
Applied Intelligence
https://doi.org/10.1007/s10489-022-03756-1

Computation andmemory optimized spectral domain convolutional
neural network for throughput and energy-efficient inference

Shahriyar Masud Rizvi1 · Ab Al-Hadi Ab Rahman1 ·Usman Ullah Sheikh1 · Kazi Ahmed Asif Fuad2 ·
Hafiz Muhammad Faisal Shehzad3

Accepted: 10 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Conventional convolutional neural networks (CNNs) present a high computational workload and memory access cost
(CMC). Spectral domain CNNs (SpCNNs) offer a computationally efficient approach to compute CNN training and
inference. This paper investigates CMC of SpCNNs and its contributing components analytically and then proposes a
methodology to optimize CMC, under three strategies, to enhance inference performance. In this methodology, output feature
map (OFM) size, OFM depth or both are progressively reduced under an accuracy constraint to compute performance-
optimized CNN inference. Before conducting training or testing, it can provide designers guidelines and preliminary insights
regarding techniques for optimum performance, least degradation in accuracy and a balanced performance–accuracy trade-
off. This methodology was evaluated on MNIST and Fashion MNIST datasets using LeNet-5 and AlexNet architectures.
When compared to state-of-the-art SpCNN models, LeNet-5 achieves up to 4.2× (batch inference) and 4.1× (single-image
inference) higher throughputs and 10.5× (batch inference) and 4.2× (single-image inference) greater energy efficiency at
a maximum loss of 3% in test accuracy. When compared to the baseline model used in this study, AlexNet delivers 11.6×
(batch inference) and 5× (single-image inference) increased throughput and 25× (batch inference) and 8.8× (single-image
inference) more energy-efficient inference with just 4.4% reduction in accuracy.

Keywords Convolutional neural network · Spectral domain CNN · Energy efficiency · Computational workload ·
Memory access cost

1 Introduction

Deep neural networks (DNNs) have recently evolved as
the prevalent solution for a range of challenging problems
in computer vision, such as image recognition [1], image
segmentation [2–4], set based image classification [5],
and image clustering [6] as well as language processing
[7] and autonomous systems [8]. Convolutional neural
networks (CNNs) [9, 10], a class of DNNs, have achieved
unprecedented success in various fields of computer vision,
audio analysis, and text processing including–inter alia–
object classification [11, 12], object detection [13, 14],
semantic segmentation [15, 16], face verification [17, 18],
video understanding [19], audio classification [20, 21], and

� Shahriyar Masud Rizvi
m.rizvi@graduate.utm.my

Extended author information available on the last page of the article.

natural language processing [22]. In the last few years,
CNNs have been deployed in diverse applications such
as autonomous driving [23], navigation systems [24] and
flight safety [25] for drones, skin cancer detection [26],
COVID-19 prognosis [27], and VLSI physical design [28].

In CNNs, convolution layers play a central role in
feature-extraction [9–11] but demand high computational
resources [29]. They account for 90% of CNN operations
[30]. Moreover, deeper CNNs (with more convolution
layers), which tend to produce higher accuracy, possess
a larger number of parameters. This results in increased
memory requirements [29]. However, run-time memory
during inference is dominated by storage of intermediate
output feature maps [31], even with a batch size of 1
[32]. Memory consumed by these output feature maps
(OFMs) can exceed parameter memory by 10 to a 100
times [33]. Storing intermediate OFMs requires off-chip
dynamic random access memory (DRAM) accesses, which
consume more power and energy than computations [29,
34]. In fact, for devices limited by memory bandwidth, the

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03756-1&domain=pdf
http://orcid.org/0000-0002-0412-2668
mailto: m.rizvi@graduate.utm.my


S. M. Rizvi et al.

memory access cost can be the main bottleneck for power
consumption and inference latency including in GPU-
based platforms [15, 35, 36]. Therefore, the computational,
memory and power budgets of even classical CNNs (with
only a few convolutional layers) are such that deploying
them in embedded systems or mobile platforms is extremely
challenging [29, 30, 32, 35].

A potent approach to reduce computational workload of
conventional CNNs is to represent CNNs, especially con-
volution, in spectral domain using Fourier transformation
[37–40]. Spectral domain CNNs (SpCNNs) compute convo-
lution as point-wise multiplication in Fourier space, which
significantly reduces the computational workload. Here,
each OFM element can be computed from one complex-
valued product, instead of many real-valued products accu-
mulated over the receptive field, as is the case in spatial
domain [37–40].

A few previous studies have explored methods to reduce
memory usage in SpCNNs. Many of these approaches aim
to reduce either the size of parameter memory (often by
reducing the number of parameters) or the memory access
cost of domain transformations (by optimizing Fourier
transforms), rather than reducing the memory access cost of
intermediate OFMs. For example, Niu et al. [41] compress
weights to reduce the number of parameters, while Sun et al.
[42] quantize weights to reduce the amount of parameter
memory. Studies such as [43, 44] split input images
of convolution layers so fast Fourier transform (FFT) is
performed on image parts, rather than whole images, to
reduce the memory access cost of domain transformations.
These latter works compute only convolution in the spectral
domain and hence require multiple domain transformations.
Most of the above-mentioned works, such as [41–44],
require a dedicated hardware accelerator to take advantage
of these approaches.

In this work, we analyze computational workload and
memory access cost (CMC) of SpCNNs and propose a
methodology for SpCNNs to compute CNN inference in a
computationally inexpensive and memory-efficient manner.
The major contributions of this work include the following.

1. This work reduces the computational workload of CNN
by computing the entire feature-extraction segment
(consisting of convolution, pooling and activation lay-
ers) in the spectral domain. Usage of a computationally
light activation function proposed by Rizvi et al. [45]
and only one set of domain transformations ensure that
the model stays computationally inexpensive.

2. Next, the computational workload and memory access
cost of SpCNNs are investigated analytically. This
analysis allows designers to estimate the effect of OFM
size and depth of different convolution layers on the
overall computational and memory costs.

3. Based on the analysis in part 2, a methodology
containing three strategies is proposed herein to achieve
performance-optimized inference. Here, OFM size
(Strategy 1), OFM depth (Strategy 2) or both (Strategy
3) are progressively reduced until an energy-efficient
and throughput-optimized inference is achieved under
an accuracy constraint. This methodology provides
guidelines regarding in which layer and in what quantity
OFM size and depth can be optimized to reduce
computational workload and memory access cost. It can
also provide preliminary insights regarding strategies
for faster and more energy-efficient inference, minimal
degradation in accuracy, and balanced performance–
accuracy trade-off. The proposed methodology is
non-intrusive and does not require a specialized
accelerator, specialized module, or libraries or any
major modification of the CNN model.

The remainder of this paper is structured in the following
manner. Section 2 reviews previous studies that are related
to this work. Section 3 introduces SpCNNs and the baseline
CNN models used in this work for evaluating the proposed
methodology. Section 4 discusses the problem formulation
and analytically explores the computational workload and
memory access cost of SpCNNs. Section 5 describes
the proposed methodology for reducing the computational
workload and memory access cost to enhance inference
performance. It also presents an estimation for gain in
inference performance under the proposed methodology.
Afterwards, Section 6 discusses experimental results, and
finally, Section 7 presents the concluding remarks.

2 Related work

When CNNs are computed in spatial domain, one can
address their prodigious computational workload by replac-
ing standard spatial domain convolution with computation-
ally light convolution methods such as depth-wise separable
convolution [46, 47] and grouped convolution [11, 48].
However, applying depth-wise convolution to a certain type
of convolution layers such as convolution layers with 1×1
kernels results in a significant reduction in accuracy [48].
In the case of grouped convolution, state-of-the-art deep
learning frameworks, such as PyTorch [49] or TensorFlow
[50], do not provide an expected reduction in inference
time [51]. As discussed in Section 1, SpCNNs provide a
powerful alternative to these spatial domain approaches for
computing CNN in a computationally inexpensive manner.

Among these two approaches discussed above, the spec-
tral domain representation of CNNs was considered to be a
more effective option. This is because in addition to offer-
ing a significant reduction in the computational workload



Computation and memory optimized spectral domain convolutional neural network...

by computing convolution as a point-wise product, SpC-
NNs, through spectral pooling, provide another route to
machine learning designers to tune computational resources
and memory usage. This is because with spectral pooling
one can down-sample feature maps to any arbitrary size.
Spectral pooling is also known to retain more information
after pooling than spatial domain counterparts [39].

Early SpCNNs computed only convolution in spectral
domain [37, 38]. In contrast to these works, recent SpCNN
models realize the entire feature-extraction segment in spec-
tral domain including non-linear layers of pooling and
activation function [40, 45, 52–54]. These solutions require
only a single (instead of multiple) set of domain transforma-
tions, which does not add any significant computational or
memory access cost. This set of transformations include an
FFT applied on the input data before the first convolution
layer and an inverse FFT (IFFT) after the last convolution
layer [40, 45, 52].

Some recent works in SpCNNs have proposed meth-
ods to optimize computational workload. Ayat et al. [52]
propose a fused convolution layer for spectral domain. In
a fused convolution layer, pooling operation is performed
before convolution is computed. As a result, fused con-
volution layers have to process smaller-sized input feature
maps (IFMs). Since IFMs and OFMs of convolution lay-
ers in SpCNNs have the same size [45, 52], a smaller
sized IFM automatically means a smaller-sized OFM. This
results in reduced computations, when compared to regular
convolution layers. The authors here propose a convolution-
based activation function, which approximates ReLU [11]
in spectral domain. This activation function is computation-
ally very expensive and thus negates some of the gain in
computation reduction. Liu et al. [54] propose methods to
obtain optimal coefficients for ReLU approximation first
and then modify them with hardware-friendly coefficients
for increased computational efficiency. In addition, they
propose optimizations for FPGA acceleration such as inte-
ger approximation for point-wise products (for convolution
layers). Rizvi et al. [45] propose a computationally inexpen-
sive activation function for SpCNNs. Their model exhibits
lower computational workload than Ayat et al.’s model [52]
when regular convolution layers are employed.

There have been very few works in SpCNNs that
investigated the reduction of run-time memory (memory
access cost at run-time) by shrinking the size and depth
of intermediate OFMs. As discussed before, Ayat et al.
[52] reduce feature map size using their fused convolution
layer. However, the reduction in memory access cost is
not discussed in this work. Guan et al. [55] compress
IFMs before convolution by retaining only values that are
above a certain threshold, resulting in a sparse input to
the convolution layers. The authors here prioritize sparse

storage of OFMs, rather than reducing the number of
memory accesses. Furthermore, this work realizes pooling
in the spatial domain and hence has to contend with multiple
sets of domain transformations.

The works discussed above optimize OFMs through
size reduction or data-level optimization. However, the
reduction of depth of OFMs (also known as the number
of output channels), which is a significant contributor to
the computational and memory burden, is not considered
in these works. Our work demonstrates that reduction
of OFM depths (in addition to OFM sizes), under
an accuracy constraint, can ensure that inference with
SpCNNs is computed in a computationally inexpensive and
memory-efficient manner. Furthermore, this can be done
without employing any custom compression algorithm or
accelerator.

3 Spectral domain CNNmodels

3.1 Background

CNN architectures are composed of two functional seg-
ments, a convolution-based feature-extraction segment and
a multilayer perceptron (MLP)-based classification seg-
ment. The feature-extraction segment consists of a series of
repeating blocks with convolution layer, activation function,
and pooling layer [9–11]. Each of these feature-extraction
blocks starts with a convolution layer, or CONV layer in
short. The activation function either follows the CONV
layer or the pooling layer [52]. If the activation func-
tion follows the CONV layer, the block can be denoted
as a convolution-activation-pooling (CAP) block. Blocks,
where CONV layer is followed by a pooling layer, can be
denoted as a convolution-pooling-activation (CPA) block.
The classification segment is composed of one or more fully
connected (FC) layers and an activation layer at the end
that performs multi-class, single-label classification [9–11].
Many CNNs, including this work, utilize a softmax function
for this layer [10–12]. Hereafter, this layer would be referred
to as simply the softmax layer.

In the case of SpCNNs, at least one additional set of
layers is required for domain transformations [40, 45, 52].
One spatial-to-spectral domain transformation through an
FFT layer is needed before the first CONV layer to convert
spatial input data to spectral domain [40, 45, 52]. For
weights, performing FFT during inference is not necessary
as trained weights can be readily provided in a spectral
format for inference [52]. In SpCNNs, convolution is
computed as a point-wise product (also known as Hadamard
product) of inputs and kernels in spectral domain [37]. If
only convolution is performed in the spectral domain, rather



S. M. Rizvi et al.

than the full CPA or CAP block, each CONV layer has
to be succeeded by an FFT layer [37–39]. If the entire
feature extraction is computed in the spectral domain, as in
our work, this is not necessary. However, one spectral-to-
spatial domain transformation through an IFFT layer would
be needed at the end of the feature-extraction segment
so that the classification segment can be computed in
the spatial domain [40, 45, 52]. Before providing data to
the classification segment, the output of the IFFT layer
is flattened to a single-dimension (1×1 size) since fully
connected layers can only process single-dimensional data
[45]. The functional architecture of SpCNN models with
one set of domain transformation layers is illustrated in
Fig. 1.

3.2 Baseline LeNet-5 and AlexNet SpCNNmodels

For this work, we employ SpCNN models with CPA
type feature-extraction blocks to evaluate our strategies
for enhancing inference performance. In each of these
blocks, convolution is computed as a point-wise Hadamard
product [37] and is followed by a spectral pooling layer,
developed by Rippel et al. in [39]. The spectral pooling
layer is followed by a complex-valued activation layer
suitable for the spectral domain. For activation function,
a computationally light and complex-valued activation
function proposed by Rizvi et al. [45] is utilized. This
activation function propagates input if either the real
or imaginary part is positive-valued, otherwise zero is
transmitted. We call this activation function PosReLU. The
functional architecture of a typical feature-extraction block
used in this work is shown in Fig. 2.

In order to evaluate the proposed methodology for gain in
inference performance, two classical CNN architectures—
LeNet-5 (developed by LeCun et al. [10]) and AlexNet
(developed by Krizhevsky et al. [11])—were selected.
These two architectures are moderately deep with sufficient
number of convolution layers that produce high accuracy
in many standard image recognition datasets. This attracts
researchers to validate their new models or algorithms
(i.e., establish proof-of-concept) on these architectures. In
addition, convolution layers in both these architectures are
computationally and parameter-wise expensive. Therefore,
these architectures are ideal for validating algorithms
or optimization strategies for higher computational and
memory-efficiency. Furthermore, recent works in SpCNNs

such as [45, 52, 54] have validated their models or
algorithms on these architectures (e.g., LeNet-5).

In this work, we denote a specific CNN implementation
on LeNet-5 and AlexNet architectures, such as an SpCNN
implementation or an implementation with specific sets of
OFM sizes and depths, as LeNet-5 and AlexNet models.
For this work, the number of CONV and fully connected
layers for the baseline LeNet-5 model are kept the same as
the original model proposed in [10]. In the case of AlexNet,
the baseline model shares the same number of CONV layers
as the original model [11]. However, the baseline AlexNet
model for this work has a single fully connected layer
instead of the three that is present in the original model
[11]. In this work, we discovered that one fully connected
layer for the AlexNet SpCNN model is sufficient to achieve
excellent test accuracy for standard datasets utilized in this
work. Figures 3 and 4 depict the functional architecture
of the baseline SpCNN implementations of LeNet-5 and
AlexNet for this work.

It is worth noting that LeNet-5 and AlexNet CNNs
can be realized in both spatial and spectral domains.
The conventional spatial domain LeNet-5 and AlexNet
models and their SpCNN counterparts have largely similar
overall functional architecture. However, individual layers
that perform similar roles in feature-extraction segments in
both spatial domain CNNs and SpCNNs operate differently
as the computations are performed in different domains.
In addition to convolution being computed differently in
spatial and spectral domains, the size of IFMs for the
convolution layers also varies between the domains. This is
because a convolution operation in spatial domain produces
OFMs that are smaller in size than IFMs. For example, a
convolution operation of an F×F sized IFM results in an
OFM of size (F−k+1)×(F−k+1), where k×k represents
the size of the kernel [37]. On the other hand, because of
the point-wise nature of the Hadamard product, convolution
layers in SpCNNs produce OFMs that have the same size as
their IFMs [37]. In addition, the non-linear layers (pooling
and activation functions) also operate differently in the two
domains. In spatial domain CNNs, pooling methods such
as max-pooling [11] are typically employed, while ReLU
[11] is widely used as the activation function. SpCNN
models typically utilize spectral pooling [39]. Recently,
researchers have deployed spectral ReLU (SReLU) [52],
complex-valued tanh [55] and PosReLU [45] as activation
functions for SpCNNs.

Fig. 1 Generic functional
architecture of SpCNN Models
with one set of domain
transformation layers



Computation and memory optimized spectral domain convolutional neural network...

Fig. 2 Functional architecture of feature-extraction blocks for the SpCNN models used in this work

4 Problem formulation

4.1 Computational workload (CW)

CNNs can feature different types of layers. However, five
types of layers are essential, namely, convolution, pooling,
activation, fully connected, and multi-class classification
layer [9–11]. Pooling layers, multi-class classification
layers, and most activation functions are executed with
simple point-wise operations. As these operations do
not require arithmetic operations, they can be ignored
when computing the workload of a CNN [45, 52]. The
majority of the computational workload (CW) in CNNs is
attributable to the multiply-accumulate (MAC) operations
[29, 30, 56], which are executed in convolution and
fully connected layers [29, 52]. Each multiply-accumulate
operation involves one multiplication and one addition.
Thus, the CW of a CNN in terms of MACs can be computed
by counting the number of these MAC operations.

SpCNNs realize the equivalent of spatial convolution
by performing point-wise product of IFMs and kernels in
complex-valued Fourier domain [37]. In such solutions,
kernels have the same size as IFMs. SpCNNs require a
single complex-valued product between an IFM element
and a kernel element to produce the corresponding OFM
element, instead of the accumulation of many real-valued
products over the receptive field, as is the case in the
spatial domain [37–39]. When provided with a single IFM
of size M×M and a kernel of size M×M, computing
an OFM of size M×M would entail M2 complex-
valued multiplications. Because of the multi-dimensional
structure of feature maps in CNNs, the complex-valued
multiplications would need to be accumulated over the
input channels for each OFM element and this needs to be
done for each output channel. Thus, the actual number of
complex-valued multiply-accumulate operations (CMACs)
in an SpCNN would need to take into account the number of
input and output channels (hereafter referred to as the input
depth and the output depth) in addition to the size of OFMs
for each CONV layer. The CW of CONV layers of a spectral

domain CNN in terms of CMAC (denoted by CWCNV −CM )
is given in (1),

CWCNV −CM =
lCV∑

l=1

Di(l)M
2
l Do(l) (1)

where, l is the index for the layer number, lCV is the number
of CONV layers, Di(l) is the input depth for layer l, Do(l)

is the output depth for layer l and Ml is the OFM size of
layer l.

One CMAC operation constitutes one complex-valued
multiplication and one complex-valued accumulation. Each
of these complex-valued product is computed from four
real-valued products and two real-valued additions, while
each complex-valued accumulation involves two real-
valued additions. In total, a single CMAC operation
constitutes four real-valued products and four real-valued
additions, i.e., a total of eight real-valued arithmetic
operations in total. Therefore, a single CMAC is equivalent
to four real-valued MACs. The CW of CONV layers in
terms of MAC (denoted by CWCNV −M ) is given in (2).

CWCNV −M = 4
lCV∑

l=1

Di(l)M
2
l Do(l) (2)

In CNNs, images and kernels in CNNs are typically
stored in floating-point format [33]. Therefore, each of the
eight real-valued arithmetic operations to realize a CMAC is
a floating-point operation or FLOP in short. In other words,
one CMAC constitutes eight FLOPs. Equation (3) describes
this CW of CONV layers in terms of FLOPs (denoted by
CWCNV −F ).

CWCNV −F = 8
lCV∑

l=1

Di(l)M
2
l Do(l) (3)

The above equations represent the CW of the CNN when
performing inference on single images, or equivalently,
when the batch size is set to one. When inference is done in
batches, the CW needs to be multiplied by the batch sizes.

Fig. 3 Functional architecture
of the baseline LeNet-5 SpCNN
model



S. M. Rizvi et al.

The CW of CONV layers in terms of FLOPs can be updated
to include the influence of batch size, as shown below in (4),

CWCNV −F = 8B

lCV∑

l=1

Di(l)M
2
l Do(l) (4)

where, B is the number of images in a batch.
SpCNNs require at least one set of layers for domain

transformation in the form of one FFT and one IFFT layer.
These layers also execute CMAC operations [37, 52]. The
FFT and IFFT operations have a complexity of O(MlogM).
Each FFT/IFFT operation requires 5MlogM real-valued
FLOPs (0.5MlogM complex-valued multiplications and
MlogM complex-valued additions), when provided with
one-dimensional inputs [57]. However, input images or
feature maps in CONV layers are typically provided as two-
dimensional data [9, 10]. In that case, each FFT or IFFT
operation on an image with height = M and width = M

would require 5M2log2M
2 FLOPs, which is equivalent to

10M2log2M FLOPs. As feature maps in CNNs also have
a third dimension [9–11], the depth of feature maps would
need to be multiplied with the above expression to compute
the number of FLOPs for an FFT/IFFT layer.

The total CW of a spectral domain CNN in terms of
FLOPs (executed by MAC operations), is attributable to the
FFT layer at the beginning, the CONV layers, the IFFT layer
at the end of the feature-extraction segment and the fully-
connected layers in the classification segment. The overall
CW of CNN in terms of FLOPs (denoted by CWCNN−F ),
is given in (5),

CWCNN−F = 10B

2∑

l=1

Di(l)M
2
l log2Ml

+8B

lCV∑

l=1

Di(l)M
2
l Do(l)+B

lFC∑

l=1

Di(l)Do(l) (5)

where, lFC is the number of fully connected layers.
It can be shown analytically that the CW contribution

of the CONV layers is the dominant component of the
overall CW for a CNN. For example, fully-connected layers
perform MAC operations on one-dimensional (1×1) IFMs
and kernels in a flattened single-dimensional input stream
and hence when compared to the CW of CONV layers,
their CW is much less. The MAC operations executed by
the single FFT layer and the single IFFT layer are also
not significant when compared to the more computationally
intensive CONV layers. When analyzing the CW for
spectral domain implementations of LeNet-5 and AlexNet
by [45] and [58], respectively, one can see that non-CONV
layers (fully connected, FFT and IFFT layers) contribute
only about 1% to 4% to the overall CW. The remaining
96% to 99% CW is due to the CONV layers. This is shown
in Table 1 for single-image inference. Thus, computing the

number of FLOPs required by MAC operations in CONV
layers is often sufficient to estimate the CW of CNNs, as
given in (6).

CWCNN−F ≈ 8B

lCV∑

l=1

Di(l)M
2
l Do(l) (6)

In CNNs, OFMs of a particular layer become IFMs of the
next layer. In other words, the output depth of the current
layer becomes the input depth for the next layer. So, (6) can
be rewritten in terms of the output depths of the current layer
(Do(l)) and the previous layer ((Do(l-1)) instead of the input
depth (Di(l)) and the output depth (Do(l)) of the current layer.
This is given in (7).

CWCNN−F = 8B

lCV∑

l=1

Do(l−1)M
2
l Do(l) (7)

In CNNs, OFMs of CONV layers go through down-
sampling (pooling) in each feature-extraction block. After
convolution is performed, pooling layers down-sample
feature maps, and thus, each successive CONV layer
processes and generates feature maps that are smaller than
the previous layer [9–11]. In other words, each CONV layer,
other than the first CONV layer, sees a scaled-down version
of feature maps originally provided to the CNN. If the first
CONV layer produces OFMs of size M1xM1, the size of
OFMs of a CONV layer l can be expressed as αlM1xαlM1,
where αl represents the shrinkage factor for the CONV layer
l. Therefore, αl is essentially the ratio of Ml and M1. In the
case of the first CONV layer, αl would take the value of 1.
Hereafter, CONV layers would be referred to with the word
CONV followed by a digit in the subscript representing the
index of the layer (e.g., the first and second CONV layers
would be referred to as CONV1 and CONV2 layers).

In contrast to the gradual decrease in OFM sizes, CONV
layers in CNNs sees a gradual growth in OFM depth.
Each CONV layer typically has more output depth than
the preceding CONV layer. This happens because earlier
CONV layers extract high-level features, and as feature
maps go through more and more CONV layers, increased
depth allows them to extract more complex features [9–11].
One can express the output depth of a CONV layer in terms

Table 1 CW of different types of layers in selected works in LeNet-5
and AlexNet SpCNNs

Architecture CW subtotal and percentages of total CW

CONV layers FC layers FFT/IFFT layers

LeNet-5 in [45] 4,477,440 5,000 38,010

(99.05%) (0.11%) (0.84%)

AlexNet in [58] 615,471,360 21,921,792 4,033,873

(95.95%) (3.42%) (0.63%)



Computation and memory optimized spectral domain convolutional neural network...

Fig. 4 Functional architecture
of the baseline AlexNet SpCNN
model

of the output depth of the first CONV layer (Do(1)). When
computing the CW of a CONV layer (denoted as CWl) from
CONV2 layer and onward, the input depth for a CONV
layer can be expressed as μl-1Do(1), while the output depth
can be expressed as μlDo(1), where μl-1 and μl represent
the growth factors for the input depth and the output depth
for CONV layer l. For computer vision problems, the input
depth of the CONV1 layer is a fixed constant. It is one
for gray-scale input images and three for full-color (RGB)
images. For the CONV1 layer, the output depth is simply
Do(1) (μ1 = 1), as there is no OFM from the previous
layer. Thus, the CW expression of CONV1 layer (denoted
by CW1) has a slightly different structure than that of the
CW of CONV2 layer and onward. Equation (8) gives the
CW expression for the CONV layers (considering gray-
scale inputs) in terms of size of OFMs (M1) and depth of
OFMs (Do(1)) of the CONV1 layer.

CWCNN−F = CW1 +
lCV∑

l=2

CWl

= 8Bμ1Do(1)(α1M1)
2

+8B

lCV∑

l=2

μl−1Do(l)μlDo(l)(αlM1)
2

= 8BDo(1)M
2
1

+8B

lCV∑

l=2

μl−1μlD
2
o(l)(αlM1)

2 (8)

As discussed earlier, CONV layers see gradually
decreasing OFM sizes, while the opposite takes place in
terms of OFM depth. The growth of OFM depths and
shrinkage of OFM sizes are illustrated graphically in Fig. 5.

4.2 Memory access cost (MemAC)

The speed of CNN inference, typically measured in terms
of latency and throughput, are sensitive to the CW but does
not solely depend on it. A major factor at play here is the
number of memory access operations, which is known as the
memory access cost or MemAC in short. Each CONV layer
has to fetch input feature maps and kernel from memory,
execute the convolution operation and then store the output
feature maps in memory. Thus, total MemAC for a CONV
layer, denoted by MemACl , would need to have Di(l)M

2
l

memory accesses to read input feature maps, Di(l)Do(l)M
2
l

accesses for reading kernels, and Do(l)M
2
l accesses to store

output feature maps. This is shown in (9),

MemACl = MemACIFM + MemACKern + MemACOFM

= Di(l)M
2
l + Di(l)Do(l)M

2
l + Do(l)M

2
l (9)

where, MemACIFM is the number of memory read opera-
tions for input feature maps, MemACKern is the number of
memory read operations for kernels, and MemACOFM is
the number of memory write operations for output feature
maps.

The MemAC for IFM, kernel and OFM in (9) can be
rewritten in terms of size and depth of OFMs of CONV1

layer as μl-1Do(1)(αlM1)
2, μl-1Do(1)μlDo(1)(αlM1)

2, and
μlDo(1)(αlM1)

2, respectively. This is shown in (10).

MemACl = μl−1Do(1)(αlM1)
2+μl−1Do(1)μlDo(1)(αlM1)

2

+μlDo(1)(αlM1)
2

= μl−1Do(1)(αlM1)
2 + μl−1μlD

2
o(1)(αlM1)

2

+μlDo(1)(αlM1)
2 (10)

The total MemAC for the CONV layers, denoted below
as MemACCNN , can be computed by summing the memory
access operations for individual layers, as shown in (11).
The number of kernels for a CNN inference (or training)
is the same regardless of whether the inference is run on
single images or in batches, and thus, the MemAC for
reading kernels are not multiplied by the batch size here.
The MemAC of the CONV1 layer, denoted as MemAC1, is
taken out of the summation expression as the input depth of
the CONV1 layer is a constant unlike other CONV layers,
and this input depth is not related to any previous CONV
layer.

MemACCNN = MemAC1 +
lCV∑

l=2

MemACl

= BM2
1 + Do(1)M

2
1 + BDo(1)M

2
1

+B

lCV∑

l=2

μl−1Do(1)(αlM1)
2

+
lCV∑

l=2

μl−1μlD
2
o(1)(αlM1)

2

+B

lCV∑

l=2

μlDo(1)(αlM1)
2 (11)

If the implementation platform running inference has a
large enough cache, the entire set of kernels for all CONV
layers can be stored on-chip, necessitating off-chip memory



S. M. Rizvi et al.

Fig. 5 Gradual shrinkage of OFM sizes and gradual growth of OFM depths in CNN

access only for input and intermediate feature maps. In
such a case, the MemAC would only involve loading and
storing input and intermediate feature maps. This MemAC
for feature maps, denoted by MemACCNN−FM , is given
in (12).

MemACCNN−FM = BM2
1 + Do(1)M

2
1

+B

lCV∑

l=2

μl−1Do(1)(αlM1)
2

+B

lCV∑

l=2

μlDo(1)(αlM1)
2 (12)

5 Proposedmethodology for improving
inference performance

As demonstrated in the previous section, the computational
workload and memory access cost (CMC) in SpCNNs
primarily depend on two parameters, namely, the size of
OFMs and the depth of OFMs. This section discusses
the methodology proposed in this work that can reduce
these parameters to enhance inference performance under
an accuracy constraint. The proposed methodology includes
three strategies, denoted as Strategy 1, Strategy 2 and
Strategy 3, which involve reduction of OFM sizes, OFM
depths and both of these parameters, respectively. The three
strategies are detailed in the three Sections 5.1, 5.2 and 5.3.

Before outlining the proposed methodology for perfor-
mance improvement, some of the details of the baseline
models, on which the methodology would be applied and
evaluated, need to be specified. The basic functional archi-
tecture of baseline LeNet-5 and AlexNet SpCNNs were
discussed earlier in Section 3.2. For the LeNet-5 baseline
SpCNN model, the OFM size of different CONV layers
were kept the same as recent SpCNN implementations of
LeNet-5 [45, 52]. The AlexNet baseline SpCNN model
shares the same OFM sizes of CONV layers as the SpCNN
implementation of AlexNet proposed in [58]. Since images
of datasets evaluated for this work have a size 28×28, they
were resized to 55×55 (after converting input images to

spectral domain) before feeding them to the CONV1 layer.
This helped ensure that OFM sizes of all CONV layers
(including CONV1) of the baseline AlexNet model have the
same size as in the works of [11] and [58].

For the baseline SpCNN models for this work, the
output depths of different CONV layers were chosen to
be multiples of two. This allowed for a straightforward
and proportionate reduction in the output depths of all
CONV layers. For example, the output depths of all CONV
layers can be reduced by two, four or eight times across
all layers. As the baseline models have output depths that
grow with each CONV layer, the reduction of output depths
in a proportionate manner still ensures that later CONV
layers would still have higher output depths as compared
to preceding layers. The sizes and depths of OFMs of
each CONV layer for the baseline models are presented in
Tables 2 and 3. It also enumerates the values of the growth
factor of OFM depths (μl) and the shrinkage factor of OFM
sizes (αl) for each CONV layer. As the baseline models are
evaluated on datasets that classify objects into 10 categories,
the sof tmax (SM) layers of the models produce 10 classes,
as shown in Tables 2 and 3.

5.1 Strategy 1 (S1): OFM size reduction

As discussed previously OFM sizes and depths are the
primary contributors to CMC. One approach to reduce CMC
is to scale the sizes of OFMs for all CONV layers. In
SpCNNs, OFM sizes can be reduced to any arbitrary size
using spectral pooling [39].

Table 2 OFM sizes and depths of baseline LeNet-5 SpCNN model

Layer Size of OFMs αl Depth of OFMs μl

Input 28x28 – 1 –

CONV1 28x28 1 16 1

CONV2 12x12 0.42 64 4

CONV3 4x4 0.14 256 16

FC 1x1 – 10 –

SM 1x1 – 10 –



Computation and memory optimized spectral domain convolutional neural network...

Table 3 OFM sizes and depths of baseline AlexNet SpCNN model

Layer Size of OFMs αl Depth of OFMs μl

Input 55x55 – 1 –

CONV1 55x55 1 16 1

CONV2 27x27 0.49 32 2

CONV3 13x13 0.24 64 4

CONV4 13x13 0.24 64 4

CONV5 6x6 0.11 1024 64

FC 1x1 – 10 –

SM 1x1 – 10 –

For most CNN architectures, scaling OFM size of the
CONV1 layer would not reduce the CW significantly. The
CW of the CONV1 layer is 8Do(1)M

2
1 for gray-scale inputs

and 24Do(1)M
2
1 for colored inputs (considering B (batch

size) is 1). This expression is generic; it has no variable
or tunable parameter such as μl or αl . Thus, regardless
of whatever OFM size or depth is chosen for any CONV
layer, this expression for the CONV1 layer remains true.
The expression for a CONV layer other than the CONV1

layer has a form of μl-1μlD
2
o(1)α

2
l M

2
1 . This would typically

be much larger than the expression for the CONV1 layer
(CDo(1)M

2
1 , where C is a constant). Hence, reducing OFM

size of the CONV1 layer would have no appreciable effect
on reducing the overall CW or MemAC of the CONV
layers. For example, for LeNet-5 SpCNN implementation
of Rizvi et al. [45], the CW of the CONV1 layer is
8Do(1)M

2
1 . Considering the OFM sizes and depths of this

implementation (listed in Table 4), the CW of the other two
CONV layers is 13.33D2

o(1)M
2
1 . This is shown in Table 5.

It is clear that 13.33D2
o(1)M

2
1 � 8Do(1)M

2
1 . If values of M1

and Do(1) are put down, the CW of the CONV1 layer here
turns out to be only 2.8% of the overall CW. For this model,
the MemAC of the CONV1 layer is 5.4% of the overall
MemAC, as shown in Table 6. Likewise, for the baseline
LeNet-5 SpCNN model used in this work, the CW and
MemAC of the CONV1 layer are about 2.9% of the overall
CW and 5.7% of the overall MemAC.

In the case of the baseline AlexNet SpCNN model used
in this work, the CW and MemAC of the CONV1 layer
are about 3.7% and 6.3% of the overall CW and MemAC,
respectively. When AlexNet SpCNN implementation of
Kala et al. [58] is considered, the CW and MemAC of the
CONV1 layer become 1.1% and 1.9% of the overall CW and
MemAC, respectively. The CW and MemAC of CONV1

and other CONV layers for all the SpCNN models discussed
here are presented in Tables 5 and 6. Table 4 provides the
OFM size and depth information for the models presented in
[45] and [58]. The same information for the baseline models
is provided in Tables 2 and 3. From Tables 5 and 6, it is

evident that reducing the OFM size of the CONV1 layer
does not markedly reduce the CW and MemAC.

Another factor that should be considered when opti-
mizing OFM sizes is that in CNNs, the last CONV layer
provides input to the classification segment and typically
has the smallest OFM size. For example, in LeNet-5 the
OFM size of the last CONV layer is either 5×5 [10, 54] or
4×4 [45, 52]. OFMs generated from this last CONV layer
are not downsized by any pooling layer. It was observed in
this work that resizing OFMs of the last CONV layer to an
even smaller size can adversely affect the recognition capa-
bilities of the CNN. In some CNN architectures such as the
original spatial domain AlexNet architecture, OFMs com-
ing out from the last CONV layer are pooled to a smaller
size. Here, the output of the last three CONV layers has a
size of 13×13. After the last CONV layer, OFMs are pooled
to a 6×6 size before feeding them to the fully connected
layers. Thus, in the case of AlexNet, the OFM size of the
last CONV layer can be kept as small as 6×6, the smallest
feasible size. To ensure classification accuracy is not com-
promised severely, the OFM size of a CONV layer should be
reduced only up to the smallest feasible size. Therefore, we
suggest that OFM size be reduced for all the middle CONV
layers, while keeping the first and the last CONV layers out
of the OFM size reduction strategy. The CW and MemAC
of CNNs can be expressed in a form that includes the scal-
ing factor βm for optimizing the size of OFMs, as given in
(13) and (14).

CWCNN−F = 8BDo(1)M
2
1

+8B

lCV −1∑

l=2

μl−1μlD
2
o(1)(

αlM1

βm

)2

+BμCV −1μCV D2
o(1)(αCV M1)

2 (13)

MemACCNN = BM2
1 + Do(1)M

2
1 + BDo(1)M

2
1

+B

CV −1∑

l=2

μl−1Do(1)(
αlM1

βm

)2

+
CV −1∑

l=2

μl−1μlD
2
o(1)(

αlM1

βm

)2

+B

CV −1∑

l=2

μlDo(1)(
αlM1

βm

)2

+BμCV −1D
2
o(1)(αCV M1)

2

+μCV −1μCV D2
o(1)(αCV M1)

2

+BμCV D2
o(1)(αCV M1)

2 (14)

The scaling factor (βm) value that reduces OFM size
to the smallest feasible value can be called βm−max. One
can shrink the OFM sizes of all the middle CONV layers
proportionally. However, not all layers can have OFM sizes



S. M. Rizvi et al.

Table 4 OFM size and depth of CONV1 layer, shrinkage factor (αl) for OFM size, and growth factor (μl) for OFM depth for previous SpCNNs
works in [45] and [58]

Architecture Work 1Ml αl Do(l) μl

LeNet-5 Rizvi et al. [45] 28 {1, 0.42, 0.14} 20 {1, 2.5, 25}
AlexNet Kala et al. [58] 55 {1, 0.49, 0.24, 0.24, 0.24} 96 {1, 2.66, 4, 4, 2.66}
1Represents both length and height of OFM size for CONV1 layer, since they are equal

reduced at the same rate, as OFM size for no layer can shrink
beyond the smallest feasible size. For example, the baseline
AlexNet model that has five CONV layers has OFM sizes of
{55, 27, 13, 13, 6}—values here represent both OFM length
and height, since they are equal. As OFM sizes of CONV1

and CONV5 layers are not reduced for reasons discussed
above, one can reduce OFM sizes of other layers two-fold
resulting in OFM sizes of {55, 13, 6, 6, 6}, where respective
βm values are {1, 2.07, 2.16, 2.16, 1}. If OFM size needs
to be reduced further, one can reduce the OFM size of the
CONV2 layer to 6 (minimum feasible size), resulting in a
model with OFM sizes of {55, 6, 6, 6, 6} with respective
βm values of {1, 4.5, 2.16, 2.16, 1}. Any further reduction in
OFM sizes of CONV2 through CONV4 layers would mean
one of those layers would have an OFM size smaller than
the smallest feasible size. In the case of LeNet-5, the third
and the last CONV layer (CONV3) produces OFMs with a
size of 4 (i.e., length = 4, height = 4), which is already the
smallest feasible size. The CONV2 layer typically produces
OFMs with a size of 12 (length = 12, height = 12), which
can be reduced up to a size of 4 with a βm value of 3. In
the case of LeNet-5, one can only reduce the OFM size of
just one CONV layer, that is the CONV2 layer (as reducing
OFM size of the CONV1 layer has a negligible effect on the
CW and MemAC). Table 7 shows the typical OFM sizes of
middle CONV layers in the baseline LeNet-5 and AlexNet
models and how much the sizes can be reduced for these
layers.

In this strategy, OFM sizes can be continually reduced
until the desired performance is achieved with a tolerable
loss of accuracy and without OFM sizes falling below the
minimum feasible size. When these goals are achieved,
OFM sizes for the middle CONV layers can be finalized.
The flow diagram for this strategy of reducing OFM sizes is
illustrated in Fig. 6.

One should note that spectral pooling, through which
OFM sizes are reduced, does so by discarding the high-
frequency segment of the images or feature maps and
retaining only their low-frequency content. It is already
known that typical inputs to CNNs such as images and time-
series data have a spectral bias with most information being
retained in low frequencies [39, 59]. As OFM size reduction
through spectral pooling preserves most of the information,
it is not expected to downgrade accuracy significantly.
Works that optimize OFM sizes such as Ayat et al. [52]
and Liu et al. [54] have reported this aspect. The current
work is different from the above-mentioned works as the
former attempts to determine the OFM size of which CONV
layer should be optimized and in what amount, rather than
optimizing them arbitrarily.

5.2 Strategy 2 (S2): OFM depth reduction

Another method to reduce CMC is to optimize the depths
of OFMs. As discussed before CNNs require gradually
increasing OFM depths to extract deeper and deeper
features with every CONV layer. To preserve this feature
after reducing OFM depths of different CONV layers, the
relative growth of OFM depths among different CONV
layers should be kept the same. This ensures that the CNN
model still has gradually growing OFM depths with every
CONV layer. For example, if a CNN having three CONV
layers with OFM depths of {16, 32, 64} goes through a 2×
uniform depth reduction in all CONV layers (resulting in
OFM depths of {8, 16, 32}), the same scaling ratio ensures
that the output depth of a CONV layer is still twice that of
the output depth of the previous CONV layer. We denote
this scaling ratio as βd .

When optimizing the OFM depth, one has to reduce it
for every CONV layer, despite the fact that the CONV1

Table 5 CW of CONV1 layer as compared to other CONV layers in selected works in LeNet-5 and AlexNet SpCNNs

Architecture Work CW of CONV1 layer CW of other CONV layers %CW of CONV1 layer

LeNet-5 Rizvi et al. [45] 8Do(1)M2
1 13.33D2

o(1)M
2
1 2.80%

This work (baseline) 8Do(1)M2
1 15.67D2

o(1)M
2
1 2.97%

AlexNet Kala et al. [58] 24Do(1)M2
1 22.28D2

o(1)M
2
1 1.13%

This work (baseline) 8Do(1)M2
1 39.68D2

o(1)M
2
1 3.71%



Computation and memory optimized spectral domain convolutional neural network...

Table 6 MemAC of CONV1 layer as compared to other CONV layers in selected works in LeNet-5 and AlexNet SpCNNs

Architecture Work MemAC of CONV1 layer MemAC of other CONV layers %MemAC of CONV1 layer

LeNet-5 Rizvi et al. [45] M2
1 + 2Do(1)M2

1 1.16Do(1)M2
1 +1.66D2

o(1)M
2
1 5.40%

This work (baseline) M2
1 + 2Do(1)M2

1 1.27Do(1)M2
1 +1.95D2

o(1)M
2
1 5.72%

AlexNet Kala et al. [58] 3M2
1 + 4Do(1)M2

1 2.10Do(1)M2
1 +2.78D2

o(1)M
2
1 1.91%

This work (baseline) M2
1 + 2Do(1)M2

1 2.34Do(1)M2
1 +4.96D2

o(1)M
2
1 6.28%

layer has a significantly smaller CW and MemAC than other
CONV layers. From the CONV2 layer onward the CW and
MemAC have a form of μl-1Do(1)μlDo(1)α

2
l M

2
1 . This shows

that the CW and MemAC depend on the output depths of
both the current and the previous CONV layer. If both of
these terms—μl-1Do(1) and μlDo(1)—need to be reduced
for the CONV2 layer, it automatically necessitates reducing
the output depth of the CONV1 layer. Therefore, reduction
of OFM depths requires the reduction to be performed on
all CONV layers, including the CONV1 layer. The CW and
MemAC of CNNs can be expressed in a form that includes
the scaling factor βd for optimizing OFM depths, as given
in (15) and (16).

CWCNN−F = 8B
Do(1)

βd

M2
1

+8B

CV∑

l=2

μl−1Do(1)

βd

μlDo(1)

βd

(αlM1)
2 (15)

MemACCNN = BM2
1 + Do(1)

βd

M2
1

+B
Do(1)

βd

M2
1 + B

CV∑

l=2

μl−1Do(1)

βd

(αlM1)
2

+
CV∑

l=2

μl−1Do(1)

βd

μlDo(1)

βd

(αlM1)
2

+B

CV∑

l=2

μlDo(1)

βd

(αlM1)
2 (16)

When analyzing the CW and MemAC of different CONV
layers using the CW and MemAC expressions developed
in Section 4, one can measure the relative contribution of
OFM size and depth to these costs. For example, in the case
of the LeNet-5 SpCNN model by Rizvi et al. [45], OFM
size dominates over OFM depth in the CONV1 layer, in a
ratio of 1 to 0.03 (i.e., 33 to 1), as can be seen in Table 8.
For other layers, which are computationally and memory-
wise more expensive, OFM depth dominates the CW over
OFM size. In the case of the CONV2 layer, OFM depth
contributes seven times more as compared to OFM size. In
the case of the CONV3 layer, the contribution of OFM depth
outweighs OFM size by 1562 to 1. This increasing influence
of OFM depths is also evident in the MemAC. Here, OFM
size dominates the MemAC for the CONV1 layer, while
OFM depths dominates it in CONV2 and CONV3 layers.
This same pattern is seen in the case of the LeNet-5 baseline
model for this work as well. Here also OFM size dominates
the CW and MemAC in the CONV1 layer, by a ratio of
1:0.02 (i.e., 50 to 1) and 1:0.04 (i.e., 25 to 1), respectively.
In the CONV2 layer, OFM depth contributions in the CW
and MemAC are seven and eight times more than OFM size,
respectively. In the CONV3 layer, this dominance is more
than 1000 times. In Tables 8 and 9, the ratio of OFM size
and depth is denoted as RSD in short.

With Table 9, one can again see the dominant contribu-
tion of OFM depth in the CW and MemAC for AlexNet
SpCNNs. In the case of the AlexNet SpCNN implementa-
tion of Kala et al. [58], OFM size contributes more than
OFM depth only in the CONV1 layer. For the other CONV

Table 7 OFM sizes of middle
CONV layers in the baseline
SpCNN models, their smallest
feasible sizes, and
corresponding βm values

CNN architecture OFM size CONV2 CONV3 CONV4

LeNet-5 OFM size in the baseline model 12 - -

The smallest feasible OFM size 4 - -

βm to obtain the smallest feasible OFM size (βm−max) 3 - -

AlexNet OFM size in the baseline model 27 13 13

The smallest feasible OFM size 6 6 6

βm to obtain the smallest feasible OFM size (βm−max) 4.5 2.16 2.16



S. M. Rizvi et al.

Fig. 6 Flow diagram for Strategy 1 for reducing OFM sizes of middle
CONV layers

layers, OFM depths outweighs the OFM sizes in terms
of contributing to the CW and MemAC, by 34 times to
over 870 times. In the case of the baseline AlexNet model
for this work, it is observed that OFM size dominates the
CW and MemAC in two CONV layers, namely, CONV1

and CONV2. For other three CONV layers (CONV3 to
CONV5), OFM depths dominates the CW and MemAC in
ratios of 1:12 to 1:1851. This analysis, conducted for two
separate implementations, each for LeNet-5 and AlexNet,
having different set of OFM depths, indicates that OFM
depth does dominate the CW and MemAC in CONV layers
that are computationally and memory-wise more expensive.
Unless the gradual increase of OFM depths and gradual
reduction of OFM sizes, which are the norm for CNNs, are
unusually small, this observation would remain true.

From the above discussion, it is clear that reducing
OFM depths is likely to reduce both the CW and MemAC
significantly. As compared to Strategy 1, Strategy 2 is
expected to produce larger reductions in the CW and
MemAC cost, as OFM depth dominates more than OFM
size in computationally and memory-intensive CONV
layers. The only possible drawback here is that as CONV
layers would have smaller OFM depths, this would mean a
lesser number of features would be extracted. This is likely
to have some impact on accuracy. This impact is likely to be
more in Strategy 2 than with Strategy 1.

Table 8 The ratio of OFM size and OFM depth (RSD) in CW and
MemAC of different CONV layers for selected works in LeNet-5
SpCNNs

Work RSD CONV1 CONV2 CONV3

Rizvi et al. [45] RSD in CW 1:0.03 1:7 1:1562

RSD in MemAC 1:0.05 1:7 1:1597

This work RSD in CW 1:0.02 1:7 1:1024

(Baseline model) RSD in MemAC 1:0.04 1:8 1:1044

As discussed earlier, with Strategy 2, one should reduce
OFM depths of different CONV layers at the same rate,
while ensuring that each CONV layer has a larger OFM
depth than the preceding CONV layer Therefore, the
CONV1 layer would have the smallest OFM depth. The
minimum feasible OFM depth for the CONV1 layer can be
made equal to its input depth. Therefore, CNNs that take
gray-scale images as inputs would have a minimum feasible
OFM depth of 1, while CNNs that take RGB color images
as inputs would have a minimum feasible OFM depth of
3. The flow diagram for Strategy 2 is illustrated in Fig. 7.
Here, OFM depths can be continually reduced at a uniform
rate until performance and accuracy goals are achieved and
all the while ensuring OFM depth of the CONV1 layer is
above or equal to the minimum feasible depth. After these
goals are reached, OFM depths can be finalized for the CNN
model.

5.3 Strategy 3 (S3): Reducing both OFM size
and depth

As discussed above, optimizing OFM size is limited by
which layer can be optimized and by how much. However,
because the information in spectral images tend to be
heavily concentrated in low-frequency sub-matrix of input
image [39], OFM size reduction is unlikely to significantly
impact the accuracy. On the other hand, optimizing OFM
depth can be done in all CONV layers but might incur
a higher cost in accuracy as smaller output depth means
a lesser number of features extracted. Considering the
characteristics of these two optimization approaches, the
optimal approach is to reduce OFM size first. If the
performance (throughput or energy efficiency) target is
achieved with an acceptable accuracy loss, one can stop
the optimization process and finalize the OFM sizes. If
this is not reached even after reducing the OFM sizes to
the smallest feasible size, one can then start optimizing
the OFM depth. OFM depths can be continuously reduced
until the performance goal is achieved within the accuracy
constraint. This optimization flow of Strategy 3 is depicted
in Fig. 8.

It is worth noting that each strategy discussed above
has its unique benefits. For instance, Strategy 1 should
be the preferred choice to optimize SpCNN models for
applications with stringent accuracy requirements. This is
because, despite having a lower reduction in CMC than
other strategies, Strategy 1 does not reduce OFM depths and
therefore has enough features present in IFMs and OFMs to
ensure any loss in accuracy is minimal, if at all. On the other
hand, for applications, such as those intended for embedded
or mobile platforms, that prioritize fast (e.g., lower CW)
and energy-efficient (e.g., lower MemAC) inference at the
expense of a loss of a few percentages in accuracy, Strategy



Computation and memory optimized spectral domain convolutional neural network...

Table 9 The ratio of OFM size
and OFM depth (RSD) in CW
and MemAC of different
CONV layers for selected
works in AlexNet SpCNNs

Work RSD CONV1 CONV2 CONV3 CONV4 CONV5

Kala et al. [58] RSD in CW 1:0.03 1:34 1:582 1:872 1:582

RSD in MemAC 1:0.04 1:34 1:585 1:877 1:585

This work RSD in CW 1:0.01 1:0.7 1:12 1:24 1:1820

(Baseline model) RSD in MemAC 1:0.01 1:0.8 1:13 1:25 1:1851

2 and Strategy 3 would be among the more effective options.
Since Strategy 3 optimizes CMC more than Strategy 2,
the former typically should be chosen ahead of the latter
for recognition tasks. However, specific applications that
involve object detection or image segmentation tasks may
require precise spatial locations of features present in IFMs.
As a result, reducing the size of OFMs (which are IFMs
of succeeding CONV layer) may have some impact on
accuracy if OFM sizes are reduced significantly. In such
scenarios, Strategy 2, which does not reduce OFM sizes, is
expected to be more effective than Strategy 3. The impact
of OFM sizes and depths on accuracy and performance
(throughput, energy efficiency, memory usage) in all three
strategies are presented in Section 6.2.

5.4 Performance estimation using the proposed
strategies

With the expressions for the CW and MemAC developed
earlier, one can compute how much they would be reduced
with changes in OFM sizes and depths. Since inference
performance (e.g., throughput and energy efficiency)
depends on both of these factors, one way to combine
their effect is to take a ratio of the CW over the MemAC.
This is known as the computation to communication ratio
(CTC) [60]. A variation of CTC is known as MACs over
CIO (MoC), where MAC and CIO are short for CW in
terms of MAC operations and convolutional input/output,
respectively [33]. MoC is essentially a ratio of the CW over
the MemAC for accessing input and output feature maps—
the latter is denoted in this work as MemACCNN-FM. MoC

Fig. 7 Flow diagram for Strategy 2 for reducing OFM depths for all
CONV layers

values are computed for different OFM sizes and depths to
estimate how the speed of inference might improve in our
methodology. OFM size or depth reduction resulting in a
higher value of MoC would indicate that the MemAC is
reduced at a higher rate than the CW. A lower value of MoC
would indicate the opposite—the CW getting reduced at a
higher rate than the MemAC.

One should note that CMC and therefore MoC is
only a preliminary estimate to ascertain gain in inference
performance. Implementation platform plays a big role in
inference performance and hence direct metric (e.g., latency,
throughput) is generally more accurate than indirect metrics
such as the CW [33, 35].

As discussed earlier in Section 5.1, OFM sizes cannot be
arbitrarily reduced across all CONV layers. In the case of
LeNet-5, the OFM size of only the CONV2 layer can be
reduced. Baseline LeNet-5 model has OFM sizes of {28, 12,
4}. OFM sizes that are explored here are {28, 9, 4}, {28, 6,
4}, and {28, 4, 4}. The corresponding βm values are {1, 1.33,
1}, {1, 2, 1}, and {1, 3, 1}. For AlexNet, OFM sizes can
be reduced for CONV2, CONV3 and CONV4 layers. Since
later CONV layers have smaller OFM sizes, to begin with,
the CONV2 layer can have more variation in OFM sizes
as compared to CONV3 and CONV4 layers. The baseline
AlexNet model has OFM sizes that are {55, 27, 13, 13, 6}.

Fig. 8 Flow diagram for Strategy 3 that combines reduction in OFM
sizes and depths



S. M. Rizvi et al.

Here, OFM sizes that are explored are {55, 13, 6, 6, 6} and
{55, 6, 6, 6, 6}. The corresponding βm values are {1, 2.07,
2.16, 2.16, 1} and {1, 4.5, 2.16, 2.16, 1}. So, due to reasons
discussed here, inference performance for both LeNet-5 and
AlexNet can be more effectively elucidated when they are
reported against the OFM size of the CONV2 layer, denoted
as M2.

In contrast to OFM sizes, OFM depths can be reduced
for all the CONV layers, as discussed in Section 5.2.
However, since CONV layers in our methodology go
through proportional reduction, the inference performance
can be analyzed against the OFM depth of any CONV
layer. However, minimum feasible OFM depth is defined
for the CONV1 layer. Therefore, we have chosen to
report inference performance concerning OFM depth of
the CONV1 layer, denoted as Do(1). For both LeNet-
5 and AlexNet baseline models, Do(1) is 16. Since our
methodology is evaluated on datasets that contain only gray-
scale images, the minimum feasible depth is set to 1. Thus,
for the CW, MemAC and MoC estimation, Do(1) is reduced
up to one. For LeNet-5, the depths that are explored are {16,
64, 256}, {8, 32, 128}, {4, 16, 64}, {2, 8, 32}, and {1, 4, 16}.
For AlexNet, the depths that are considered are {16, 32, 64,
64, 1024}, {8, 16, 32, 32, 512}, {4, 8, 16, 16, 256}, and {2,
4, 8, 8, 128}.

When the CW, MemAC and MoC are estimated, the
relative performance improvements (relative reduction or
gain) for the optimized models are expressed as a multiple
of the quantity measured for the baseline model. Thus, if
an optimized model has 400,000 parameters as compared to
200,000 parameters for the baseline model, the optimized
model has a relative parameter count improvement of two-
fold. For representing the relative improvements concisely,
the word “times” or “fold” is represented by “×”. Thus,
two-fold or two times improvement can be expressed as a
2× improvement.

When Strategy 1 (OFM size reduction) is applied for
LeNet-5, it is observed that MoC stays almost the same.
The number of parameters can shrink up to 1.45 times.
With Strategy 2 (OFM depth reduction) and Strategy 3 (first
reducing OFM sizes and then OFM depths), MoC can be
reduced up to 15 times as compared to baseline, as shown
in Table 10. However, the maximum possible reduction in
the number of parameters is higher in Strategy 3 (225×)
than Strategy 2 (177×). In the case of AlexNet, Strategy
1 sees MoC stays roughly the same while the number of
parameters decreases to a maximum of 1.44 times. With
Strategy 2 and Strategy 3, MoC can be reduced up to 17 and
16 times, respectively as compared to the baseline. Similar
to LeNet-5, the maximum possible reduction in the number
of parameters are higher in Strategy 3 (290×) than Strategy
2 (215×), as can be seen in Table 11. Since the CW involves
the product of OFM sizes and OFM depths (depicted in (8)),

while the MemACCNN-FM contains their contribution in
an additive manner (depicted in (12)), the MemACCNN-FM

would decrease slowly than the CW when OFM depths are
progressively decreased. That is why when OFM depths are
reduced with or without OFM size reduction, the CW would
see a higher rate of reduction than the MemACCNN-FM and
hence a progressively lower MoC.

6 Results

6.1 Experimental environment, setup,
and constraints

Training and inference for CNN models under evaluation
were performed in MATLAB computing platform (v.
2020b) from MathWorks using MatConvNet (v. 1.0 beta24),
an open-source deep learning library developed by Vedaldi
et al. [61] at Visual Geometry Group of the University of
Oxford. The host workstation, where training and inference
were conducted, is powered by a quad-core 4790K Core-i7
CPU from Intel with 16 GB DDR3 RAM and operating at
4.0 GHz and a GeForce GTX1070 GPU from NVIDIA with
8 GB GDDR5 VRAM, 1920 CUDA Cores, and operating at
1683 MHz.

The proposed methodology was evaluated on LeNet-5
and a modified AlexNet with MNIST [62] and Fashion
MNIST [63] datasets. MNIST is a dataset of handwritten
digits from 0 to 9 with 70,000 images in total and in 10
classes. A total of 60,000 images are for training and 10,000
are for the test. The fashion MNIST dataset is a dataset
of fashion articles such as T-shirts and shoes and with the
same number of training and testing images and the number
of classes as MNIST. Both datasets take 28×28 gray-scale
images as input.

For training, weights were initialized with normally
distributed random numbers. A learning rate of 0.0005 was
used. All the variants of LeNet-5 and AlexNet models were
trained for 50 epochs. During testing, a batch size of 1
and 64 was chosen for single-image and batch inference,
respectively.

A constraint on the maximum loss of test accuracy is
imposed when the proposed methodology is applied to
improve inference performance. The constraint is a 5%
loss in test accuracy as compared to the baseline model.
Primarily five metrics were used for measuring inference
performance, which are test accuracy, throughput, defined
as the number of classifications performed per second (cl/s),
energy efficiency, defined as the number of classifications
per energy consumed (in units of cl/J) [60], memory usage
(in MB units), and power consumption (in units of watt
(W)). Energy efficiency can be calculated as classification
rate over power consumption (in units of cl/J or (cl/s)/W).



Computation and memory optimized spectral domain convolutional neural network...

Table 10 CW, MemAC, MoC, and parameter estimation for LeNet-5 SpCNN under proposed strategies

MoC Number of parameters

OFM size M2(βm) OFM depth Do(1)(βd) CW MemAC Value Relative reduction Value Relative reduction

S1: Reducing OFM size

12 (1.0) 16 (1) 3377152 29968 112.69 1.00x 422144 1.00x

9 (1.33) 16 (1) 2861056 24928 114.77 0.98x 357632 1.18x

6 (2.0) 16 (1) 2492416 21328 116.86 0.96x 311552 1.35x

4 (3.0) 16 (1) 2328576 19728 118.03 0.95x 291072 1.45x

S2: Reducing OFM depth

12 (1.0) 8 (2) 869376 15376 56.54 1.99x 108672 3.88x

12 (1.0) 4 (4) 229888 8080 28.45 3.96x 28736 14.69x

12 (1.0) 2 (8) 63744 4432 14.38 7.84x 7968 52.98x

12 (1.0) 1 (16) 19072 2608 7.31 15.41x 2384 177.07x

S3: Reducing OFM size first and then OFM depth

4 (3.0) 8 (2) 607232 10256 59.21 1.90x 75904 5.56x

4 (3.0) 4 (4) 164352 5520 29.77 3.78x 20544 20.55x

4 (3.0) 2 (8) 47360 3152 15.03 7.50x 5920 71.31x

4 (3.0) 1 (16) 14976 1968 7.61 14.81x 1872 225.50x

When the performance of the baseline model is compared
with optimized models for a specific architecture (LeNet-
5 or AlexNet), improvement in inference performance
(minimization of memory usage and power consumption
and gain in throughput and energy efficiency) averaged
over MNIST and Fashion MNIST datasets are documented
against loss in test accuracy averaged across these two
datasets. The performance metrics of throughput, energy

efficiency, power consumption, and memory usage are
measured for both single-image and batch inference.

6.2 Experimental results

After training was completed for LeNet-5 and AlexNet
models with various OFM sizes and depths with the
proposed methodology, the inference was computed for

Table 11 CW, MemAC, MoC, and parameter estimation for AlexNet SpCNN under proposed strategies

MoC Number of parameters

OFM size M2(βm) OFM depth Do(1)(βd) CW MemAC Value Relative reduction Value Relative reduction

S1: Reducing OFM size

27 (1.0) 16 (1) 30554240 163441 186.94 1.00x 3819280 1.00x

13 (2.07) 16 (1) 21723264 106769 203.46 0.92x 2715408 1.41x

6 (4.5) 16 (1) 21178496 100385 210.97 0.89x 2647312 1.44x

S2: Reducing OFM depth

27 (1.0) 8 (2) 7735360 83233 92.94 2.01x 966920 3.95x

27 (1.0) 4 (4) 1982240 43129 45.96 4.07x 247780 15.41x

27 (1.0) 2 (8) 519760 23077 22.52 8.30x 64970 58.79x

27 (1.0) 1 (16) 142040 13051 10.88 17.18x 17755 215.11x

S3: Reducing OFM size first and then OFM depth

6 (4.5) 8 (2) 5391424 51705 104.27 1.79x 673928 5.67x

6 (4.5) 4 (4) 1396256 27365 51.02 3.66x 174532 21.88x

6 (4.5) 2 (8) 373264 15195 24.56 7.61x 46658 81.86x

6 (4.5) 1 (16) 105416 9110 11.57 16.15x 13177 289.84x



S. M. Rizvi et al.

these models. The LeNet-5 baseline model attains 97.32%
and 88.54% test accuracies for MNIST and Fashion MNIST
datasets, respectively. With this baseline model and using
batch inference, a 3573.19 cl/s throughput and energy
efficiency of 37.73 cl/J are attained with 94.7 W power
consumption and 615 MB memory usage. When Strategy 1
(optimizing OFM size) is applied, the performance gain is
initially minor but becomes significant when the OFM size
of the middle CONV layer gets to the smallest feasible size
(3× smaller than the size in the baseline model). As OFM
size is reduced, no loss in accuracy is observed. When OFM
size of the middle CONV layer is at the smallest feasible
size, where M2 is 4, 1.5× gain in throughput is attained.
At this size, there is an only slight reduction in memory
usage (1.3×). While there is no noticeable improvement
in power consumption, there is a 1.7× gain in energy
efficiency. Table 12 shows test accuracies and values of
other inference performance metrics as OFM size and/or
depth are minimized. From Table 12 onward, accuracy,
throughput, power consumption, energy efficiency, and
memory usage are abbreviated as acc., thru., power cons.,
energy eff., and mem. usage, respectively.

For Strategy 2 (optimizing OFM depth), inference per-
formance sees gain at every depth reduction step (every
reduction step reduces OFM depths by 2×). The improve-
ments, however, start to saturate after OFM depths are
reduced 4×. With a 4× reduction in OFM depths, there is
a 3× and 6.7× gain in throughput and energy efficiency,
respectively. Power consumption and memory usage were
reduced by 2.2× and 1.9×, respectively. All these perfor-
mance gains are achieved at the cost of a 2.3% loss in
accuracy, which is well within our accuracy loss constraint.
When OFM depths are reduced by the maximum amount
(16×), further performance improvement can be attained, as
shown in Table 12. However, these improvements come at
a price of accuracy loss of 10%, exceeding our acceptable
accuracy loss by 2×.

In Strategy 3, OFM depths are reduced after obtaining
the optimal model from Strategy 2. For LeNet-5, the optimal
model from Strategy 2 has OFM size reduced to the
smallest feasible size. While maintaining this OFM size,
OFM depths are progressively reduced. Here, the accuracy
constraint is still satisfied when OFM depths are reduced
up to 4×. At this set of OFM depths, the improvement
in throughput and energy efficiency stands at 3.6× and
8.6×. Furthermore, a 2.4× reduction in power consumption
and 1.9× reduction in memory usage are obtained. The
loss in accuracy stands at 2.9%, which is within the
imposed accuracy constraint. These performance gains with
Strategy 3 are higher than what was achieved in Strategy 2.
Therefore, the model with M2 = 4 and Do(1) = 4 is regarded
as the optimal LeNet-5 model. With a 16× reduction in
OFM depths, even better inference performance can be

attained, but the accuracy loss (13%) is well beyond the
accuracy loss constraint.

The behavior of inference performance and accuracy
loss with changes in OFM sizes and depths is easy
to see when presented graphically. Figure 9 illustrates
inference performance improvements in terms of accuracy,
energy efficiency, throughput, and memory usage with
the reduction in OFM sizes and depths. Subfigures 9a
and 9b display loss in test accuracy and gain in energy
efficiency, respectively, with changes in OFM sizes and
depths. Subfigures 9c and 9d show gain in throughput and
reduction in memory usage, respectively, with changes in
OFM sizes and depths. Here, the set of entries from 1 to
4 represents Strategy 2, while entries from 5 to 8 and then
9 to 12 represent strategies 1 and 3, respectively. For ease
of viewing, negative accuracy loss is represented in the
subfigure 9a as zero losses.

In the case of AlexNet, the baseline AlexNet model
achieves 95.96% and 86.95% test accuracies for MNIST and
Fashion MNIST datasets, respectively. In batch inference,
this model has a throughput of 483.50 cl/s and energy
efficiency of 3.09 cl/J, as shown in Table 13. The memory
and power consumption costs are 2434 MB and 156.4 W,
respectively. With Strategy 1, a 1.5× higher throughput and
a 1.7× greater energy efficiency are obtained as compared
to the baseline model when OFM sizes of the middle CONV
layer are at the smallest feasible OFM sizes. When OFM
sizes are reduced under this strategy, no loss in accuracy is
observed, but the improvements in power consumption and
memory usage are minor.

With Strategy 2, significant performance gain is obtained
while trading off an acceptable loss in accuracy. When OFM
depths are reduced four times from the baseline value, a
10.6× gain in throughput and a 17.7× improvement in
energy efficiency are attained at the cost of a 4.15% loss
in accuracy. In addition, power consumption and memory
usage are reduced by 1.7× and 4.6×, respectively. With an
8× reduction in OFM depths, even better performance can
be attained but at the cost of a 14.53% loss in accuracy. A
16× reduction in OFM depths, which would make the OFM
depth of the CONV1 layer equal to the minimum feasible
depth, has not been considered for AlexNet. This is because
an 8× reduction in OFM depths already exceeded accuracy
loss constraint by about three times.

It is observed that the performance improvement is
higher in Strategy 3 than Strategy 2 under the same accuracy
constraint. After reducing OFM sizes of the middle CONV
layers to the smallest feasible size, a 4× reduction in
OFM depths produces 11.6× gain in throughput along with
a 25.2× gain in energy efficiency at the cost of about
4.4% loss in accuracy. There is also a reduction in power
consumption by 2.2× and a 5.6× reduction in memory
usage. The inference performance can be improved further



Computation and memory optimized spectral domain convolutional neural network...

Ta
bl
e
12

In
fe

re
nc

e
pe

rf
or

m
an

ce
fo

r
L

eN
et

-5
Sp

C
N

N

O
FM

si
ze

M
2

(β
m

)
O

FM
de

pt
h

D
o(

1)
(β

d
)

Te
st

ac
c.

+
Te

st
ac

c.
+

M
ea

n
ac

c.
lo

ss
2∗

T
hr

u.
+

(c
l/s

)
Po

w
er

co
ns

.∗
E

ne
rg

y
ef

f.
+

M
em

.u
sa

ge
∗

(M
N

IS
T

)
(F

as
hi

on
M

N
IS

T
)+

(W
)

(c
l/J

)
(M

B
)

S1
:R

ed
uc

in
g

O
FM

si
ze

12
(1

)
16

(1
)

97
.3

2%
88

.5
4%

0.
00

%
35

73
.1

9
94

.7
0

37
.7

3
61

5.
10

9
(1

.3
3)

16
(1

)
97

.0
7%

88
.8

7%
−

0.
04

%
38

84
.0

3
94

.2
0

41
.2

3
56

7.
80

6
(2

)
16

(1
)

97
.0

0%
87

.7
3%

0.
56

%
42

20
.1

1
90

.6
0

46
.5

8
52

3.
90

4
(3

)
16

(1
)

97
.0

6%
89

.4
9%

−
0.

34
%

55
10

.4
8

86
.7

0
63

.5
6

47
9.

50

S2
:R

ed
uc

in
g

O
FM

de
pt

h

12
(1

)
8

(2
)

96
.5

7%
86

.9
6%

1.
17

%
82

62
.2

4
74

.2
0

11
1.

35
39

8.
10

12
(1

)
4

(4
)

94
.9

3%
86

.3
8%

2.
28

%
10

75
2.

69
42

.8
0

25
1.

23
32

9.
10

12
(1

)
2

(8
)

91
.7

3%
82

.8
2%

5.
66

%
11

20
1.

21
38

.8
0

28
8.

69
31

4.
60

12
(1

)
1

(1
6)

85
.8

3%
79

.7
7%

10
.1

3%
11

89
2.

56
38

.2
0

31
1.

32
30

6.
40

S3
:R

ed
uc

in
g

O
FM

si
ze

fi
rs

ta
nd

th
en

O
FM

de
pt

h

4
(3

)
8

(2
)

96
.2

3%
87

.9
1%

0.
86

%
91

40
.0

0
49

.0
0

18
6.

53
32

8.
70

4
(3

)
4

(4
)

94
.4

9%
85

.5
9%

2.
89

%
12

85
5.

88
39

.7
0

32
3.

83
31

9.
90

4
(3

)
2

(8
)

90
.6

2%
81

.9
7%

6.
64

%
14

17
0.

65
37

.7
0

37
5.

88
30

7.
90

4
(3

)
1

(1
6)

81
.8

6%
77

.1
1%

13
.4

5%
15

45
0.

95
37

.6
0

41
0.

93
30

3.
90

2
N

eg
at

iv
e

an
d

po
si

tiv
e

va
lu

es
in

ac
cu

ra
cy

lo
ss

in
di

ca
te

an
in

cr
ea

se
an

d
de

cr
ea

se
in

ac
cu

ra
cy

,r
ep

ec
tiv

el
y.

“+
”

in
di

ca
te

s
a

hi
gh

er
va

lu
e

of
th

is
pe

rf
or

m
an

ce
m

et
ri

c
is

be
tte

r.
“*

”
in

di
ca

te
s

a
lo

w
er

va
lu

e
of

th
is

pe
rf

or
m

an
ce

m
et

ri
c

is
be

tte
r



S. M. Rizvi et al.

Fig. 9 Inference performance for LeNet-5 SpCNN in terms of (a)
accuracy loss vs OFM size and depth, (b) energy efficiency vs OFM
size and depth, (c) throughput vs OFM size and depth, (d) memory
usage vs OFM size and depth

by reducing OFM depths by 8× but with an unacceptable
cost of 11.39% loss in accuracy, as shown in Table 13.
Therefore, the model with M2 = 6 and Do(1) = 4 is regarded
as the optimal AlexNet model. A 16× reduction in OFM

depth has not been considered here as the accuracy loss at
an 8× reduction already exceeded the tolerance for accuracy
loss by more than two times.

Figure 10 illustrates the improvements that are attained in
throughput, memory usage and energy efficiency as well as
the loss in accuracy with changes in OFM sizes and depths.
Subfigures 10a and 10b display the amount of accuracy loss
and improvement in energy efficiency, respectively, as OFM
sizes and depths are reduced. In subfigure 10a, negative
accuracy loss is represented on the figures as zero losses,
for ease of viewing. With subfigures 10c and 10d, one can
see the improvements in throughput and memory usage with
changes in OFM sizes and depths.

The inference performance metrics that were discussed
above are for batch inference. However, some embedded
and mobile platforms require single-image inference (with
a batch size of 1) for real-time tasks. For brevity, inference
performance for single-image inference was not reported in
Tables 12 and 13. Tables 14 and 15 present the throughput,
power consumption, energy efficiency, and memory usage
data for the baseline models and the optimal models in
single-image inference. With the optimal LeNet-5 model
there are 2.4× and 2.6× gains in throughput and energy
efficiency, respectively, when compared to the baseline
LeNet-5 model. In the case of AlexNet, the optimal model
achieves 5.1× gain in throughput and 8.8× gain in energy
efficiency, as compared to the baseline AlexNet model. For
LeNet-5, there is no noticeable improvement with regard
to power consumption and memory usage. However, in the
case of AlexNet, a 1.7× reduction in power consumption
and 1.4× reduction in memory usage are obtained for the
optimal model. When inference is conducted with a single
image with a smaller architecture like LeNet-5, the CMC
may be too small to allow significant reduction in power
or memory consumption. The inference performance for
baseline and optimal models in batch inference (taken from
Tables 12 and 13) are also added to Tables 14 and 15
such that the performance of the optimal models in both
batch inference and single-image inference can be viewed
together.

As noted in Section 5.2, reducing OFM depth can
have minor impact on accuracy. This is because when
CONV layers have smaller OFM depths, they would extract
smaller number of features and therefore the optimal
models (if chosen through Strategy 2 or Strategy 3) will
have slightly lower accuracy than the baseline models.
However, as documented in this section, one can achieve
significant gains in throughput and energy efficiency with
the proposed methodology with a trade-off of minor
reduction in accuracy. For example, the AlexNet optimal
model achieves 11.6× higher throughput and 25.2× greater
energy efficiency with only 4.4% loss in accuracy. In many
applications that are deployed on embedded or mobile



Computation and memory optimized spectral domain convolutional neural network...

Ta
bl
e
13

In
fe

re
nc

e
pe

rf
or

m
an

ce
fo

r
A

le
xN

et
Sp

C
N

N

O
FM

si
ze

M
2

(β
m

)
O

FM
de

pt
h

D
o(

1)
(β

d
)

Te
st

ac
c.

+
Te

st
ac

c.
+

M
ea

n
ac

c.
lo

ss
3∗

T
hr

u.
+

(c
l/s

)
Po

w
er

co
ns

.∗
E

ne
rg

y
ef

f.
+

M
em

.u
sa

ge
∗

(M
N

IS
T

)
(F

as
hi

on
M

N
IS

T
)+

(W
)

(c
l/J

)
(M

B
)

S1
:R

ed
uc

in
g

O
FM

si
ze

27
(1

.0
)

16
(1

)
95

.9
6%

86
.9

5%
0.

00
%

48
3.

50
15

6.
40

3.
09

24
34

.0
0

13
(2

.0
7)

16
(1

)
96

.8
9%

78
.0

8%
3.

97
%

72
9.

31
15

4.
00

4.
74

21
94

.4
0

6
(4

.5
)

16
(1

)
96

.5
9%

88
.3

7%
−

1.
02

%
73

6.
44

14
3.

30
5.

14
21

06
.5

0

S2
:R

ed
uc

in
g

O
FM

de
pt

h

27
(1

.0
)

8
(2

)
94

.3
8%

86
.7

3%
0.

90
%

21
31

.2
9

10
1.

10
21

.0
8

10
46

.4
0

27
(1

.0
)

4
(4

)
91

.2
9%

83
.3

1%
4.

15
%

51
34

.9
2

93
.9

0
54

.6
8

52
3.

60

27
(1

.0
)

2
(8

)
82

.6
4%

71
.2

0%
14

.5
3%

79
23

.0
3

56
.5

0
14

0.
23

36
0.

10

S3
:R

ed
uc

in
g

O
FM

si
ze

fi
rs

ta
nd

th
en

O
FM

de
pt

h

6
(4

.5
)

8
(2

)
95

.6
7%

87
.6

4%
−

0.
20

%
24

14
.2

4
94

.3
0

25
.6

0
78

6.
60

6
(4

.5
)

4
(4

)
93

.3
9%

80
.7

4%
4.

39
%

56
26

.8
8

72
.1

0
78

.0
4

43
6.

50

6
(4

.5
)

2
(8

)
87

.6
8%

72
.4

5%
11

.3
9%

86
31

.6
4

43
.0

0
20

0.
74

33
2.

20

3
N

eg
at

iv
e

an
d

po
si

tiv
e

va
lu

es
in

ac
cu

ra
cy

lo
ss

in
di

ca
te

an
in

cr
ea

se
an

d
de

cr
ea

se
in

ac
cu

ra
cy

,r
es

pe
ct

iv
el

y.

“+
”

in
di

ca
te

s
a

hi
gh

er
va

lu
e

of
th

is
pe

rf
or

m
an

ce
m

et
ri

c
is

be
tte

r.
“*

”
in

di
ca

te
s

a
lo

w
er

va
lu

e
of

th
is

pe
rf

or
m

an
ce

m
et

ri
c

is
be

tte
r



S. M. Rizvi et al.

Fig. 10 Inference performance for AlexNet SpCNN in terms of (a)
accuracy loss vs OFM size and depth, (b) energy efficiency vs OFM
size and depth, (c) throughput vs OFM size and depth, (d) memory
usage vs OFM size and depth

platforms, such trade-off where significant performance
gains are achieved with a minor loss in accuracy is not only
acceptable but desirable [35].

We also compared our optimal model with Ayat et al.
[52], Liu et al. [54], and Rizvi et al. [45]—three recent
works in SpCNNs. These specific works were chosen for
comparison purposes since these works evaluated their
SpCNN models with the same datasets such as MNIST
and Fashion MNIST just as this work. Additionally, these
works used LeNet-5 as their baseline SpCNN model which
is one of the two baseline models employed in this work as
well. To compare our work with these other works in a fair
manner, their works were reproduced in our experimental
environment. The OFM sizes and depths of these models
were kept intact when they were implemented in our
experimental environment.

For the MNIST dataset, our optimal model achieves an
accuracy 1.8% higher than Ayat et al. [52] and about 1%
higher than Liu et al. [54] but around 3% lower than Rizvi
et al. [45]. In the case of Fashion MNIST, our optimal
model has an accuracy that is 2.4% and 3% lower than
[52] and [45], respectively, but has the same accuracy as
[54]. The accuracy values are documented in Table 16. One
should note that our baseline model with 97.32% accuracy
for MNIST and 88.54% accuracy for Fashion MNIST, has
similar or better accuracy than these previous works. As
most of the previous works in SpCNN models for AlexNet
were on optimizing domain transformations (FFT/IFFT) or
inference with hardware accelerators and were evaluated
with different datasets, we compared our optimal model
with our baseline, rather than these previous works.

When inference performance of our optimal LeNet-5
model is compared with [52], it is observed that during
batch inference the optimal model provides 3.1× and 4.2×
improvements in throughput and energy efficiency, respec-
tively. Furthermore, there are 1.3× and 1.9× reductions in
power consumption and memory usage, respectively. When
single-image inference is conducted, the optimal model
attains 3.2× higher throughput and 3.4× greater energy effi-
ciency. Even though the reduction in power consumption is
minor, memory usage is reduced by 1.7×. These results are
shown in Tables 17 and 18.

The optimal LeNet-5 model also surpasses [54] in per-
formance for both batch and single-image inference. In batch
inference, the optimal model produces 4.1× higher through-
put and 6.9× greater energy efficiency, while reducing
power consumption and memory usage by 1.6× and 2.1×,
respectively. In single-image inference, 4.1× and 4.2×
gains are achieved in throughput and energy efficiency,
respectively. The reduction in power consumption is minor
but memory usage is reduced significantly, by 1.8×.

With our optimal LeNet-5 model significant performance
gain is also attained when compared with [45]. In batch
inference, the optimal model achieves 4.2× and 10.5×
improvements in throughput and energy efficiency as well
as a 2.5× reduction in power consumption and a 2.9×



Computation and memory optimized spectral domain convolutional neural network...

Table 14 Inference performance of baseline and optimal models for LeNet-5 SpCNN for single-image and batch inference

Work Thru.+ (cl/s) Power cons.∗ (W) Energy eff.+ (cl/J) Mem. usage∗ (MB)

Single-image inference

LeNet-5 baseline model 115.21 40.2 2.87 319.6

LeNet-5 optimal model 277.77 37.8 7.35 301.7

Batch inference

LeNet-5 baseline model 3573.19 94.70 37.73 615.10

LeNet-5 optimal model 12855.88 39.70 323.83 319.90

“+” indicates a higher value of this performance metric is better. “*” indicates a lower value of this performance metric is better

Table 15 Inference performance of baseline and optimal models for AlexNet SpCNN for single-image and batch inference

Work Thru.+ (cl/s) Power cons.∗ (W) Energy eff.+ (cl/J) Mem. usage∗ (MB)

Single-image inference

AlexNet baseline model 32.58 67.8 0.48 406.6

AlexNet optimal model 166.09 39.1 4.25 289.4

Batch inference

AlexNet baseline model 483.50 156.40 3.09 2434.00

AlexNet optimal model 5626.88 72.10 78.04 436.50

“+”indicates a higher value of this performance metric is better. “*” indicates a lower value of this performance metric is better

Table 16 Comparison of the
optimal LeNet-5 SpCNN
model with some of the recent
works in LeNet-5 SpCNN in
terms of test accuracy

Work Test accuracy

MNIST Fashion

Ayat et al. [52] 92.66% 88.00%

Liu et al. [54] 93.52% 85.64%

Rizvi et al. [45] 97.43% 88.62%

This work (optimal model) 94.49% 85.59%

Table 17 Performance comparison of the optimal LeNet-5 SpCNN model with some of the recent works in LeNet-5 SpCNN for batch inference

Work Batch inference

Thru.+ (cl/s) Power cons.∗ (W) Energy eff.+ (cl/J) Mem. usage∗ (MB)

Ayat et al. [52] 4099.07 52.9 77.49 620.0

Liu et al. [54] 3099.86 65.6 47.25 669.0

Rizvi et al. [45] 3077.23 99.7 30.86 929.3

This work 12855.88 39.7 323.83 319.90

(optimal model)

“+” indicates a higher value of this performance metric is better. “*” indicates a lower value of this performance metric is better



S. M. Rizvi et al.

Table 18 Performance comparison of the optimal LeNet-5 SpCNN
model with some of the recent works in LeNet-5 SpCNN for single-
image inference

Work Single-image inference

Thru.+ Power Energy Mem. usage∗

(cl/s) cons.∗ (W) eff.+ (cl/J) (MB)

Ayat et al. [52] 87.88 41.2 2.13 516.9

Liu et al. [54] 68.10 39.4 1.73 531.5

Rizvi et al. [45] 119.83 42.1 2.85 520.6

This work 277.77 37.8 7.35 301.7

(optimal model)

“+” indicates a higher value of this performance metric is better. “*”
indicates a lower value of this performance metric is better

reduction in memory usage. In single-image inference, there
is a 2.3× gain in throughput along with a 2.6× improvement
in energy efficiency. The reduction in power consumption
is minor but a 1.7× reduction in memory usage is achieved.
Tables 17 and 18 document the performance gain of our
optimal model when compared to the above-mentioned
previous works.

As discussed in Section 2, the three works that are com-
pared with our optimal model propose different models
for LeNet-5 SpCNN and different methods (e.g., fused
convolution layers [52], hardware-friendly coefficients for
activation function [54], computationally light activation
function [45]) to optimize their computational workload.
Unlike the above-mentioned works that aim to reduce only
the computational cost of SpCNNs, this work proposes
a methodology to reduce both computational and mem-
ory accesses costs and is able to obtain higher through-
put and energy efficiency and smaller memory-footprint
with comparable or better accuracy when compared with
these works.

7 Conclusion

In this paper, we have demonstrated that the sizes and
depths of OFMs are the primary contributors to the com-
putational and memory costs of spectral domain CNNs.
These costs can be minimized efficiently by optimizing the
depth of OFMs after reducing OFM sizes to the small-
est feasible size, without significant loss in test accuracy.
Our methodology was evaluated on two well-known CNN
architectures—LeNet-5 and AlexNet—with two widely
used datasets (MNIST and Fashion MNIST). The perfor-
mance gains (in terms of throughput, energy efficiency
etc.) attained for both single-image and batch inference
show that our proposed methodology is highly effective in

achieving fast and energy-efficient inference. Another
attractive feature of our methodology is that it does not
require any specialized compression algorithm or hardware
accelerator to achieve its goal. In future, this methodology
can be evaluated on more complex CNN architectures such
as GoogleNet or ResNet and larger datasets.

Data Availability The datasets employed to evaluate the CNN models
in the current study are available in [62] and https://github.com/
zalandoresearch/fashion-mnist.

Declarations

Competing interests The authors have no relevant financial or non-
financial interests to disclose.

References

1. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-
Shamma O, Santamarı́a J, Fadhel MA, Al-Amidie M, Farhan
L (2021) Review of deep learning-concepts, CNN architectures,
challenges, applications, future directions. J Big Data 8(1):1–74

2. Ngo L, Cha J, Han J-H (2020) Deep neural network regression
for automated retinal layer segmentation in optical coherence
tomography images. IEEE Trans Image Process (TIP) 29:303–312

3. Xiao Y, Zijie Z (2020) Infrared image extraction algorithm
based on adaptive growth immune field. Neural Process Lett
51(3):2575–2587

4. Yu X, Zhou Z, Gao Q, Li D, Rı́ha K (2018) Infrared image
segmentation using growing immune field and clone threshold.
Infrared Phys Technol 88:184–193

5. Zhu W, Peng B, Wu H, Wang B (2020) Query set centered sparse
projection learning for set based image classification. Appl Intell
50(10):3400–3411

6. Zhu W, Peng Y (2020) Elastic net regularized kernel non-
negative matrix factorization algorithm for clustering guided
image representation. Appl Soft Comput 97:106774

7. Otter DW, Medina JR, Kalita JK (2021) A survey of the usages of
deep learning for natural language processing. IEEE Trans Neural
Netw Learn Syst (TNNLS) 32(2):604–624

8. Grigorescu S, Trasnea B, Cocias T, Macesanu G (2020) A survey
of deep learning techniques for autonomous driving. J Field Robot
37(3):362–386

9. LeCun Y, Boser B, Denker J, Henderson D, Howard R, Hubbard
W, Jackel L (1989) Handwritten digit recognition with a back-
propagation network. In: Proceedings of the 2nd international
conference on neural information processing systems (NIPS),
pp 396–404

10. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc IEEE
86(11):2278–2324

11. Krizhevsky A, Sutskever I, Hinton G (2017) Imagenet classifi-
cation with deep convolutional neural networks. Commun ACM
60(6):84–90

12. Hu J, Shen L, Albanie S, Sun G, Wu E (2020) Squeeze-
and-Excitation networks. IEEE Trans Pattern Anal Mach Intell
(TPAMI) 42(8):2011–2023

13. Cao C, Wang B, Zhang W, Zeng X, Yan X, Feng Z, Liu Y, Wu Z
(2019) An improved faster r-CNN for small object detection, vol 7

14. Aziz L, Haji Salam MSB, Sheikh UU, Ayub S (2020) Exploring
deep learning-based architecture, strategies, applications and

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist


Computation and memory optimized spectral domain convolutional neural network...

current trends in generic object detection: a comprehensive review.
IEEE Access 8:170461–170495

15. Shelhamer E, Long J, Darrell T (2017) Fully convolutional
networks for semantic segmentation. IEEE Trans Pattern Anal
Mach Intell (TPAMI) 39(4):640–651

16. Li C, Xia W, Yan Y, Luo B, Tang J (2021) Segmenting objects in
day and night: edge-conditioned CNN for thermal image semantic
segmentation. IEEE Trans Neural Netw Learn Syst (TNNLS)
32(7):3069–3082

17. Kang S, Lee J, Bong K, Kim C, Kim Y, Yoo H-J (2018) Low-
power scalable 3-d face frontalization processor for CNN-based
face recognition in mobile devices. IEEE J Emerg Sel Top Circuits
Syst (JETCAS) 8(4):873–883

18. Jiang L, Zhang J, Deng B (2020) Robust RGB-d face recognition
using attribute-aware loss. IEEE Trans Pattern Anal Mach Intell
(TPAMI) 42(10):2552–2566

19. Khurana K, Deshpande U (2021) Video question-answering
techniques, benchmark datasets and evaluation metrics leveraging
video captioning: a comprehensive survey. IEEE Access 9:43799–
43823

20. Lin Y, Guo D, Zhang J, Chen Z, Yang B (2021) A unified
framework for multilingual speech recognition in air traffic
control systems. IEEE Trans Neural Netw Learn Syst (TNNLS)
32(8):3608–3620

21. Kim T, Lee J, Nam J (2019) Comparison and analysis of sample
CNN architectures for audio classification. IEEE J Sel Top Signal
Process (JSTSP) 13(2):285–297

22. Ramisa A, Moreno-Noguer F, Moreno-Noguer K (2018) Breaking
news: article annotation by image and text processing. IEEE Trans
Pattern Anal Mach Intell (TPAMI) 40(5):1072–1085

23. Chen L, Lin S, Lu X, Cao D, Wu H, Guo C, Liu C, Wang
F.-Y. (2021) Deep neural network based vehicle and pedestrian
detection for autonomous driving: a survey. IEEE Trans Intell
Transp Syst (TITS) 22(6):3234–3246

24. Miclea V-C, Nedevschi S (2022) Monocular depth estimation with
improved long-range accuracy for UAV environment perception.
IEEE Trans Geosci Remote Sens (TGRS) 60:1–15

25. Dai Z, Yi J, Zhang Y, Zhou B, He L (2020) Fast and accurate cable
detection using CNN. Appl Intell 50(12):4688–4707

26. Esteva A, Kuprel B, Novoa R, Ko J, Swetter S, Blau H, Thrun S
(2017) Dermatologist-level classification of skin cancer with deep
neural networks. Nature 542(7639):115–118

27. Nayak J, Naik B, Dinesh P, Vakula K, Rao B, Ding W, Pelusi D
(2021) Intelligent system for COVID-19 prognosis: a state-of-the-
art survey. Appl Intell 51(5):2908–2938

28. Saraogi E, Chouhan G, Panchal D, Patel M, Gajjar R (2021) CNN
Based design rule checker for VLSI layouts. In: Proceedings of the
2nd IEEE international conference on applied electromagnetics,
signal processing & communication (AESPC), pp 1–6

29. Sze V, Chen Y-H, Yang T-J, Emer J (2017) Efficient processing
of deep neural networks: a tutorial and survey. Proc IEEE
105(12):2295–2329

30. Abtahi T, Shea C, Kulkarni A, Mohsenin T (2018) Accelerating
convolutional neural network with FFT on embedded hardware.
IEEE Trans Very Large Scale Integr (TVLSI) 26(9):1737–1749

31. Jain A, Phanishayee A, Mars J, Tang L, Pekhimenko G (2018)
Gist: efficient data encoding for deep neural network training.
In: Proceedings of the 45th international symposium on computer
architecture (ISCA), pp 776–789

32. Liu Z, Li J, Shen Z, Huang G, Yan S, Zhang C (2017) Learning
efficient convolutional networks through network slimming.
In: Proceedings of the 16th IEEE international conference on
computer vision (ICCV), pp 2755–2763

33. Chao P, Kao C-Y, Ruan Y, Huang C-H, Lin Y-L (2019) HarDNet:
a low memory traffic network. In: Proceedings of the 17th
IEEE/CVF international conference on computer vision (ICCV),
pp 3551–3560

34. Chen Y-H, Krishna T, Emer JS, Sze V (2017) Eyeriss: an energy-
efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE Journal of Solid-State Circuits (JSSC) 52(1):127–
138

35. Ma N, Zhang X, Zheng H-T, Sun J (2018) Shuffle Net v2:
practical guidelines for efficient CNN architecture design. In:
Proceedings of the 15th European conference on computer vision
(ECCV), pp 116–131

36. Vaze S, Xie W (2020) Namburete, A.I.L.e.: low-memory
CNNs enabling real-time ultrasound segmentation towards mobile
deployments. IEEE J Biomed Health Inform (JBHI) 24(4):1059–
1069

37. Mathieu M, Henaff M, LeCun Y (2014) Fast training of
convolutional networks through FFTs. In: Proceedings of the 2nd
international conference on learning representations (ICLR)

38. Vasilache N, Johnson J, Mathieu M, Chintala S, Piantino S, LeCun
Y (2015) Fast convolutional nets with fbfft: a GPU performance
evaluation. In: Proceedings of the 3rd international conference on
learning representations (ICLR)

39. Rippel O, Snoek J, Adams R (2015) Spectral representations
for convolutional neural networks. In: Proceedings of the 28th
international conference on neural information processing systems
(NIPS), pp 2449–2457

40. Ko J, Mudassar B, Na T, Mukhopadhyay S (2017) Design of an
energy-efficient accelerator for training of convolutional neural
networks using frequency-domain computation. In: Proceedings
of the 54th ACM/EDAC/IEEE design automation conference
(DAC), pp 1–6

41. Niu Y, Zeng H, Srivastava A, Lakhotia K, Kannan R, Wang Y,
Prasanna V (2019) SPEC2: SPECtral SParsE CNN accelerator on
FPGAs. In: Proceedings of the 26th IEEE international conference
on high performance computing, data, and analytics (HiPC),
pp 195–204

42. Sun W, Zeng H, Yang Y-h, Prasanna V (2018) Throughput-
optimized frequency domain CNN with fixed-point quantization
on FPGA. In: Proceedings of the 13th international conference on
ReConFigurable computing and FPGAs (ReConFig), pp 1–8

43. Nguyen-Thanh N, Le-Duc H, Ta D-T, Nguyen V-T (2016) Energy
efficient techniques using FFT for deep convolutional neural
networks. In: Proceedings of the 9th international conference on
advanced technologies for communications (ATC), pp 231–236

44. Lin J, Yao Y (2019) A fast algorithm for convolutional neural
networks using tile-based fast fourier transforms. Neural Process
Lett 50(2):1951–1967

45. Rizvi S, Ab Rahman A, Khalil-Hani M, Ayat S (2021) A
low-complexity complex-valued activation function for fast and
accurate spectral domain convolutional neural network. Indones J
Electr Eng Inform (IJEEI) 9(1):173–184

46. Howard A, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T,
Andreetto M, Adam H (2017) MobileNets: efficient convolutional
neural networks for mobile vision applications. arXiv:1704.04861

47. Zhang X, Zhou X, Lin M, Sun J (2018) Shuffle net: an extremely
efficient convolutional neural network for mobile devices. In:
Proceedings of the 31st IEEE/CVF conference on computer vision
and pattern recognition (CVPR), pp 6848–6856

48. Huang G, Liu S, Maaten L, Weinberger K (2018) Condensenet:
an efficient DenseNet using learned group convolutions. In:
Proceedings of the 31st IEEE/CVF conference on computer vision
and pattern recognition (CVPR), pp 2752–2761

http://arxiv.org/abs/1704.04861


S. M. Rizvi et al.

49. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A,
Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner
B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style,
high-performance deep learning library. In: Proceedings of the
32nd international conference on neural information processing
systems (NIPS), pp 8024–8035

50. Tensor Flow Lite: ML for mobile and edge devices. https://www.
tensorflow.org/lite/. Accessed 1 Nov 2021

51. Gibson J, Pand Cano, Turner J, Crowley E, O’Boyle M, Storkey
A (2020) Optimizing grouped convolutions on edge devices. In:
Proceedings of the 31st international conference on application-
specific systems, architectures and processors (ASAP), pp 189–
196

52. Ayat S, Khalil-Hani M, Ab Rahman A, Abdellatef H (2019)
Spectral-based convolutional neural network without multiple
spatial-frequency domain switchings. Neurocomputing 364:152–
167

53. Watanabe T, Wolf D (2021) Image classification in frequency
domain with 2SReLU: a second harmonics superposition activa-
tion function. Appl Soft Comput 112:107851–107851

54. Liu S, Luk W (2020) Optimizing fully spectral convolutional
neural networks on FPGA. In: Proceedings of the 19th IEEE inter-
national conference on field-programmable technology (ICFPT),
pp 39–47

55. Guan B, Zhang J, Sethares W, Kijowski R, Liu F (2021) Spectral
domain convolutional neural network. In: Proceedings of the 46th
IEEE international conference on acoustics, speech and signal
processing (ICASSP), pp 2795–2799

56. Abdelouahab K, Pelcat M, Berry F (2020) Accelerating the CNN
inference on FPGAs. In: Fagerberg J, Mowery DC, Nelson R (eds)
Deep learning in computer vision: principles and applications,
pp 1–39. Chap 1. CRC Press Taylor & Francis Group, USA

57. Meurant G (1999) Computer solution of large linear systems.
Elsevier, Amsterdam.

58. Kala S, Jose B, Paul D, Mathew J (2018) A hardware accelerator
for convolutional neural network using fast Fourier transform. In:
Proceedings of the 22nd international symposium on vlsi design
and test (VDAT), pp 28–36

59. Sadouk L (2019) CNN Approaches for time series classification.
In: Ngan C-K (ed) Time series analysis - data, methods, and
applications, pp 57–79. Chap 4. IntechOpen, London

60. Wang E, Davis J, Zhao R, Ng H-C, Niu X, Luk W, Cheung P,
Constantinides G (2019) Deep neural network approximation for
custom hardware: where we’ve been, where we’re going. ACM
Comput Surv 52(2):1–39

61. Vedaldi A, Lux M, Bertini M (2018) Matconvnet: CNNs are also
for MATLAB users. ACM SIGMultimedia Records 10(1):9–9

62. LeCun Y, Cortes C (2010) MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/. Accessed 21 Oct 2021

63. Xiao H, Rasul K, Vollgraf R (2017) Fashion-MNIST: a novel
image dataset for benchmarking machine learning algorithms.
arXiv:1708.07747

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Shahriyar Masud Rizvi
received his BS and MS degrees
in Electrical Engineering in
2000 and 2002, respectively,
from University of Wyoming,
Laramie, WY, USA. He is cur-
rently pursuing a PhD degree
in Electrical Engineering at
Universiti Teknologi Malaysia
(UTM), Johor Bahru, Malaysia.
He also serves as an Associate
Professor at American Interna-
tional University-Bangladesh
(AIUB). His research inter-
ests include low-complexity
and memory-efficient deep

learning, synthesis of FSMs from purely behavioral SystemVer-
ilog/VHDL descriptions, computer vision in spectral domain, and
hardware/software co-simulation for FPGA-based image processing.

Ab Al-Hadi Ab Rahman
received his Ph.D. degree from
École Polytechnique Fédérale
de Lausanne, Switzerland in
2013, M.Eng. degree from
Universiti Teknologi Malaysia
in 2008, and B.S. degree from
University of Wisconsin-
Madison, USA in 2004. His
current research interests are
on optimization methods and
design automation for applica-
tions in video coding and deep
learning. He has authored
and co-authored more than
50 journals and conference

papers, mainly with contributions in developing new design method-
ologies and techniques for high performance and low power systems.
He is currently a senior lecturer at Universiti Teknologi Malaysia.

Usman Ullah Sheikh received
his bachelor’s degree in
mechatronics (2003), master’s
degree in telecommunications
engineering (2005) and PhD
degree (2009) in image pro-
cessing and computer vision
from Universiti Teknologi
Malaysia. His research
work is mainly on computer
vision, machine learning and
embedded systems design.
He is currently a senior lec-
turer at Universiti Teknologi
Malaysia.

https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/


Computation and memory optimized spectral domain convolutional neural network...

Kazi Ahmed Asif Fuad
received Erasmus+ Mundus
Joint Master Degree in Image
Processing and Computer
Vision (IPCV) in 2020. Prior
to that, he obtained M.Sc. and
B.Sc. degrees in Electrical
and Electronic Engineering
from American International
University-Bangladesh (AIUB)
in 2013 and 2015, respectively.
He is currently pursuing a
Ph.D. degree in Computer
Science at Oregon State Uni-
versity, Corvallis, USA. He
also serves as an Assis-

tant Professor at American International University-Bangladesh
(AIUB). His research interests include machine learning accelerators,
high performance computing, hardware/software co-simulation for
FPGA-based image processing, computer vision, and explainable AI.

Hafiz Muhammad Faisal
Shehzad is a lecturer at Depart
ment of Computer Science and
IT, University of Sargodha,
Pakistan. He obtained his PhD
degree from Universiti Tekno-
logi Malaysia, Malaysia in
2022. He received his Master
of Computer Science degree
from University of Sargodha,
Pakistan in 2013. His area of
research is building informa-
tion modeling (BIM), system
analysis, machine learning
and AI. His research interests
include technology adoption
and implementation, informa-
tion systems, and database
systems.

Affiliations

Shahriyar Masud Rizvi1 · Ab Al-Hadi Ab Rahman1 · Usman Ullah Sheikh1 · Kazi Ahmed Asif Fuad2 ·
Hafiz Muhammad Faisal Shehzad3

Ab Al-Hadi Ab Rahman
hadi@fke.utm.my

Usman Ullah Sheikh
usman@fke.utm.my

Kazi Ahmed Asif Fuad
fuadk@oregonstate.edu

Hafiz Muhammad Faisal Shehzad
muhammad.faisal@uos.edu.pk

1 VeCAD Research Laboratory, School of Electrical
Engineering, Universiti Teknologi Malaysia, Johor
Bahru, 81310, Johor, Malaysia

2 School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR 97331, USA

3 Department of Computer Science and IT, University
of Sargodha, Sargodha, 40100, Punjab, Pakistan

http://orcid.org/0000-0002-0412-2668
mailto: hadi@fke.utm.my
mailto: usman@fke.utm.my
mailto: fuadk@oregonstate.edu
mailto: muhammad.faisal@uos.edu.pk

	Computation and memory optimized spectral domain convolutional neural network...
	Abstract
	Introduction
	Related work
	Spectral domain CNN models
	Background
	Baseline LeNet-5 and AlexNet SpCNN models

	Problem formulation
	Computational workload (CW)
	Memory access cost (MemAC)

	Proposed methodology for improving inference performance
	Strategy 1 (S1): OFM size reduction
	Strategy 2 (S2): OFM depth reduction
	Strategy 3 (S3): Reducing both OFM size and depth
	Performance estimation using the proposed strategies

	Results
	Experimental environment, setup, and constraints
	Experimental results

	Conclusion
	Declarations
	References
	Affiliations


