstract: Background and Aims: In the treatment of hepatocellular carcinoma (HCC), response
prediction to transarterial chemoembolization (TACE) based on serum biomarkers is not established.
We have studied the association of circulating Dickkopf-related protein 1 (DKK-1) with baseline
characteristics and response to TACE in European HCC patients. Methods: Patients with HCC treated
with TACE from 2010 to 2018 at a tertiary referral hospital were retrospectively enrolled. Levels of
DKK-1 were measured in serum samples collected before TACE. Response was assessed according to
mRECIST criteria at week 12 after TACE. Results: Ninety-seven patients were enrolled, including
seventy-nine responders and eighteen refractory. Before TACE, median DKK-1 serum levels were
922 [range, 199–4514] pg/mL. DKK-1 levels were lower in patients with liver cirrhosis (p = 0.002)
and showed a strong correlation with total radiologic tumor size (r = 0.593; p < 0.001) and with
Barcelona Clinic Liver Cancer stages (p = 0.032). Median DKK-1 levels were significantly higher
in refractory patients as compared to responders (1471 pg/mL [range, 546–2492 pg/mL] versus
837 pg/mL [range, 199–4515 pg/mL]; p < 0.001), and DKK-1 could better identify responders than
AFP (AUC = 0.798 vs. AUC = 0.679; p < 0.001). A DKK-1 cutoff of ≤1150 pg/mL was defined to
identify responders to TACE with a sensitivity of 78% and specificity of 77%. DKK-1 levels were suit-
able to determine response to TACE in patients with low AFP serum levels (AFP levels < 20 ng/mL;
AUC = 0.843; 95% CI [0.721–0.965]; p = 0.003). Conclusion: DKK-1 levels in serum are strongly
associated tumor size and with response to TACE in European HCC patients, including those patients
with low AFP levels.
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1. Introduction

Hepatocellular carcinoma (HCC) is one of the most frequent malignancies and a rising
cause of cancer-related deaths worldwide [1]. According to the widely used Barcelona
Clinic Liver Cancer (BCLC) staging system for patients with intermediate stages (BCLC B)
or with multiple lesions, transarterial chemoembolization (TACE) is a standard first-line
treatment [2–4]. Hereby, TACE shows variable six month response rates between 20 and
45% [5–7]. However, TACE may also be used in patients with early (BCLC A), e.g., patients
for whom curative treatment is not feasible owing to various clinical factors (i.e., those
with a solitary nodule or up to three nodules under 3 cm) or for patients waiting for liver
transplantation, and also in those patients with advanced HCC (BCLC C) that are mostly
allocated to systemic treatment [5–8]. Therefore, to facilitate individual optimized treatment
strategies, the development of biomarkers for patients with different equivalent treatment
options has a high medical need.

Currently, alpha-fetoprotein (AFP) in serum is used as response marker to HCC treat-
ment in some situations, but it has not been validated as a response prediction marker [9,10].
Apart from AFP, no circulating biomarkers for HCC treatment monitoring have been es-
tablished yet. Recent studies have shown that serum levels of Dickkopf-related protein
1 (DKK-1), a circulating intermediate of the Wnt/β-catenin signaling cascade that is over-
expressed in HCC, are associated with poor clinical outcome, making it an interesting
biomarker candidate for HCC treatment monitoring [11–15]. Interestingly, DKK-1 levels
before and during TACE were previously found to be associated with response to TACE
in Asian patients who, however, were predominantly hepatitis B surface antigen posi-
tive [16,17]. It is unclear whether DKK-1 levels show a similar association in European
patients that have a different genetic and different tumor etiology. We aimed to investigate
the association of serum DKK-1 levels with tumor and patient characteristics in a European
population and to characterize its role as a biomarker for TACE treatment outcomes.

2. Patients and Methods
2.1. Patients

For our retrospective cohort study, all patients over 18 years with HCC treated with
TACE at Leipzig University Medical Center between 2010 and 2018 were assessed for
inclusion. Unequivocal diagnosis of HCC by radiologic criteria, imaging-based tumor
response assessment at 12 weeks after treatment initiation, availability of a serum sample
stored at –20 ◦C and collected at the start of the therapy, and written informed consent
of the patients were mandatory for study inclusion. Patients were excluded if they had
another tumor entity in addition to HCC.

2.2. HCC Diagnosis and Treatment Evaluation

The diagnosis of HCC and the treatment response were assessed based on contrast-
enhanced multiphase computed tomography (CT) and/or magnetic resonance imaging
(MRI) according to current treatment guidelines [2]. Patients were diagnosed with HCC if
their tumor had typical features of HCC (i.e., hypervascularity in the arterial phase and
washout in the portal venous or delayed phase). Tumor stages were defined according to
the BCLC staging system. Treatment allocation was based on a multidisciplinary tumor
board decision.

Treatment efficacy was evaluated 12 weeks after TACE based on mRECIST criteria.
Responders were defined as patients with complete, partial response, or stable disease of
the lesions treated with TACE, while refractoriness in the treated liver region was defined
as either progressive disease, viable lesion > 50%, tumor revascularization of the treated
lesions, or appearance of new hypervascularized lesions [18].

2.3. Quantification of DKK-1 and AFP

DKK-1 and AFP were quantified from serum samples collected at the time point of
treatment initiation and stored −20 ◦C. DKK-1 was measured by quantitative solid-phase
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ELISA (Quantikine ELISA Human DKK-1 Immunoassay, DKK-100, R&D Systems, Min-
neapolis, USA, lower detection limit 15.6 pg/mL) according to manufacturer’s instructions
using a fully automated microtiter plate analyzer ETI-Max 3000 (DiaSorin, Saluggia, Italy).
Final DKK-1 serum concentrations were obtained by interpolation from a standard curve
and expressed in pg/mL. Two analyses per sample were carried out, and the average was
calculated. AFP was measured in the serum by Fujifilm Wako Chemicals Europe (Neuss,
Germany, lower detection limit 0.03 ng/mL).

2.4. Statistics

The patient population was divided into groups by different definitions of low
AFP: (1) AFP <130 ng/mL [19], (2) AFP < 20 ng/mL [20], and (3) AFP < 8 ng/mL
(internal standard).

IBM SPSS Statistics software version 25 was used for data analyses. A p-value less
than 0.05 was considered significant. For the description of continuous variables, mean and
standard deviation or median and interquartile range were used as appropriate, while for
the description of qualitative variables, absolute frequencies and percentages were used.
Differences between two independent groups were tested with the Mann–Whitney U test.
Pearson correlation coefficients were used to calculate the correlation between variables.
Receiver operating characteristics (ROC) curves were constructed to assess sensitivity,
specificity, and respective areas under the curves (AUCs) with 95% CI. To determine the
best cutoff point for therapy response, the highest Youden’s index was calculated. Survival
curves were constructed by Kaplan–Meier method. Univariate and multivariate logistic
regression analyses were used to screen for independent predictors for response. For
validation of the predictive response value of DKK-1, the cohort was randomly divided into
a training cohort and a validation cohort by random sampling at a ratio of 2:1 and analyzed.

3. Results
3.1. Patient Selection and Baseline Characteristics

From a total of 977 patients diagnosed with HCC between 2010 and 2018, 546 had
received TACE as a first line treatment and contrast-enhanced multiphase CT or MRI
performed at week 12 after treatment was available. A total of 449 patients were excluded
due to a lack of a baseline serum sample, existence of other tumor entities, or absence of
written consent. The resulting population consisted of 97 patients (median age 63.0 [range,
31–83 years], 86 males) (Figure 1). Baseline characteristics of the study population are
shown in Table 1.

Table 1. Characteristics of the study population before TACE.

Characteristic Study Population (n = 97)

n (%)

Sex (male) 86 (89)

Age (years) * 63 ± 8.8 [range, 31–83]

Liver cirrhosis 88 (91)

Underlying liver disease

Viral hepatitis 15 (17)

Alcohol-related cirrhosis 53 (60)

NASH 9 (10)

others 11 (13)

Child-Pugh-Turgott classification

A 68 (77)
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Table 1. Cont.

Characteristic Study Population (n = 97)

B 17 (19)

C 3 (3)

BCLC stages

A 54 (56)

B 33 (34)

C 8 (8)

D 2 (2)

ECOG performance status

0 57 (59)

1 20 (21)

2 8 (8)

n.a. 12 (12)

Primary tumor site

Left lobe 21 (22)

Right lobe 52 (54)

Bilobar 24 (25)

Number of tumor lesions

1 50 (52)

2 26 (27)

3 12 (12)

>3 9 (9)

Total tumor diameter (mRECIST)

<3 cm 29 (30)

3–5 cm 39 (40)

6–10 cm 22 (23)

>10 cm 7 (7)

Extrahepatic HCC at baseline 31 (32)

DKK-1 (pg/mL) * 1073 ± 636 [range, 199–4514]

AFP (ng/mL) * 388 ± 1628 [range, 1.4–13019]

Albumin (g/L) * 38 ± 6 [range, 18.6–49]

ALT (µkat/L) * 0.8 ± 0.7 [range, 0.16–5.7]

Bilirubin (µmol/L) * 25 ± 27 [range, 4–189]

CRP (mg/L) * 8.9 ± 12.5 [range, 0.3–78]

Leukocytes (exp9/L) * 6.2 ± 2.5 [range, 1.4–15.6]

Neutrophils (exp9/L) * 4.0 ± 2.1 [range, 0.62–12.9]

Platelets (exp9/L) * 149 ± 97 [range, 40–531]
* = mean ± standard deviation [range]; BCLC = Barcelona Clinic Liver Cancer; ECOG = Eastern Cooperative
Oncology Group; mRECIST = modified Response Evaluation Criteria in Solid Tumors; n.a. = not applicable;
ALT = Alanine Aminotransferase; CRP = C-reactive protein.

3.2. Treatment Response and Overall Survival

In the overall cohort, the radiologic response rate to TACE after 12 weeks was 81%
(79/97 patients) (Figure 1). The median total follow-up time was 15 months [range,
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0–89 months], and 33 patients died during the observation period (BCLC-stages A/B/C/D:
n = 13/13/6/1, respectively). The immediate cause of death was tumor progression in
(n = 23), cirrhosis complications (n = 7), treatment related complications (n = 1), and infec-
tious complications (n = 2). During the observation period, 82 patients received additional
transarterial treatment, 27 patients underwent orthotopic liver transplantation (OLT), and
17 patients received systemic treatments.

Cancers 2022, 14, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. Selection of the study population. 

Table 1. Characteristics of the study population before TACE. 

Characteristic Study population (n = 97) 
 n (%) 

Sex (male) 86 (89) 
Age (years) * 63 ± 8.8 [range, 31–83] 

Liver cirrhosis 88 (91) 
Underlying liver disease  

Viral hepatitis 15 (17) 
Alcohol-related cirrhosis 53 (60) 

NASH 9 (10) 
others 11 (13) 

Child-Pugh-Turgott classification  
A 68 (77) 
B 17 (19) 
C 3 (3) 

BCLC stages  
A 54 (56) 
B 33 (34) 
C 8 (8) 
D 2 (2) 

ECOG performance status  
0 57 (59) 
1 20 (21) 
2 8 (8) 

n.a. 12 (12) 
Primary tumor site  

Left lobe 21 (22) 
Right lobe 52 (54) 

Bilobar 24 (25) 
Number of tumor lesions  

1 50 (52) 

Figure 1. Selection of the study population.

3.3. DKK-1 and AFP Levels before Treatment

In the study population, median DKK-1 levels were 922 [range, 199–4514] pg/mL,
and median AFP levels were 13 [range, 1–13019] ng/mL. DKK-1 and AFP levels before
treatment showed a weak correlation (r = 0.022; p = 0.832) (Supplementary Figure S1).

3.4. Association of DKK-1 Levels with Patient Characteristics

DKK-1 levels were significantly higher in patients without cirrhosis (n = 9) as com-
pared to patients with cirrhosis (n = 88) (1705 [range, 825–4515] pg/mL versus 888 [range,
199–2313] pg/mL; p = 0.002) (Figure 2A). Interestingly, the DKK-1 level at baseline strongly
correlated with the number of platelets (r = 0.802; p < 0.001), and moderately with neu-
trophiles (r = 0.598; p < 0.001) and leukocytes (r = 0.581; p < 0.001). In addition, a weak
negative correlation was found between DKK-1 and bilirubin (r = −0.329; p < 0.001) and
albumin (r = 0.294; p = 0.003) (Supplementary Table S1). No correlations were found
between the serum DKK-1 level at baseline and CRP level or alanine aminotransferase.
Male (n = 86) and female patients (n = 11) showed similar median DKK-1 levels (933 [range,
199–4515] pg/mL versus 825 [range, 403–1888] pg/mL; p = 0.794). There was no association
between DKK-1 levels and the age of the patients (r = 0.032; p = 0.754).

3.5. Association of DKK-1 Levels with Tumor Distribution

The correlation between tumor size analyzed by CT or MRI imaging and DKK-1
before TACE showed a strong correlation (r = 0.593; p < 0.001) (Figure 2B). Moreover,
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patients with HCC lesions >5 cm (n = 29) showed significantly higher DKK-1 serum levels
compared to patients with lesions <5 cm (n = 68) (1261 [range, 403–4515] pg/mL versus
838 [range, 199–2263] pg/mL; p < 0.001). DKK-1 levels were similar between patients with
bilobar tumor localization (n = 24) compared to single lobe localization (n = 73) (918 [range,
367–4515] pg/mL versus 930 [range, 199–2263] pg/mL; p = 0.196). In addition, DKK-1
levels were significantly higher in patients in BCLC stage C/D (n = 10) as compared to stage
A (n = 54) (1540 [range, 515–4515] pg/mL versus 848 [range, 199–2013] pg/mL; p = 0.032)
(Figure 2C).
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of r; n = number of patients; BCLC= Barcelona Clinic Liver Cancer.

3.6. Association of DKK-1 and AFP Levels with Response to TACE

Median DKK-1 levels were significantly higher in patients that were refractory to
TACE as determined at week 12 after treatment (n = 18) as compared to responders (n = 79)
(1471 [range, 546–2492] pg/mL versus 837 [range, 199–4515] pg/mL; p < 0.001) (Figure 3A).
Similarly, median AFP at baseline was higher in refractory patients (49 [range, 4–5895]
ng/mL versus 10 [range, 1–13019] ng/mL; p = 0.018) (Figure 3B). DKK-1 levels had a
stronger association with response to TACE (AUC = 0.798; 95% CI [0.692–0.905]; p < 0.001)
as compared to AFP (AUC = 0.679; 95%C I [0.549–0.809]; p = 0.018) (Figure 3C). The
optimum cutoff level for DKK-1 for discriminating responders to TACE from refractory
patients was 1150 pg/mL with a sensitivity of 78% and a specificity of 77%.

The association of DKK-1 levels with response to TACE could be confirmed across
patients in different BCLC stages. Thus, in patients in BCLC stage A (n = 6) that were
refractory to TACE, median DKK-1 levels were significantly higher as compared to re-
sponders (n = 48) (1391 [range, 847–1965] pg/mL versus 818 [range, 199–2013] pg/mL;
p = 0.01). Median DKK-1 levels were also significantly higher in refractory patients with
BCLC stage B (n = 10) as compared to responders with BCLC stage B (n = 26) (1341 [range,
546–2313] pg/mL versus 830 [range, 305–2284] pg/mL; p = 0.023) (Figure 3D). Using uni-
variate and multivariate regression (likelihood ratio: forward stepwise), we were able
to show that DKK-1 at baseline is an independent predictor for response after TACE
(Supplementary Table S2).

For validation of the predictive response value of DKK-1, our cohort was randomly
divided into a training cohort (n = 65) and an internal validation cohort (n = 32) by random
sampling at a ratio of 2:1. We were able to show that the DKK-1 value before TACE was
significant in both random cohorts (p = 0.002 in the training cohort and p = 0.012 in the
validation cohort, Supplementary Figure S2A,B). In addition, ROC analyses showed that
DKK-1 outperformed AFP in response prediction. DKK-1 levels had a stronger association
with response to TACE (AUC = 0.794; 95% CI [0.664–0.924]; p = 0.002) as compared to
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AFP (AUC = 0.642; 95% CI [0.476–0.809]; p = 0.126) in the training cohort as well as in
the validation cohort (AUC = 0.833; 95% CI [0.667–1]; p = 0.012) as compared to AFP
(AUC = 0.782; 95% CI [0.622–0.942]; p = 0.034; Supplementary Figure S2C,D).
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Figure 3. Association of DKK-1 and AFP with response to TACE. Serum levels of DKK-1 (A) and AFP
(B) at baseline by 12-week response to TACE and receiver operating characteristic (ROC) analysis of
sensitivity and specificity of DKK-1 and AFP for identifying responders (C). Serum levels of DKK-1
in patients with different BCLC stages by response to TACE (D). The upper and lower ends of the bar
indicate the 75- and 25-percentile, respectively. Extreme outliers are not displayed. The marking in
the middle of the bar shows the median. * = p < 0.05; ** = p < 0.01; *** = p < 0.001 (Mann–Whitney
test); n.s. = not significant; n = number of patients; BCLC= Barcelona Clinic Liver Cancer.

3.7. DKK-1 and Treatment Response in Patients with Low AFP Levels

The association of DKK-1 with response to TACE was analyzed in 80 patients (82%)
with low AFP levels defined by AFP cutoffs of 130 ng/mL, 20 ng/mL, and 8 ng/mL. In
patients with AFP levels < 130 ng/mL, median DKK-1 levels in responders (n = 68) and re-
fractory patients (n = 12) were 868 [range, 199–2284] pg/mL versus 1391 [range, 546–2313]
pg/mL (p = 0.005) (Figure 4A). ROC analyses showed an AUC of 0.756 [0.613–0.900]
(Figure 4D), and the optimum response cutoff for DKK-1 for discriminating responders
was 1150 pg/mL (sensitivity 75%, specificity 75%). In patients with AFP levels <20 ng/mL,
median DKK-1 levels in responders (n = 51) and refractory patients (n = 7) were 840 [range,
199–2284] pg/mL versus 1646 [range, 936–2313] pg/mL (p = 0.003). The optimum response
cutoff for DKK-1 for discriminating responders was also 1150 pg/mL (sensitivity 86%, speci-
ficity 77%, AUC = 0.756 [0.613–0.900]) (Figure 4B,E). In patients with AFP levels <8 ng/mL,
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median DKK-1 levels in responders (n = 37) and refractory patients (n = 5) were 840 [range,
305–2284] pg/mL versus 1646 [range, 936–2313] pg/mL (p = 0.023) (Figure 4C). For discrim-
inating responders, the optimum response cutoff for DKK-1 was 933 pg/mL (sensitivity
100%, specificity 60%; AUC = 0.843 [0.721–0.965]; Figure 4F and Table 2).
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Figure 4. Association of DKK-1 with response to TACE in patients with low AFP levels. Serum
levels of DKK-1 by 12-week response to TACE and receiver operating characteristic (ROC) analysis
of sensitivity and specificity of DKK-1 for identifying responders in patients with AFP <130 ng/mL
(A,D), AFP <20 ng/mL (B,E), or AFP <8 ng/mL (C,F), respectively. The upper and lower ends of the
bar indicate the 75- and 25-percentile, respectively. Extreme outliers are not displayed. The marking
in the middle of the bar shows the median. ** = p < 0.01 (Mann–Whitney test); n = number of patients.

Table 2. DKK-1 levels in patients with low AFP and diagnostic accuracy of DKK-1 in classification of
12-week response to TACE.

AFP Subgroups
DKK-1 *

p-Value AUC [95% CI] DKK-1 Cutoff Sensitivity Specificity
Refractory Responder

AFP < 130 ng/mL
(n = 80/97)

1391
[546, 2313] pg/mL

(n = 12)

868
[199, 2284] pg/mL

(n = 68)
0.005 0.756 [0.613, 0.900] 1150 pg/mL 75% 75%

AFP < 20 ng/mL
(n = 58/97)

1646
[936, 2313] pg/mL

(n = 7)

840 [199, 2284] pg/mL
(n = 51) 0.003 0.843 [0.721, 0.965] 1150 pg/mL 86% 77%

AFP < 8 ng/mL
(n = 42/97)

1646
[936, 2313] pg/mL

(n = 5)

840 [305, 2284] pg/mL
(n = 37) 0.023 0.816 [0.666, 0.967] 933 pg/mL 100% 60%

* = median [range]; n = number of patients.

3.8. Association of DKK-1 Levels with Survival

Patients with DKK-1 serum levels above the calculated cutoff for response of 1150 pg/mL
showed a shorter overall survival than patients with DKK-1 serum levels below 1150 pg/mL
(Figure 5). However, the differences were not significant (p = 0.084).
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(p = 0.084).

4. Discussion

In the present study, we have assessed the association of serum DKK-1 levels with
patient and tumor characteristics as well as with response to TACE and survival after
TACE in a European population with HCC for the first time. We found that DKK-1 serum
levels were significantly lower in patients with liver cirrhosis, and that they correlated with
serum markers of liver function, such as albumin, bilirubin, and platelets. DKK-1 serum
levels correlated strongly with radiological total tumor diameter and with BCLC stages.
Serum levels of DKK-1 had a strong association with 12-week response to TACE. We could
define a DKK-1 level cut off level of <1150 pg/mL that was suitable for the identification of
responders to TACE. Importantly, the identification of responders before treatment was
possible for the overall population as well as in the subgroup of patients with low or normal
AFP levels. This cutoff was equally suitable to identify patients with a longer survival
after TACE.

DKK-1 is a soluble secreted protein consisting of 266 amino acids that blocks the
formation of active Wnt-Frizzled-LRP5/6 receptor complexes, resulting in intercepting
Wnt signal transduction, but is rarely expressed in normal human adult tissues except
in embryonic and placental tissues [14,16,21]. It has been proposed that endothelial cells
and platelets may secrete DKK-1 [22], which could explain the strong positive correlation
between DKK-1 and the number of platelets (Supplementary Table S1). Due to its deep
involvement in the signaling cascades of HCC development, its detectability in blood, and
its molecular characteristics, DKK-1 is a promising HCC biomarker candidate. Indeed,
elevated DKK-1 levels were associated with poor clinical outcome and shorter survival in
previous studies [11,12,14,15]. Recent studies have shown that in healthy subjects, DKK-1
can be detected at mean serum levels ranging from 0.90 ng/mL [range, 0.01–1.91 ng/mL] to
5.9 ng/mL [23]. In Egyptian patients with hepatitis C virus infection and in Korean patients
mostly positive for hepatitis B surface antigen, mean DKK-1 levels showed a two-fold ele-
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vation in patients with HCC [11,23]. Among the European HCC patients in our study, HCC
was mainly based on alcohol-related liver cirrhosis (60%). The presence of liver cirrhosis
was a factor influencing DKK-1 levels in serum in our cohort (Figure 2A). Thus, DKK-1
levels were two-fold lower in patients with cirrhosis (p = 0.002). Similarly, DKK-1 levels
were described to be lower in patients with hepatitis C and cirrhosis as compared to healthy
controls in a study from Egypt [23,24]. We found in our population a linear correlation with
the total tumor diameter as measured by tomography (Figure 2B). Moreover, we found a
significant elevation of DKK-1 levels in patients with tumor lesions ≥ 5 cm compared to
patients with lesions <5 cm, similar to the findings of El-Shayeb et al. [25]. There was a
linear increase in DKK-1 levels with increasing BCLC stages, reflecting tumor progression
(Figure 2C).

Treatment with TACE is a standard repertoire for treatment of HCC worldwide.
However, response to TACE is heterogenous, and with the current dynamic development
of more effective systemic treatments, early selection of the most effective therapy for
maximizing the individual treatment success is of paramount importance [17]. Currently,
AFP is widely used in clinical practice to evaluate response to HCC treatment [6]. However,
AFP has not been validated for the prediction of response to TACE in HCC patients [9,10],
and it cannot be used in HCC patients with normal AFP levels [14]. In our study, we
could show that APF levels were associated with response to TACE (Figure 3B). However,
42/97 patients (43%) in our population had AFP levels within normal ranges (<8 ng/mL),
which diminishes their value for response prediction. AFP levels showed a narrower
distribution across individual patients as compared to DKK-1, which was measurable in
all patients (Figure 1). In contrast to DKK-1, AFP levels showed no association with the
presence of liver cirrhosis or BCLC stage. The correlation between AFP and DKK-1 was
weak (r = 0.022).

DKK-1 levels were significantly higher in patients with a 12-week response to TACE
as compared to refractory patients (p < 0.001) (Figure 3A). Hereby, DKK-1 levels showed
the strongest differences between responders and refractory patients in BCLC stages A and
B (p = 0.01 and p = 0.0023, respectively), but they were not different in patients in BCLC
stage C/D (Figure 3D). The inability of DKK-1 levels in discriminating responders in the
BCLC C/D subgroup might be caused by the small number of patients as well as by the
influence of decreased liver function in those patients as compared to BCLC A/B stages.
DKK-1 levels could identify 12-week responders to TACE (AUC = 0.798, p < 0.001) better
than AFP levels (AUC = 0.679, p = 0.018) (Figure 3C). Importantly, DKK-1 levels were also
significantly higher in patients with normal AFP levels and 12-week refractoriness to TACE
as compared to responders. We could demonstrate this association of DKK-1 similarly in
the subgroups of patients with AFP levels <130 ng/mL (p = 0.005), <20 ng/mL (p = 0.003),
or <8 ng/mL (p = 0.023) (Figure 4). We find that this observation merits particular attention,
as for patients with normal AFP levels, there are currently no alternative serum response
markers available. We calculated an optimal cutoff for DKK-1 of 1150 ng/mL for identifying
12-week responders to TACE in the overall population of our study with a sensitivity of
78% and a specificity of 77%. The optimal DKK-1 cutoff for identification of responders
was the same for the subgroups with AFP levels < 130 ng/mL (sensitivity 75%, specificity
75%) or <20 ng/mL (sensitivity 86%, specificity 77%), and it was 933 pg/mL for patients
with AFP levels < 8 ng/mL with a sensitivity of 100% and a specificity of 60%. With respect
to the strong performance of DKK-1 as a response marker across patients with different
AFP levels in our study, we feel that DKK-1 needs to be further investigated for its potential
as a tool for navigating treatment decisions, ideally not only for TACE but also for other
HCC treatments.

Our observation of an association of serum DKK-1 levels with response to TACE in
European patients is in line with previously described higher DKK-1 levels in Chinese
HCC patients responding to TACE reported by Wu et al. [17]. The similarity of both
observations is particularly important given the different genetic backgrounds and the
different types of liver disease underlying HCC of the two populations. Thus, in contrast to
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the Asian cohort predominantly suffering from viral hepatitis, only a small proportion of
our patients had viral hepatitis, but the majority had alcohol-related liver cirrhosis (Table 1).
Additionally, most of the patients reported by Wu et al. were in BCLC stage C, whereas in
our study, most patients were in stages BCLC A (56%) or B (34%), thus having a smaller
tumor burden (Table 1). Of note, there are crucial methodological differences between
both studies that need to be taken into account. Indeed, DKK-1 could be quantified in all
patients included in this study, whereas in the study by Wu et al., DKK-1 was undetectable
in about 20% of patients. This different dynamic range of the assays is likely determined by
the approximately 2 log pg/mL lower detection limit for DKK-1 in the assay used in our
study [17].

In other analyses in Asian patient populations, DKK-1 was reported to be useful for
HCC diagnostics [12,14]. Indeed, DKK-1 has previously been shown to outperform the
sensitivity of AFP for detecting early HCCs that often show AFP levels within normal
ranges [26]. Other studies showed that patients with HCC have higher circulating DKK-1
levels compared to healthy subjects, and these elevated DKK-1 expression levels are associ-
ated with a worse clinical outcome [12,14,15,17]. Accordingly, in our patient population,
lower DKK-1 levels were associated with longer survival (Figure 5). Although individual
survival time was likely influenced by treatments that were conducted after TACE, and
causes of death were heterogeneous, the association of DKK-1 as a prognostic marker for
survival of HCC patients should be further investigated.

Recently, other prognostic marker for TACE therapy outcome were described. Granito et al.
proposed hypertransaminasemia after TACE (AST increase ≥46%, ALT increase ≥52%
compared with baseline values) as a reliable predictor of response [27]. Moreover, T cell
immunoglobulin and mucin 3 (Tim-3) was also postulated as a prognostic indicator for
HCC patients undergoing TACE [28]. Patients with low Tim-3 levels after TACE correlated
with poor prognosis. In contrast to our study, transaminases and Tim-3 were measured
after TACE and compared to baseline values. Circulating markers that are as easy to access
as DKK-1 are most suitable for improving treatment personalization in clinical practice, and
DKK-1 and those other markers should be evaluated for their use for response prediction
in prospective studies. Our study has some limitations. First, the international community
lacks a consensus definition of TACE refractoriness. The influence of possible disruptive
factors for DKK-1 quantification in HCC patients needs to be clarified in future studies.
Owing to the real-world character of our study, disease stages of the patients vary across
different BCLC stages. Thus, prospective studies with more homogenous populations
should be conducted to validate our findings.

5. Conclusions

In conclusion, serum levels of DKK-1 are a sensitive biomarker for tumor size and
for the efficacy of TACE in European patients with early or intermediate stage HCCs.
Importantly, DKK-1 levels are suitable to identify responders to TACE in HCC patients
with low AFP levels, making DKK-1 a potential candidate to close the diagnostic blind
spot that exists in those patients. Future studies will be necessary to validate the potential
of DKK-1 as a clinical marker for HCC patients in different therapeutic settings. Our
work could help to advance personalization in HCC patient care and can give impulses to
investigate the mechanisms underlying treatment response in HCCs.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/cancers14194807/s1: Figure S1: Correlation of DKK-1
and AFP serum levels before TACE in the overall study population (n = 97); Figure S2: Validation
of the predictive response value of DKK-1; Table S1: Bivariate correlations of DKK-1 as well as AFP
and different serum markers at baseline. Table S2: Univariate and multivariate logistic regression
analyses for response after TACE.
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