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Oxidized low-density lipoprotein (ox-LDL) is considered as the significant maker of 
inflammatory reaction. ox-LDL was reported to play a crucial role in the pathogenesis 
of atherosclerosis (AS). In the current study, we scrutinize the suppressive effect of 
ginkgolic acid against ox-LDL induced an oxidative and inflammatory response in human 
microvascular endothelial cells (HMEC-1) and human peripheral blood mononuclear cells 
(nPBMCs) and explore the mechanism of action. HMEC-1 cells are treated with ox-LDL 
in the presence of different concentration of ginkgolic acid. MTT 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide) assay was performed for the estimation of cell 
viability effect. Reactive oxygen species (ROS), inflammatory cytokines, and NF-κB 
activity are also estimated. For the hPBMCs assay, the cells were isolated from the healthy 
volunteers and cultured. The cells were further divided into different group and received 
the ginkgolic acid. Additionally, ROS, inflammatory marker such as prostaglandin E2 
(PGE2), lipoxygenase (LOX), nitric oxide (NO), cyclooxygenase (COX) protein expression, 
and mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and 
vascular cell adhesion protein 1 (VCAM-1) were estimated in the ox-LDL treated group. 
The result exhibited that ginkgolic acid treatment induced the cell viability boosting in 
ox-LDL treatment and intracellular ROS significantly decreased by ginkgolic acid. Pro-
inflammatory cytokines also downregulated via ginkgolic acid. Moreover, ginkgolic acid 
reduced the ox-LDL–induced NF-κB. The mRNA and protein expression of TNF-α, IL-6, 
and VCAM-1 considerably increased in the ox-LDL treated group and ginkgolic acid 
significantly reduced the mRNA and protein expression. An inflammatory marker such 
as PGE2, LOX, and NO were increased in the ox-LDL treated group and ginkgolic acid 
treated group exhibited the reduction of an inflammatory marker. Based on the result, we 
can conclude that ginkgolic acid significantly reduced and reversed the ox-LDL–induced 
modulation, suggesting its anti-inflammatory effect via the NF-κB pathway.
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INTRODUCTION

The researcher suggests that the oxidation of low lipid 
lipoproteins (ox-LDL) is considered as the important marker 
of inflammatory reaction. ox-LDL has been well known to 
boost the pro-inflammatory cytokines leading to monocyte 
infiltration into the vessel walls (Burstein et al., 1970; Adiels 
et  al., 2008; Jonas and Phillips, 2008). Research suggests that 
the generation of ox-LDL during the oxidative stress condition 
enhanced the reactive oxygen species (ROS) production, which 
further gathers in macrophages and other cells and creates the 
chronic inflammatory condition (Aviram and Rosenblat, 2004; 
Gritters et al., 2006; Lerner et al., 2015). Ox-LDL also boosts 
the inflammatory reaction and oxidative stress to the vascular 
endothelium (Hartge et al., 2007; Vanhoutte et al., 2009). It also 
exerts the atherosclerotic plaque progression and formation and 
enhances the secretion and synthesis of adhesion molecules, 
adhesion, and monocyte chemotaxis (Gharavi et al., 2007; 
Vanhoutte et al., 2017); ox-LDL enhanced the smooth muscle 
cell proliferation and amplify foam cell formation, endothelial 
cell apoptosis, matrix degradation, and oozing of matrix 
metalloproteinases (MMP) arbitrating the degradation protein 
components of extracellular matrix and basement membrane in 
target cells (Suematsu et al., 2002; Gharavi et al., 2007; Potenza 
et al., 2008; Lu et al., 2011; Yung et al., 2012).

The researcher suggests that it also increased the 
overexpression of adhesion molecule on the endothelial cell 
surface and also enhanced the monocytes to the arterial wall 
of endothelial dysfunction (Kubes et al., 1991). Endothelial 
dysfunction has been considered as a significant factor for the 
progression of cardiovascular diseases. Endothelial dysfunction 
could induce platelet adhesion and cardiovascular inflammation 
(CVD) especially atherosclerosis (AS) (Cai and Harrison, 2000; 
Steyers and Miller, 2014; Papadimitraki and Boumpas, 2015). 
The report suggests that the CVD majorly leading the cause 
of mortality and morbidity worldwide and approximately 16 
million death has been reported annually (Hadi et al., 2005; 
Higashi et al., 2009; Gimbrone and García-Cardeña, 2016). 
CVD disease, mainly AS is a chronic disease of the arterial vessel 
wall, started via deposition of lipoproteins in the intimal layer 
of the vascular wall (Reis and Lutsey, 2012; Ho, 2018; Reamy 
et al., 2018). AS is responsible for a large number of casualties 
related to cardiovascular-related disease (Mendis et al., 2011; 
Troosters, 2012). AS is a chronic and complex inflammatory 
disease, which is described by the abnormal deposition of lipids 
and fibrous elements into the arteries (Holligan et al., 2012). It is 

frequently asymptomatic for several decades until the incidence 
of serve CVD such as heart attack or stroke (Holligan et al., 
2012). Oxidized lipids are responsible for the onset of expression 
of a set of genes that cause the chronic inflammatory reaction, 
leading to the deposition of oxidized lipids within the vessel wall 
(Friedewald et al., 1972; Hamilton, 1997). Due to deposition of 
oxidized lipids inside, the vessel wall was able to increase the 
expression of transcription factors genes, viz., nuclear factor κB 
(NF-κB), to induce the chronic inflammatory reaction (Dichtl 
et al., 1999; Boersma et al., 2011). Research suggests that the 
inflammatory process involved in every step of AS starts from 
the damaging in a vessel of endothelial cells to burst of plaque 
at the end-stage (Slager et al., 2005; Lamon and Hajjar, 2008). 
During the progression of AS, the formation of foam cells 
(lipid-laden macrophages) plays a significant role in the retort 
to inflammation linked stimuli (Esper et al., 2008; Lamon and 
Hajjar, 2008). Usually, the formation of the above disease is 
related to the hyperlipidemia and unusual deposition of ox-LDL 
(Akpolat et al., 2011; Hlaing and Park, 2013). Research suggests 
that the ox-LDL damaged the endothelial function resultant, 
increased the production of ROS, and reduced the production of 
nitric oxide (NO) (Rao, 2002; Mitra et al., 2011a). Additionally, 
continue generation of pro-inflammatory reaction could 
activate the macrophages to produce ROS, which induces the 
apoptosis and involved in the subsequent plaque formation in 
the progression of AS progression. Lipooxygenase-1 (LOX-1) 
plays an important role in the boosting of inflammatory reaction 
(Negre-Salvayre et al., 2006; Mitra et al., 2011a). The uptake of 
ox-LDL into the endothelium interacts with LOX-1 receptor and 
induces the toxic side effect such as generation of ROS, secretion 
of pro-inflammatory cytokines, proapoptotic proteins, and 
overproduction of adhesion molecules (Brucker et al., 2013; Ding 
et al., 2013). The nuclear level, central transcriptional (NF-κB) 
plays an important role in the activation of vascular endothelium 
during the atherosclerosis disease. Previous studies suggest 
that the NF-κB and generation of intracellular ROS both play a 
crucial role in the inflammatory reaction. Research suggests that 
the ox-LDL activates the NF-κB and augments the production 
of ROS in endothelial cells (Ross, 1999; Lluís et al., 2013). Toll-
like receptor 4 (TLR4) plays a vital role in the regulation and 
initiation of the immune response and induces remarkable 
proatherogenic and pro-inflammatory cytokines expression in 
endothelial cells and macrophages. Adaptor molecule such as 
myeloid differentiation factor 88 (Myd88) plays a crucial role 
in the TLR4 signaling pathway. Another inflammatory pathway 
such as NF-κB p65 altered the TLR4 pathway, resultant induces 
the expression of various pro-inflammatory mediators, which 
contributes to the atherosclerosis disease (Geng et al., 2010; Yu 
et al., 2011; Rocha et al., 2016).

Pro-inflammatory cytokines, viz., interleukin-1 (IL-1) 
and interleukin-2 (IL-2), produced via macrophages exert 
inflammatory effects and induce the expansion of AS. It is 
believed that chronic inflammation plays an important factor 
in the progression of atherogenesis (Han et al., 2010; Yu et al., 
2016). Another inflammatory marker, viz., TNF-α and IL-6, 
played a crucial role in ox-LDL–induced inflammation. IL-6 
shows the direct effect inflammatory, proatherogenic effect 

Abbreviations: AS, atherosclerosis; COX, cyclooxygenase; CVD, cardiovascular 
inflammation; DCFH-DA, dichlorodihydrofluorescein diacetate; DPPH, 
2,2-diphenyl-1-picrylhydrazyl; HMEC-1, human microvascular endothelial 
cells; IL-1, interleukin-1; IL-2, interleukin-2; IL-6, interleukin-6 (IL-6); LDL, 
low lipid lipoproteins; LOX, lipoxygenase; LPO, lipid peroxidation; MDA, 
malondialdehyde; MMP, matrix metalloproteinases; MTT, 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide; Myd88, myeloid differentiation factor 88; 
NF-κB, nuclear level, central transcriptional; NO, nitric oxide; nPBMCs, human 
peripheral blood mononuclear cells; ox-LDL, oxidized low-density lipoprotein; 
O2, superoxide; PGE2, prostaglandin E2; ROS, reactive oxygen species; TLR-
4, toll-like receptor 4; TNF-α, tumor necrosis factor-α; VCAM-1, vascular cell 
adhesion protein 1.
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including activation of endothelial cells and platelet activation, 
enhances the vascular smooth muscle proliferation, and increases 
the production of ROS (Schleicher and Friess, 2007; Yan et al., 
2014; Han et al., 2016). Imbalance of cholesterol influx, efflux, 
and synthesis could interrupt the cholesterol homeostasis and 
start the generation of form cells. Due to the direct role of pro-
inflammatory cytokines and alteration of intracellular ROS level, 
the researcher focuses on their research to treat the AS disease 
(Yan et al., 2014; Lin et al., 2017).

MATERIALS AND METHODS

Chemical
Ginkgolic acid (≥95.0%) (Figure 1) was purchased from the 
Sigma Aldrich, USA.

Cell Culture
Human microvascular endothelial cells (HMEC-1) were used 
for the current experimental study. The cells were cultured in the 
MCDB 131 medium containing fetal bovine serum (10%) and 
cells were cultured into the humidified air area containing CO2 at 
37°C. The cells were treated with 200-μg oxidized LDL (ox-LDL) 
in the presence of ginkigolic acid (0–20 μM) for 1 day. After that, 
the biomarkers in the supernatant and cells were detected.

Cell Viability Assay
The cells were seeded overnight in 96-well plates and, afterward, 
mixed the ox-LDL and various concentration of ginkgolic acid 
into the wells at 37°C for 1 day. On the other hand, the vehicle 
control group contain DMSO (0.5%). The MTT assay was used 
for the determination of cytotoxicity. Briefly, MTT (100 μl) was 
added into the medium and left for next 4 h. Consequently, 
isopropanol (150 μl) was added into the medium for the next 15 
min and finally calculated the absorbance at 570 nM via using 
the microplate reader. Meanwhile, the result was presented as the 
relative ratio as compared with the vehicle group.

Determination of ROS
Fluorescent probes DCFH2-DA was used for the estimation of 
intracellular ROS production via using the previous method 
with minor modification. The HMEC-1 cells were treated with 
the ox-LDL (200 μg) and ginkgolic acid, and subsequently, 

DCFH2-DA was added for 20 min at the temperature (37°C) 
in the dark place. For the estimation of intracellular ROS levels, 
fluorescence was used for excitation (488 nM) and emission (519 
nM) via using the confocal microscope.

Lipid Peroxidation (Lpo) Assay
For the estimation of LPO, malondialdehyde (MDA) production 
was estimated via using the previously reported method with 
minor modification (Wiseman et al., 2000; Ferretti et al., 
2010). Briefly, 0.55-ml LDL was added in all tube and added 
the trichloroacetic acid (0.5%) to denature the protein. The 
sample was centrifuged at 10,000 rpm for 30 min at 10°C to 
separate the pellets. 0.5 ml of thiobarbituric acid (TBA) added 
in the supernatant and vigorously mixed the reagents to react 
for 40 min at 90–95°C in a dark room. After completion of the 
reaction, the absorbance was estimated at 532 nM (excitation) 
and 600 nM (emission).

Relative Electrophoretic Mobility
For REM, 200 μg/ml of LDL was pretreated with the various 
concentration of ginkgolic acid for 2 h and followed incubation 
at 37°C with CuSO4 (10 μM) for 16 h. LDL was estimated via 
using the agarose electrophoresis to estimation the increase in 
electrophoretic mobility. Briefly, modified LDL was loaded into 
agarose gels (0.6%) and electrophoresed at 100 V for 40 min.

ApoB Fragmentation
After the oxidation in the presence and absence of ginkgolic 
acid, samples were denatured with 2-mercaptoethanol (5%), SDS 
(3%), and glycerol (10%) for 5 min at 95°C for the detection of 
polyacrylamide gel electrophoresis.

2,2-Diphenyl-1-Picrylhydrazyl (DPPH) 
Radical Scavenging Method
For the estimation of the antiradical activity of ginkgolic acid, 
DPPH model was used via following the previously reported 
method with minor modification (Kumar et al., 2015). Briefly, 
DPPH (0.2 nM) is freshly prepared via dissolving the DPPH 
in the methanol solution. Then, ginkgolic acid and trolox 
were added into the DPPH solution and finally estimated the 
concentration at 517 nM after the incubation of the sample 
mixture in room temperature.

Estimation of Mitochondrial Membrane
For the estimation, the effect of ginkgolic acid on the 
mitochondrial membrane has a potential via using the lipophilic 
cationic probe fluorochrome5,58,6,68-tetraethylbenzimidaz
olcarbocyanine iodide (JC-1) (Cossarizza et al., 1993; Macho 
et al., 1996). JC-1 shows the potential dependent deposition in 
mitochondria as an indicator of fluorescence emission. After 
the treatment of ox-LDL for 16h with and without treatment of 
ginkgolic acid, the cells were washed with medium followed via 
the addition of JC-1, and finally, the cells were scrutinized via 
using the fluorescent microscope.FIGURE 1 | Structure of Ginkgolic acid.
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Pro-Inflammatory Cytokines Estimation
For the estimation of inflammatory cytokines, the supernatants of 
HMEC-1 cells were collected after the ox-LDL and ginkgolic acid 
treatment. Pro-inflammatory cytokines such as TNF-α and IL-6 
were quantified in the HMEC-1 cells via using the enzyme-linked 
immunosorbent assay (ELISA; R and D Systems, Minneapolis, 
MN, USA) by following the manufacturer’s instruction.

Estimation of NF-κB Production
After the ox-LDL and ginkgolic acid treated HMEC-1 cells, the 
nuclear extracts from the treated cells were prepared via using 
the Nuclear Extract Kit. NF-κB p65 assay kit was used for the 
estimation of NF-κB activity via using the (SN368, Beyotime 
Institute of Biotechnology, China) manufacture’s instruction.

Preclinical Study
Preparation of LDL
For the collection of LDLs, the blood sample was withdrawn 
from the overnight fasted donor and kept in precooled vacuum 
tubes containing Na-EDTA. For the separation of the plasma, the 
samples were centrifuged at low speed at 1°C and kept the same 
temperature throughout the separation protocol. The LDL was 
successfully isolated from the plasma in the density interval of 
1.025 to 1.050 kg/l by sequential preparative ultracentrifugation 
for 20. Lowry technique was used for the estimation of protein 
level in the LDL preparation.

Oxidation of LDL via Copper
Firstly, separate the EDTA from the isolated LDL via dialyzed 
in 0.02 mol/L phosphate/0.16 mol/L NaCl buffer, pH 7.4 for 
15 h at low temperature (4°C). Copper-mediated oxidation of 
LDL was performed via incubating the EDTA-free LDL (0.2 
mg/ml) in medium containing CuSO4 (10-5 mol/L) at 37°C 
for 12 h. Limulus assay was used for the analysis of presence 
or absence of endotoxins in the LDL preparations. In the 
whole procedure, the endotoxin levels should be less than 0.5 
ng/ml in the stock solutions and less than 5 pg/ml in the test 
samples. The thiobarbituric acid reactive substance was used 
for the estimation of lipid peroxidize content in the native and 
oxidized LDL.

Isolation of Human Peripheral Blood  
Mononuclear Cells
For the isolation of human peripheral blood mononuclear cells, 
briefly, the isolated cells were cultured in collagen I coated 
plates and cultured in RPMI medium. The cells were dispersed 
in culture plates and incubated and different concentration of 
ginkgolic acid for 24 h. We further divided the groups as follows: 
Gp- I control, Gp II- ox-LDL, Gp-III ox-LDL+GA (5 μg/ml) and 
Gp-IV ox-LDL+GA (20 μg/ml). Furthermore, the cells were used 
for the estimation of lipoxygenase (LOX), cyclooxygenase (COX), 
prostaglandin E2 (PGE2), nitric oxide (NO), interleukin-6 (IL-
6), tumor necrosis factor-α (TNF-α), vascular cell adhesion 
molecule-1 (VCAM-1), nuclear factor-kappa B (NF-κB), and 
toll-like receptor 4 (TLR4) after the incubation (24 h).

Cytotoxicity and NF-κB Transcription Assay
Tetrazolium salt 3-(4-5-dimethylthiozol-2-yl) 2-5-diphenyl-
tetrazolium bromide (MTT) assay was used for the estimation 
of cytotoxicity effect via using the previous method with 
minor modification.

NF-κB p65 nuclear translocation was estimated by using the 
standard kits via following the manufacturer’s instruction (M/s 
Cayman chemicals, MI, USA).

Estimation of Inflammatory Markers
The inflammatory markers such as COX and LOX were 
estimated via using the previously published method with minor 
modification. NO activity was determined by using the previously 
published protocol of Kumar et al., with minor modification.

For the estimation of PGE2, available ELISA kits were used 
via the following manufacturer’s instruction (M/s Cayman 
chemicals, MI, USA).

Western Blot Technique
Various parameters such as IL-6, VCAM-1, and TNF-α were 
estimated via using the western blot techniques. hPBMCs were 
washed with phosphate buffer saline (PBS) three times before 
the lysis on ice via using the 10 mmol/EDTA, 150 MMOL/
NaCl, 10 mmol/Tris, 10 mmol/NaN3, 5 mmol/iodoacetamide, 
1% NP-40, and 1 mmol/PMSF. Finally, the lysates were heated 
for 5 min in nonreducing sample buffer [2% SDS, 0.001% 
bromophenol blue, 10 mmol/Tris (pH 6.8), 20% glycerol, 
and resolved via 8% SDS–polyacrylamide gel electrophoresis 
(PAGE)]. The separated protein was successfully moved to the 
nitrocellulose membrane and blocked at room temperature 
for 1 h, and finally, the membrane was incubated with specific 
antibodies against primary antibodies for overnight at 4°C 
followed via conjugated with secondary antibodies for 60 min 
at 37°C. Diaminobenzidine substrate solution was used for the 
detection of antibodies.

RT-PCR Analysis
RNA isolation kits were used for the isolation of total cellular 
RNA via following the manufacturer’s instruction, and finally, 
the UV spectroscopy was used for the quantification of isolated 
RNA via estimated the absorbance at 260 and 280 nM. The cDNA 
first strand was synthesized using the total RNA in the Eppendorf 
thermal cycler and the primer was added in the reaction mixture 
in the presence of dNTPs, reverse transcriptase, and RNase 
inhibitor. The reaction mixture was gently centrifuged for 5 
min (25°C) followed via 1 h (42°C) for reverse transcription, 
and finally, the reaction was terminated via heating the reaction 
mixture for 5 min at 70°C. The sequences of the primers are 
presented in Table 1.

Statistical Analysis
For the statistical analysis, one-way ANOVA was used to identify 
the comparison between the different groups. Tukey test was used 
for the one-way ANOVA. Results are given as mean ± standard 
error of the mean.
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RESULT

Effect of Ginkgolic Acid on HMEC-1  
Cell Viability
MTT assay was performed for the estimation of a cytotoxicity 
study of ginkgolic acid on the HMEC-1 cell. For the MTT assay, 
0–20 µM ginkgolic acid to choose for optimum dose to avoid 
cytotoxicity. MTT assay showed that the ginkgolic acid (5–20 
µM) did not show any effect on the HMEC cell viability (Figures 
2A, B). Figure 2C showed that the ginkgolic acid increased the 
cell viability in the ox-LDL–induced HMEC-1 cells.

Effect of Ginkgolic Acid on Oxidative Stress
Figure 3 showed the effect of ginkgolic acid on the intracellular 
ROS. For the estimation of oxidative stress, intracellular ROS 
were determined. The HMEC-1 cells treated with ox-LDL 
exhibited the increased intracellular ROS level. Ginkgolic acid 
treated HMEC-1 cell exhibited a reduced level of intracellular 
ROS in a concentration-dependent manner.

Effect of Ginkgolic Acid on Inflammatory 
Cytokines
For the estimation of the anti-inflammatory effect of ginkgolic 
acid, pro-inflammatory cytokines were estimated. Ox-LDL treated 
cells showed the increased level of pro-inflammatory cytokines 
such as IL-6, TNF-α, IL-8, and VCAM-1, and concentration-
dependent treatment of ginkgolic acid significantly reduced the 
level of pro-inflammatory cytokines (Figure 4).

Effect of Ginkgolic Acid on Caspase  
and NF-κb
Figure 5 showed the effect on the caspase-3 and NF-κB in the 
ox-LDL and ginkgolic acid treated group. Ox-LDL treated group 
exhibited a reduced level of caspase-3 activity and increased the 
level of NF-κB activity. Ginkgolic acid significantly increased the 
caspase-3 activity and reduced NF-κB activity.

Effect of Ginkgolic Acid on the 
Inflammatory Marker in hPBMCs
Figure 6 exhibited the effect of ginkgolic acid on the inflammatory 
mediator. Ox-LDL group exhibited the increased level of LOX, 

NO, and PGE2 and dose-dependent treatment of ginkgolic acid 
significantly reduced the level of LOX, NO, and PGE2.

Effect of Ginkgolic Acid on IL-6, TNF-α, 
and VCAM-1 in hPBMCs
Figure 7 demonstrated the increased expression of IL-6, TNF-α, 
and VCAM-1 in the ox-LDL treated in hPBMCs. Ginkgolic acid 
treated group significantly (P < 0.05) reduced the expression of 
IL-6, TNF-α, and VCAM-1.

Discussion
Studies suggest that the ox-LDL is the significant marker for 
identifying the cardiovascular disease (Lapointe et al., 2006; 
Brinkley et al., 2009). Ginkgolic acid may reduce oxidative stress 
and inflammation, both (oxidative stress and inflammation) 
concerned in enhancing the risk of cardiovascular diseases. 
Studies also suggest that the ginkgolic acid considerably reduced 
the adhesion, invasion, and migration of cancer cells. The current 
study scrutinized the beneficial effect of ginkgolic acid to reduce 
the NF-κB signaling pathway (Fukuda et al., 2009; Lee et al., 2014).

Previous research suggests that the MTT assay generally 
provide the information on the nature of noncytotoxicity cells 
via estimation of mitochondrial activity which is directly or 
indirectly concurrent to the cell viability, for both the attached 
and poorly attached cells (Park et al., 2006; Seidl and Zinkernagel, 
2013). In the assay of MTT, the metabolically active cell 
decreases the MTT tetrazolium salt [3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide] and generates the crystal, 
whereas nonreactive cell or dead cells do not form the crystal. 
We estimated the cytotoxicity effect of ginkgolic acid on the 
HMEC-1 cells via performing the MTT assay. Cell viability assay 
and ginkgolic acid (20 µM) exhibit the nontoxic effect against the 
HMEC-1 cells.

Research suggests that the ox-LDL plays a significant role 
in the initiation and the expansion of oxidative stress and 
malonaldehyde (MDA) is the considerable marker of LPO involved 
in the breakdown of LPO (Tsuzura et al., 2004; Mitra et al., 2011a). 
HMEC-1 cells treated with ox-LDL exhibited the enhanced level 
of ROS and LPO product due to the formation of free radicals. 
Ginkgolic acid already confirmed their antioxidant nature because 
the hydroxyl group is found in the benzene ring system and 
eliminates the ROS (Negre-Salvayre et al., 2006; Mitra et al., 2011a). 
The current nature of ginkgolic acid may favor the reduction of 

TABLE 1 | Showed the list of primers.

S. No Gene Forward Reverse

1 TLR-4 5′ GCAGAAAATGCCAGGATGATG3′ 5′GGCTGTCAGAGCCTCGTGGCTT
TGG3′

2 TNF-α 5′ GCA GAA AAT GCCAGG ATG ATG3′ 5′GGC TGT CAG AGC CTC
GTG GCT TTG G3′

3 iNOS 5′CAG CAC AGA GGG CTCAAA GC3′ 5′TCG TCG GCC AGC TCTTTC T3′
4 VCAM-1 5′-AAA AGC GGA GACAGG AGA CA-3′ 5′-AGC ACG AGA AGCTCA GGA GA3′
5 IL-6 5′CCA CTG CCT TCC CTACTT CA3′ 5′TGG TCC TTA GCC ACTCCT TC3′
6 GAPDH 5′TGAAGGTCGGTGTGAACGGATTT

GGC3′
5′CATGTAGGCCATGAGGTCCACC
AC3′
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ox-LDL. Ox-LDL significantly enhanced the intracellular ROS 
formation in HMEC-1 cells. Previous research suggests that ox-LDL 
is the strong inducer of ROS production. Ox-LDL was exhibited to 
boost the intracellular oxidation of DCFH dye, a process that has 
already been showed to depend on the production of intracellular 
ROS (Zapolska-Downar et al., 2002; Kim et al., 2010). Various free 
radicals, viz., hydrogen peroxide (H2O2), superoxide (·O2), NO, 

hydroxyl (·OH), peroxynitrite (·ONOO) radicals, generated the 
ROS in the endothelial cells (Re et al., 1999; Covas et al., 2006). In the 
current experimental study, we observed the increased level of ROS 
and ginkgolic acid treatment significantly reduced the formation of 
ROS via reducing the generation of free radicals. The result suggests 
the antioxidant nature of ginkgolic acid via scavenging the ROS.

Research suggests that the vascular endothelial injury leads 
to induce vascular disease in patients (Willerson, 2002; Ok 
et  al., 2005). Ox-LDL is well known to trigger ECs to induce the 
production of chemotactic cytokines and adhesion molecules, 
attracting monocytes to the vascular wall for an inflammatory 
reaction (Yokoyama and Deckert, 1996; Selwyn et al., 1997). Theses 
mediators start the secretion of inflammatory cytokines that boost 
the migration and proliferation of smooth muscle cells resultant 
in atherosclerotic lesion development. The researcher focuses 
on their research to target the pro-inflammatory cytokines to 
scrutinize the protective effect of the drug. During atherosclerosis, 
pro-inflammatory cytokines such as TNF-α and IL-6 both have 
been related to vascular inflammation (Tedgui and Mallat, 2006; 
Papadimitraki and Boumpas, 2015). TNF-α has a synergistic effect 
on monocyte adhesion and endothelial dysfunction (Steyers and 
Miller, 2014). IL-6 increases the endothelial cell activation and 
induces the cell adhesion molecule expression such as VCAM-1, 
ICAM-1 and E-selectin on endothelial cells via trans-signaling 
(Ostrowski et al., 1999). Research suggests the level of pro-
inflammatory cytokines such as TNF-α and IL-6 secrete during the 
HMEC-1 cells (Frostegård, 2005; Smith et al., 2012). The increased 
level of IL-6 in ox-LDL appears due to inducing the oxidative 
stress in the cell (Grivennikov and Karin, 2011). Boosting the 
level of IL-6, induce the inflammatory reaction and expand the 
cardiovascular disease. In our study, ginkgolic acid significantly 
reduced the level of IL-6 and suggesting the antioxidant and 
anti-inflammatory nature (Frostegård et al., 1999; Brüünsgaard 
and Pedersen, 2003). The level of TNF-α, up-regulated during 
the ox-LDL treatment could be due to endothelial apoptosis. 
Ginkgolic acid considerably reduced the TNF-α level and reduced 
the ox-LDL–induced endothelial apoptosis. Based on the result, 

FIGURE 2 | Showed the effect of ginkigolic acid on ox-LDL decreases 
HMEC-1 cell expansions indentify by MTT assay for (A, B) 24 and 48 h, 
(C) the cells (HMEC-1) treated with ginkigolic acid. Data are presented as 
Mean ± SEM, *p < 0.05, compared to the control group (without treatment), 
^p < 0.05, compared to ox-LDL group.

FIGURE 3 | Showed the effect of ginkigolic acid on ox-LDL–induced ROS 
level. Data are presented as Mean ± SEM, *p < 0.05, compared to the 
control group (without treatment), ^p < 0.05, compared to ox-LDL group.
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we can conclude that ginkgolic acid considerably reduced the pro-
inflammatory cytokines in ox-LDL treated HMEC-1 cells.

The researcher suggests that the prostaglandins are the 
bioactive signaling molecule isolated from the cyclooxygenase 
(COX) involved in the inflammatory reaction, especially in the 
circulation/regulation of the pro-inflammatory cytokines (Libby, 
2002; Pirillo et al., 2013; Viola and Soehnlein, 2015). The continues 
generation of PGE2 was prominent in response to inflammatory 
stimuli. On the country, another inflammatory mediator such 
as 5-lipoxygenase (5-LOX) pathway mainly responsible for the 
fabrication of inflammatory lipid mediators having a significant 
role in the expansion of immunity along with it’s as pro-atherogenic 
agents (Kühn and O’Donnell, 2006; Wittwer and Hersberger, 2007; 
Pirillo et al., 2013). In the current experimental study, ginkgolic 
acid significantly down-regulated the LOX and PGE2 activity in 

FIGURE 4 | Showed the effect of ginkigolic acid on pro-inflammatory cytokines. (A) IL-6, (B) TNF-α and (C) IL-8 and (D) VACM-1. Data are presented as Mean ± 
SEM, *p < 0.05, compared to the control group (without treatment), ^p < 0.05, compared to ox-LDL group.

FIGURE 5 | Effect of ginkgolic acid on the caspase-3 and NF-κB activity 
on the ox-LDL treated group. (A) caspase-3 and (B) NF-κB activity. Data 
are presented as Mean ± SEM, *p < 0.05, compared to the control group 
(without treatment), ^p < 0.05, compared to ox-LDL group.

FIGURE 6 | Showed the effect of ginkgolic acid on the NF-kB p65 Activity. Data 
are presented as Mean ± SEM, *p < 0.05, compared to ox-LDL group.
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ox-LDL treated cells and suggesting the anti-inflammatory effect. 
Various other signaling pathways such as a nitric oxide (NO) play a 
crucial role in the pathogenesis of inflammation. NO is synthesized 
via nitric oxide synthases (NOSs), which are present in the  
various tissues (Y.  S., 2009). During the inflammation condition, 
endothelial nitric oxide synthase (eNOS) is responsible for the 
circulation of NO in the arteries and induced the inducible nitric 
oxide synthase (Förstermann and Münzel, 2006; Godo and 
Shimokawa, 2017). iNOS usually generates a higher amount of 
NO than eNOS and also plays a crucial role in the inflammation, 
apoptosis, and cellular damage. Previous research suggests 
that iNOS concurrently enhances O2 and NO production and 
nitrosative/oxidative stress in the atherosclerotic plaques (Cannon, 
1998; Pistrosch et al., 2013). Our experimental study showed that the 
iNOS expression is enhanced in ox-LDL treated cells, which in turn 
signify the increase in NO production. The researcher suggests that 
the generated NO releases from the phagocytic and endothelial cells 
and reacts with the superoxide (O2) to produce the peroxynitrites 
(Forman and Torres, 2001). A similar effect was observed in our 
experimental study, ox-LDL showed the increased level of iNOS 
and NO and suggested the increased inflammatory reaction, 
and ginkgolic acid significantly reduced the NO and iNOS level,  
suggesting the anti-inflammatory effect.

NF-κB is a significant and ubiquitous transcription factor for 
genes that encrypt the cytokines including TNF-α and IL-6. Research 
suggests that the activation of NF-κB involves in the degradation 
of IκB protein (Alnemri et al., 2002). Phosphorylation of IκBα via 
cytokines, drugs viruses, and bacterial products quickly starts the 
degradation and translocation of NF-κB into the nucleus. After the 
activation of NF-κB, start the binding with the mRNAs expression 
and specific promoter elements of pro-inflammatory cytokines 
genes (Viatour et al., 2005; Yang et al., 2008). Research suggests that 
the ox-LDL activates the NF-κB in smooth muscle cells, endothelial 
cells, and fibroblasts (Mitra et al., 2011b; Mitra et al., 2011c). NF-κB 
also activates during the expansion of early atherosclerotic lesions. 
In the current experimental study, we exhibit that ox-LDL activates 

the nuclear translocation of NF-κB p65 subunit and upregulate the 
inflammatory reaction in cultured hPBMCs, and GA treatment 
downregulated the nuclear translocation of NF-κB p65 subunit and 
also decreased the inflammatory response (Morel et al., 2011; Mitra 
et al., 2011b). The current action, due to its antioxidant property, 
could be responsible for its anti-oxidant and anti-inflammatory 
effects as well because most of the pro-inflammatory genes are 
under the control of NF-κB signaling pathway, and GA can counter 
regulate these pathways.

CONCLUSION

The current experimental study points toward the anti-
inflammatory and antioxidant effect of ginkgolic acid against 
the ox-LDL–induced atherosclerosis. During the experimental 
study, GA played a preventive role against the ox-LDL–induced 
inflammation and oxidative stress in hPBMCs. The upregulation of 
pro-inflammatory cytokines in the ox-LDL group and translocation 
of NF- κB p65 subunit was observed to be downregulated via GA 
treatment. Furthermore, in vivo experimental investigation is 
warranted to explore the possible cardiovascular protective effect 
of ginkgolic acid in cardiovascular disease.
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