
sensors

Article

Multi-Spectral Fusion and Denoising of Color and
Near-Infrared Images Using Multi-Scale Wavelet Analysis †

Haonan Su * , Cheolkon Jung and Long Yu

����������
�������

Citation: Su, H.; Jung, C.; Yu, L.

Multi-Spectral Fusion and Denoising

of Color and Near-Infrared Images

Using Multi-Scale Wavelet Analysis.

Sensors 2021, 21, 3610. https://

doi.org/10.3390/s21113610

Academic Editor: Kang Ryoung Park

Received: 16 April 2021

Accepted: 18 May 2021

Published: 22 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electronic and Engineering, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071, China;
zhengzk@xidian.edu.cn (C.J.); lyu@stu.xidian.edu.cn (L.Y.)
* Correspondence: hnsu@xidian.edu.cn
† This paper is an extended version of our published paper: Multi-Spectral Fusion and Denoising of RGB and

NIR Images Using Multi-Scale Wavelet Analysis. In Proceedings of the 2018 24th International Conference on
Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018.

Abstract: We formulate multi-spectral fusion and denoising for the luminance channel as a maximum
a posteriori estimation problem in the wavelet domain. To deal with the discrepancy between RGB
and near infrared (NIR) data in fusion, we build a discrepancy model and introduce the wavelet scale
map. The scale map adjusts the wavelet coefficients of NIR data to have the same distribution as the
RGB data. We use the priors of the wavelet scale map and its gradient as the contrast preservation
term and gradient denoising term, respectively. Specifically, we utilize the local contrast and visibility
measurements in the contrast preservation term to transfer the selected NIR data to the fusion result.
We also use the gradient of NIR wavelet coefficients as the weight for the gradient denoising term
in the wavelet scale map. Based on the wavelet scale map, we perform fusion of the RGB and NIR
wavelet coefficients in the base and detail layers. To remove noise, we model the prior of the fused
wavelet coefficients using NIR-guided Laplacian distributions. In the chrominance channels, we
remove noise guided by the fused luminance channel. Based on the luminance variation after fusion,
we further enhance the color of the fused image. Our experimental results demonstrated that the
proposed method successfully performed the fusion of RGB and NIR images with noise reduction,
detail preservation, and color enhancement.

Keywords: image fusion; wavelet decomposition; color enhancement; near-infrared; denoising

1. Introduction

In low light conditions, the captured RGB images are degraded with serious noise.
Although many denoising methods [1–3] have been proposed and have obtained good
performance in noise reduction, the performance on low light images requires improvement
due to complicated noise modeling after a series of operations in the camera processing
pipeline. Recent advances in multi-spectral imaging provide techniques to capture near
infrared (NIR) and RGB images simultaneously [4,5]. As NIR images provide fine details
and clear structure in the challenging condition, this technique is applied to a lot of multi-
spectral image restorations, such as image dehazing [6], contrast enhancement [7], and
image denoising [8].

In low light conditions, NIR cameras and dark flash are used to capture NIR images [9].
The dark flash projects light containing NIR and visible bands, and the visible band is
blocked. NIR cameras are sensitive to the NIR spectral band with the range of 700 to
1100 nm [10]. In low light conditions, NIR images have the advantages of texture rendering
without noise corruption compared to noisy RGB images because strong near-IR flash
improves the NIR light reflection of the captured scenes, and thus NIR images capture
more visible structures without noise corruption. On the other hand, RGB images contain
better color information over NIR images. Therefore, NIR and RGB images were both
employed to generate fused images with good structure, little noise, and vivid colors.
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1.1. Related Work
1.1.1. Gradient Processing

The basic idea of gradient-processing-based multi-spectral fusion is NIR images
containing a clear structure without noise corruption compared to RGB images in low light
conditions. Thus, researchers [8,11–14] propose multi-spectral image restoration guided
by NIR gradients. However, RGB and NIR images have large discrepancies in gradients,
which leads to blurred artifacts in fused images. Therefore, the correlation between the
gradients of two images is applied to overcome the discrepancy problem. Zhuo et al. [11]
developed dual weighted least square (WLS) smoothing, which employs two gradients of
RGB and NIR images to remove the noise and preserve the main image structure in the
luminance channel of RGB images.

Then, the structure from NIR images is transferred to denoised RGB images. However,
the details of the results are also blurred with noise reduction. Li et al. [12] proposed
blind image deblurring with the guidance of NIR image gradients. With a constraint on
the difference between RGB and NIR image gradients, they generated clean results by
conducting blur kernel estimation and image restoration alternatively. Shen et al. [8,13]
introduced the gradient scale map (i.e., gradient ratio map) to deal with the discrepancy
problem on two image gradients (e.g., gradient magnitude variation and gradient direction
divergence between two images).

Using the scale map, they proposed two image restoration methods that denoise RGB
images based on the common edges between two images. However, this leads to blurred
artifacts when the edge magnitudes between two images were greatly different. Sugimura
et al. [14] developed the simultaneous denoising and deblurring of low light images using
several NIR images with a short exposure time.

They developed an energy function that used the gradient correlation between RGB
and NIR images, between three RGB bands, and between temporal sequences to remove
noise and improve the quality of the low light images. Yamashita et al. [4,5] developed
a novel sensor that combined RGB and N sensors together, and they used this sensor
to capture NIR and RGB raw data under low light conditions. Then, they employed
traditional image demosaicing, motion deblurring, and denoising to extract RGB and NIR
images, and enhanced the low light images with serious noise and blur.

1.1.2. Image Fusion

In the first group of methods, we assumed that the NIR images contained more useful
information without noise corruption compared with RGB images. This always occurs in
texture regions that are highly corrupted in low light conditions. However, NIR images
also contain distorted regions with low contrast and reduced details due to a different
spectral sensitivity of NIR and RGB sensors [8]. The multi-spectral fusion guided by NIR
images distorts the original structure of RGB images in fusion results. Thus, the idea of
the second group of methods borrows from image fusion, which combines the most useful
information from both the RGB and NIR images.

Image denoising is applied to fusion results or before image fusion. Son et al. [15]
proposed the multi-spectral fusion of RGB and NIR images based on layer decomposition.
They divided RGB and NIR images into base and detail layers. In the NIR base layer,
they generated new NIR data, which had the same appearance as the RGB data and
preserved the local contrast of NIR data with contrast preservation regularization. Then,
they generated three detail layers (from the noisy RGB image, NIR image, and its new
NIR data) and fused them. Then, the residual-based sparsity priors were applied to
denoise the fused detail layer. However, blur artifacts and color noise still remained in the
fusion results.

Son et al. [7] proposed a NIR coloring method for RGB image restoration. The pro-
posed method consists of three steps: a contrast-preserving conversion that is the same
as the new NIR data generation in [15], detail fusion between RGB and NIR images, and
color fusion from RGB colors. Shibata et al. [16] proposed multi-spectral image fusion
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using local contrast and inconsistent measurements. They estimated fusion weights based
on the high visibility from two images and the prevention of artifacts from inconsistency.
Li et al. proposed a novel encoder-decoder architecture consisting of convolutional layers
extracting RGB and NIR image features, a fusion layer with two image features, and a
dense block [17]. They introduced a dense block to reuse features from the middle layer for
the reconstruction layer.

Zhang et al. proposed a novel fusion method based on the Pulse Coupled Neural
Network (PCNN) in a Non-Subsampled Shearlet Transform (NSST) [18]. The adaptive
parameters of PCNN were set by the inherent characteristics (i.e., the gradient energy and
the magnitude of NSST coefficients) of images. Zheng et al. proposed a novel image fusion
for haze removal using a set of artificial multi-exposure images that were generated by
gamma correction [19]. They selected the best visual quality regions for fusion based on
the entropy of the image texture.

Jung et al. proposed an unsupervised deep image fusion network consisting of three
steps: feature extraction from RGB and NIR images, feature fusion between two image
features, and fusion image reconstruction [20]. The unsupervised loss function based on a
structure tensor was utilized to constrain the contrast of the output images similar to that
of the input images.

1.2. Contributions

In this paper, we propose a multi-spectral fusion and denoising (MFD) framework of
RGB and NIR images using multi-scale wavelet analysis. We assumed that RGB and NIR
images have the same spatial resolution with well calibration, which means that the paired
images contain matched structures without geometry displacements. The RGB and NIR
bands are perfectly geometrically overlapped. There are no shadows or object movement
in them. This is because the RGB or NIR images were taken by switching two filters (i.e.,
the IR cut filter and visible cut filter in front of the camera sensor) [10].

Thus, object movement leads to unmatched objects between paired images under
different capturing times. To deal with the discrepancy and noise problem in the fusion, we
formulate two observation models: (1) the noise model: the RGB image are corrupted with
the additive Gaussian noise; (2) the discrepancy model: the discrepancy is measured as the
correlation between RGB and NIR images, and we call this a wavelet scale map. Based on
two observed models, we formulate the MFD framework as a maximum a posteriori (MAP)
estimation that conducts the wavelet scale map estimation and image fusion alternatively.

To estimate the wavelet scale map, we utilize the priors of the wavelet scale map and
its gradients as the contrast preservation term and gradient denoising term, respectively.
To estimate the fused wavelet coefficients, we model the fusion coefficients as the Laplacian
distribution with adaptive scaling parameters for noise removal. We apply the MFD
framework to the luminance channel. In the chrominance channels, we utilize the fused
luminance as a guidance to remove the chroma noise and provide color enhancement
based on the luminance variation after fusion. Experimental results demonstrate that the
proposed method generated fusion images with reduced noise, preserved details, and
saturated colors.

Figure 1 illustrates the entire diagram of the proposed method. In Figure 1, Y, Cb,
and Cr are the luminance and chrominance channels after color space conversion; Y′ is the
fused luminance channel in the spatial domain after the inverse wavelet transform; g and
u are the wavelet coefficients of NIR images and the luminance channel from RGB images
in each subband; ω3 is the visibility ratio of NIR data to RGB data in (14); ω4 is composed
of ω4x and ω4y in (15) and (16); α0 is the local contrast of NIR wavelet coefficients; s is the
wavelet scale map; v is the wavelet coefficients in MFD; and Yd, Cbd, and Crd are denoised
luminance and chrominance channels.
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Figure 1. The entire framework of the proposed method (MFD: Multi-spectral fusion and denoising).

Compared to our previous work [21], we have four extensions: (1) We introduce two
observation models of noise and discrepancy from RGB data, NIR data, and the wavelet
scale map in problem formulation. These models provide the mathematical basis for
Bayesian derivation. (2) We apply the MFD to only the luminance channel. We perform
guided filtering to two chroma channels and color enhancement based on the luminance
variation after fusion. This can save the computational cost in the other two channels and
generate results with vivid colors. (3) We provide a simplified MFD framework for the low
frequency band to generate the results with a more visible structure of the NIR component
in the base layer. (4) We formulate the prior of the fused wavelet coefficients as the adaptive
Laplacian distribution using the guidance of NIR data. This provides good performance in
detail preservation.

Compared with existing methods, the main contributions of the proposed method are
as follows:

• We propose the MFD framework for RGB and NIR image fusion in the wavelet domain
to achieve both texture transfer and noise removal.

• We provide the discrepancy model based on the wavelet scale map (correlation be-
tween RGB and NIR data) to deal with the discrepancy between RGB and NIR images.

• We combine three probability terms of contrast preservation, gradient denoising, and
fusion denoising into the MFD framework to resolve the discrepancy while reducing
the noise in the fusion.

• We enhance the color based on the luminance variation after fusion. The enhanced
colors are more vivid with less color distortion.

The remainder of this paper is as follows. We describe the details of the proposed
method in Section 2, while we provide the experimental results and their corresponding
analysis in Section 3. We draw conclusions of this paper in Section 4.

2. Proposed Method
2.1. Problem Formulation

In this work, we aim to generate a high quality image by fusion and denoising from
noisy RGB and NIR images. We first normalize the color bands by the maximum pixel
value 255 (8-bit image). We decompose the Y channel of noisy RGB and NIR images using
wavelet analysis. We denote the RGB wavelet coefficients in one subband as the vector
u with N elements, the NIR wavelet coefficients in one subband as the diagonal matrix
g with N × N elements, where the diagonal elements are NIR wavelet coefficients, and
the fusion image as the vector v with N elements in the wavelet domain. The relationship
between RGB, NIR and fusion images are formulated as follows:

u = v + N1 (1)

v = gα + N2 (2)
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where the vector N1 represents the random Gaussian noise with N elements, the vector α
with N elements is defined as wavelet scale map to model the correlation between RGB and
NIR images, and the vector N2 means the random error with N elements. (1) represents
the noise model. That means the observed noisy RGB wavelet component u is generated
from the desired RGB wavelet component v with noise N1. (2) represents the discrepancy
model. The relationship between RGB and NIR data are modeled as a linear function.

2.2. Multi-Spectral Fusion and Denoising Framework

We preform multi-spectral fusion and denoising (MFD) of NIR and RGB images based
on multi-scale wavelet analysis and Bayesian theory [1]. Direct fusion of RGB and NIR
images causes annoying artifacts, such as contrast attenuation due to the large discrepancy
between two as shown in Figure 2c. Thus, we estimate a wavelet scale map to update
the NIR wavelet coefficients and deal with the discrepancy between them. We formulate
MFD as a maximum a posterior (MAP) estimation problem that finds clean RGB wavelet
coefficients v and a wavelet scale map α given noisy RGB wavelet coefficients u and NIR
wavelet coefficients g. For the MAP estimation, we maximize:

v, α = max
v,α

p(v, α|u, g)

= max
v,α
{p(u, g|v, α) · p(v, α)/p(u, g)}} (3)

∝ min
v,α
{− log p(u, g|v, α)− log p(v, α)}

where p(v, α|u, g) is the posterior and p(u, g|v, α) is the likelihood; p(v, α) is the prior with
joint distribution of v and α. p(u, g) has the same definition as p(v, α). p(u, g) is a constant
and thus is omitted in the optimization.

(a) (b)

(c) (d)

Figure 2. Fusion and denoising results in Books by Guided Wavelet Shrinkage (GWS) [1]. (a) RGB
image. (b) NIR image. (c) GWS. (d) Proposed method.



Sensors 2021, 21, 3610 6 of 24

First, we design the likelihood for the fusion of noisy RGB and NIR images based on
the noise model and the discrepancy model in Section II.A. Given v and α, u and g are
independent to each other. Thus, we split the likelihood into two parts as follows:

p(u, g|v, α) = p(u|v, α) · p(g|v, α) (4)

p(u|v, α) ∝ p(u|v) (5)

= N(u− v|0, ξ1)

p(g|v, α) = N(v− gα|0, ξ2) (6)

where N(u− v|0, ξ1) is a Gaussian distribution with zero mean and variance ξ1, N(v−
gα|0, ξ2) has the same definition as N(u− v|0, ξ1), and ξ1 and ξ2 represent random Gaus-
sian noise and random error in (1) and (2). Based on the noise model in (1), u is independent
of α, and thus α is removed in (5), and the p(u|v) is defined as the Gaussian distribution in
(5). Based on the discrepancy model in (2), we define p(g|v, α) as the Gaussian distribution
in (6).

Second, we define the joint prior distribution of p(v, α). In (2), without considering g,
v should be independent to α. The joint prior distribution of p(v, α) is separated into two
parts as follows:

p(v, α) = p(v) · p(α) (7)

where p(v) and p(α) are the priors of v and α. Then, to preserve the local contrast from
the NIR data and remove noise in the scale map, we define the prior of the wavelet scale
map α, which consists of two parts: (1) the prior of its magnitude plc(α); (2) the prior of its
gradient pgd(∂

∗α) (∂∗α ∈ { ∂α
∂x , ∂α

∂y }, ∂α
∂x and ∂α

∂y are the partial derivatives of α) as follows:

p(α) = plc(α) · pgd(∂α) (8)

plc(α) = N(α|α0, ξ3) (9)

pgd(∂
∗α) = N(

∂α

∂x
|0, ξ4x(

∂g
∂x

) · (10)

N(
∂α

∂y
|0, ξ4y(

∂g
∂y

))

where plc(α) is defined as the Gaussian distribution with the mean of α0 and the variance of
ξ3. This term is used as the local contrast preservation term that transfers the high contrast
and visibility of NIR image to the fusion result. α0 is the directive contrast from NIR
components, which selects the high contrast component from the NIR wavelet coefficients.
Moreover, we define pgd(∂

∗α) as the gradient denoising term that utilizes the gradients
of the NIR component as the guidance for adaptive noise removal in wavelet scale map
estimation of the high-pass band. ξ4x and ξ4y are defined as the function of the gradient of

the NIR components for denoising. ∂g
∂x and ∂g

∂y are the partial derivatives of g.
Finally, the prior of the fusion wavelet coefficient can be modeled as the heavy tailed

distributions for noise removal, such as the Laplacian distribution and Generalized Gaus-
sian distribution [22]. In this work, the prior p(v) is defined as zero-mean Laplacian with
the scaling parameter as follows:

p(v) =
1

2ξ5
e−
‖v‖
ξ5 (11)

where ξ5 is the scaling parameter for the Laplacian distribution.
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Based on (1)–(11), we perform MAP estimation by the minimization of energy function
as follows:

E(v, α) = ω1 ‖ v− u ‖2 +ω2 ‖ v− gα ‖2 +ω3 ‖ α− α0 ‖2

+ω4x ‖
∂α

∂x
‖2 +ω4y ‖

∂α

∂y
‖2 +ω5 ‖ v ‖

(12)

where the parameters ω1–ω5 in (12) are the inverse of the variances ξ1–ξ4 and the scaling
parameter ξ5, i.e., ω1,2,5 = ξ−1

1,2,5, ω3,4x,4y = −ξ−1
3,4x,4y.

2.3. Parameter Description

The parameters of each term in (12) are described as follows:

2.3.1. Parameters ω1 and ω2

The first term and the second term are the fusion weight of the NIR and RGB wavelet
coefficients. We set ω1 = ω2 = 0.5 for fusion.

2.3.2. Parameters ω3 and α0

The third term represents the contrast preservation term in the wavelet scale map
estimation. In the high-pass band, we obtain the directive contrast α0 using Weber’s law, i.e.,
the ratio of the Laplacian gradients in the high frequency subband to the local luminance
in the low pass subband [23], as follows:

α0(x, y) =

{
( 1

gl(x,y) )
γ · SML(x,y)

gl(x,y) i f gl(x, y) 6= 0

SML(x, y) i f gl(x, y) = 0
(13)

where SML(x, y) is the sum-modified-Laplacian gradient [23], gl(x, y) is the local lumi-
nance in the base subband and γ is the visual sensitivity to luminance that ranges from 0.6
to 0.7. We apply the visibility map to the parameter ω3 for transferring the NIR component
more than the RGB component as follows:

ω3 = τ · φ(VINIR/VIRGB|σ1, γ1) (14)

where the visibility map VI is generated by [24], which evaluates the signal visibility of the
human visual system (HVS) in the wavelet domain, φ(·|σ1, γ1) uses the wavelet shrinkage
function [1] with parameters σ1 and γ1 as the transfer function to compress the dynamic
range into [0, 1], τ is the constant value, which is set to 10−4.

Severe noise degrades the main structure of the visibility map in high-pass bands,
which significantly affects the performance of the contrast preservation term. We use the
relative total variation [25] to reduce the noise of VI and produce the smoothing weight
ω3 for structure preservation. The ratio of VINIR to VIVIS determines the visibility of NIR
components over RGB components, i.e., a larger ratio, the more visible the contrast from
the NIR components. Thus, a larger ratio, i.e., a larger ω3, provides more contrast transfer
from the NIR to RGB components. Here, we set σ1 = 0.5 and γ1 = 2.

2.3.3. Parameters ω4x and ω4y

The fourth term considers the use of the gradients of NIR coefficients to guide denois-
ing for the wavelet scale map. ω4x and ω4y are defined as follows:

ω4x = λ · (‖∂g
∂x
· α‖β + ε)−1 (15)

ω4y = λ · (‖∂g
∂y
· α‖β + ε)−1 (16)
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where λ, β, and ε are the parameters of wavelet scale map denoising. We set λ = 10−(M−1) ·
ω3/τ and M are the decomposition level. λ is related to the maximum decomposition level
M. ω3 is used to adaptively control the weight (i.e., ω4x and ω4y) of gradient denoising.
Large ω3 provides coarse filtering (i.e., high ω4 value) of the wavelet scale map, which
selects whole regions of visible NIR pixels and then transfers them to RGB ones. Small ω3
(i.e., low ω4) achieves the careful filtering along the gradients of NIR wavelet coefficients,
which makes them close to RGB data. Thus, ω3 is large for visible NIR data and small for
visible RGB data.

2.3.4. Parameters ω5

The fifth term enforces the denoising of desirable RGB components v. We define the
adaptive weights ω5 by the adjusted NIR components as:

ω5 = η · e−
g·α
avg (g·α) (17)

where η is the parameter from 0.01 to 0.001 and avg(·) is the average function. ω5 controls
the denoising degree based on the adjusted NIR wavelet coefficient. The large magnitude
of the adjusted NIR components means more visibility of the NIR data, which is transferred
to the fusion result. Thus, it enforces weak denoising (i.e., small ω5 value) for the fusion
result because there is less noise in the NIR data. In contrast, a smaller adjusted NIR
component means less fusion from the NIR data and, thus, stronger denoising (i.e., a larger
ω5 value) due to noisy RGB data.

2.4. Numerical Solution

We obtain the latent image by both the fusion and denoising of RGB and NIR images.
MFD is iteratively performed by estimating α and v as follows:
Optimizing α: with the fixed v, α is calculated with the minimization of energy function
E(α) as follows:

E(α) = ω2 · ‖v− gα‖2 + ω3 · ‖α− α0‖2

+ω4x · ‖
∂α

∂x
‖2 + ω4y · ‖

∂α

∂y
‖2 (18)

Based on the parameter design section, we rewrite (18) using the matrix notation
as follows:

α = min
α
{ω2(v− gα)T(v− gα) + (α− α0)

Tω3(α− α0)

+αT Dx
Tω4xDxα + αT Dy

Tω4yDyα}
(19)

where v, α, and α0 are the vector forms of v, α, and α0, respectively; g, ω3, ω4x, and ω4y
are the diagonal matrices of the original variables (g, ω3, ω4x, and ω4y); Dx and Dy are
forward difference operators, respectively, and thus DT

x and DT
y are backward difference

operators. We use a solver [26] to minimize (19). We obtain α by minimizing the energy
function in (19); thus, the solution of the linear system as follows:

(ω2gT g + ω3 + Dx
Tω4xDx + Dy

Tω4yDy)α (20)

= (ω2gTv + ω3
Tα0)

α = (ω2gT g + ω3 + Dx
Tω4xDx + Dy

Tω4yDy)
−1 (21)

(ω2gTv + ω3
Tα0)

Optimizing v: with the fixed α, v is calculated by minimizing E(v) as follows:

E(v) = ω1‖v− u‖2 + ω2‖v− gα‖2 + ω5‖v‖ (22)
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The solution of v in (22) is the soft-thresholding function as follows [1,27]:

v̂ = ω1u + ω2gα (23)

v = sign(v̂)max(‖v̂‖ −ω5, 0)

where max(·) is the max function and sign· is the sign function, which is defined as x = 1
when x > 0, x = −1 when x < 0 and x = 0 when x = 0.

2.5. Application to Low Pass Fusion

In the low pass subband, we employ the same MFD framework to fuse the NIR and
RGB components. However, the denoising term is removed because there is less noise in
the low-pass band. (19) and (23) are simplified as follows:

α = (ω2gT g + ω3)
−1(ω2gTv + ω3

Tα0) (24)

v = ω1u + ω2gα (25)

α0(i) = Rig(i)/avg(Rig) (26)

where α0 is the directive contrast of RGB components in the low-pass band, which is
defined as the ratio of the center pixel intensity to average intensity in the window, avg(·)
is average function in an window, Ri is a matrix that extracts the patch at the ith pixel
location from an image, and the visibility degree VI of low-pass band is calculated similar
to that in high-pass band. However, we use a luminance adaptation model [24] to calculate
JND threshold without considering inter-band and intra-band masking.

2.6. Unified MFD Framework for RGB and NIR Image Fusion

As shown in Figure 1, we first apply the color space conversion, which converts RGB
color space to the decorrelated color space (we use YCbCr color space) for the degraded
RGB images. Then, we decompose luminance channels of RGB and NIR images by DT-
CWT. Next, we use the MDF framework to fuse luminance channel of RGB images and NIR
images. The fused luminance image is produced by inverse DT-DWT. Then, we employ a
guided filter [28] to denoise the luminance and chrominance channels, and the denoised
RGB image is obtained by inverse color space conversion.

Finally, we enhance colors based on the luminance variation after fusion. Algorithm 1
depicts the MDF framework. αn, α0, u, g and vn mean the variables in high frequency
band, where αn

l , αl0, ul , gl and vn
l mean the variables in the low-pass band. M is the

maximum decomposition level chosen as a large value because DT-CWT with a large
decomposition level (e.g., 3∼5) extracts much noise in high pass subband, while N is
maximum iteration number. Figure 2d shows that the proposed method successfully
handles the discrepancy problem between RGB and NIR images while achieving the fusion
result with noise reduction and good contrast based on the NIR image.

We provide the results of wavelet scale map estimation, and MFD framework for high
pass and low-pass bands. Figure 3 shows the generation process for wavelet scale map in
one wavelet subband. ω3 represents the visibility of NIR wavelet coefficients compared
to RGB components. α0 represents the local contrast from NIR components. The wavelet
scale map α without α0 calculates the correlation (i.e., ratio) of wavelet coefficients between
NIR and RGB components to deal with the discrepancy problem. The gradient denoising
term guided by NIR wavelet coefficients reduces noise in the scale map and thus main
structure in NIR image appears in the scale map. Then, α adjusts wavelet coefficients of
NIR image to be compatible with RGB components.

Guided by the local contrast α0 and visibility ω3, we select high contrast and visibility
regions from NIR components by α (see the red blocks in Figure 3). Figure 4 shows the
fusion and denoising results of NIR and RGB wavelet coefficients in high-pass band. We
demonstrated that the fused results by the proposed method contained fine details from
the NIR components (see the red blocks in Figure 4). Figure 5 shows the low-pass band
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fusion results.

Algorithm 1 Multi-scale fusion and denoising of NIR and RGB images.
Input: Noisy gray image from RGB image, NIR image
Initialize: ω1 = ω2 = 0.5,σ1 = 0.5,γ1 = 2, η = 0.005
β = 1.2, ε = 0.001, α0 = I, v0 = u
M = 3 ∼ 5, N = 20, τ = 10−4, ε1 = ε2 = 10−2.
1. Perform DT-CWT on noisy gray and NIR images.
2. Detail layer:

For m=1:M (M: Maximum decomposition)
For n=1:N (N: Maximum iteration number)

a. Calculate VI of vn and g [24];
b. Calculate α0 from g by (13);
c. Calculate ω3 −ω5 by (14)–(17);
d. Optimize αn+1 by (21);
e. Optimize vn+1 by (23);
if ‖αn+1 − αn‖2

2/‖αn‖2
2 < ε1 and

‖vn+1 − vn‖2
2/‖vn‖2

2 < ε2; break;
end For

end For
3. Base layer:

For n=1:N (N: Maximum iteration number)
a. Calculate VI of vn

l and gl [24];
b. Calculate αl0 from g by (26);
c. Calculate ω3 by (14);
d. Optimize αn+1

l and vn+1
l by (24)–(25);

if ‖αl
n+1 − αl

n‖2
2/‖αl

n‖2
2 < ε1 and

‖vl
n+1 − vl

n‖2
2/‖vl

n‖2
2 < ε2; break;

end For
4. Perform inverse DT-CWT.
Output: Fused gray image.

Compared to the fusion without α, the fusion results with α have a similar appearance
to the original gray images, which indicates that the fusion results with α suffered less
discrepancy artifacts (see Figure 5d,e). Figure 5c shows the local contrast map of the NIR
data where bright pixels mean more details were transferred to the RGB components. Thus,
the proposed base band fusion with α and α0 solved the discrepancy problem and obtained
visible details from NIR data as shown in the red blocks of Figure 5d,e.

Figure 3. Wavelet scale map generation.
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(a) (b)

(c) (d) (e)

Figure 4. Fusion and denoising results of the high-pass bands in Books. (a) RGB image. (b) NIR
image. (c) First iteration. (d) Third iteration. (e) Tenth iteration.

(a) (b)

(c) (d) (e)

Figure 5. Fusion results of low-pass bands in Books. (a) RGB image. (b) NIR image. (c) α0. (d) Fusion
without α. (e) Fusion with α.

2.7. Chroma Denoising and Color Enhancement

In Section IV.B, we obtained the fused luminance image by combining RGB and NIR
images. Then, we employed the guided image filter [28] to denoise the chrominance
channels guided by the fused luminance results [29]. The primary idea of [29] is the high
correlation in the texture information over color channels. Based on the correlation, [29]
transfers the texture information of the fused luma channel to the other two channels and
removes the noise around the texture by the guided filter. Meanwhile, the guided filter
is employed to remove noise in the noisy luma channel. Then, the denoised luma and
chroma channels are combined and inverse color space conversion is used to obtain the
denoised original images. Finally, we enhance the color of the fused image based on the
variation of luminance after fusion as follows [30]:

Me(x, y) = (
Y′(x, y)
Yd(x, y)

)β ·Md(x, y) (27)
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where Me(x, y) and Md(x, y) are trichromatic (three channels, i.e., R,G,B channels) channel
values of the output color and denoised images, respectively; Y′(x, y) and Yd(x, y) are gray
images from the fused result and the denoised original image, respectively; and β is the
sensitive factor whose range is [0.6, 1.0]. In (27), we utilize the ratio of luminance variation
to enhance the three channels independently.

As a result, the colors of the fusion images are enhanced more with the increase of β
(see the trees in Figure 6). Figure 7 shows the fusion and color enhancement results of the
proposed method. The proposed method produces fusion results with noise removal and
detail transferring from the NIR images (see Figure 7a,b). Color enhancement provides
saturated colors in images compared to the direct inverse color space conversion (see
Figure 7c,d).

(a) (b) (c)

Figure 6. Color enhancement results with (a) β = 0.6, (b) β = 0.8, and (c) β = 1.0.

(a) (b) (c) (d)

Figure 7. Fusion and color enhancement results in Books. (a) Original gray image. (b) Fusion results in
the luma channel. (c) Inverse color space conversion (YCbCr→ RGB). (d) Color enhancement results.

3. Experimental Results
3.1. Multi-Spectral Fusion of NIR and RGB Images

In the experiments, we used fifteen pairs of RGB and NIR images obtained from [7,10,15]
as shown in Figure 8. Figure 8a–d are from [15], Figure 8e–h are from [7], and Figure 8i–o
are from [10]. We added Gaussian noise to the RGB images in Figure 8e–o. The RGB and
NIR image pairs are well registered with the same spatial resolution from 436× 512 to
1147× 800. For the tests, we used a PC with Intel (R) Core (TM) 547 i5 CPU (2.60 GHZ) and
4.00 GB RAM running a Windows environment and MATLAB 2012b. For deep learning
methods, we used Nvidia GTX2080Ti with the Ubuntu 16.04 environment.

We compared the performance of the proposed method with those of the guided
wavelet shrinkage (GWS) [1], dual WLS smoothing (DWLS) [11], scale map (SM) [8],
DenseFuse [17], and Unsupervised Deep Image Fusion using structure tensor (UDIF) [20].
To conduct the experiments, we first removed noise using BM3D [31], and then we em-
ployed DenseFuse and UDIF for fusion. Figures 9–12 show the experimental results from
different methods.

GWS [1] directly fuses RGB and NIR images without considering discrepancies, and
thus there is much contrast attenuation in the results as shown in Figures 9e, 10e, 11e, and 12e.
DWLS [11] uses the gradients of the NIR and Y channels of the initially denoised RGB
images as the guidance for WLS smoothing and, then, transfers the details of NIR data to
the smoothing results. However, the results seem blurred in the details because the initial
denoising smoothes some details of the RGB data (see the red blocks in Figures 11c and 12c),
and contains some noise (see the red blocks in Figures 9c and 10c).
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SM [8] uses the scale map to correct the discrepancy of common edges between RGB
and NIR images; however, some different details between two images seem blurred and
are lost in the results (see the red blocks in Figures 10d and 11d). The zoomed red blocks in
Figure 10d are provided in Figure 10i. DenseFuse [17] introduces the dense blocks in an
encoder–decoder framework and preserves more extracted features of the middle layer.
However, the generated results causes serious color distortion (see Figures 9–12f) and loss
of details (see the red blocks of Figures 10 and 11f and the zoomed regions in Figures 10
and 11i).

UDIF [20] is an unsupervised deep learning fusion network with a structure tensor loss.
They lead to the attenuated details (see the red blocks in Figures 10 and 11g and the zoomed
regions in Figures 10 and 11i). Color distortion happens in the results (see Figure 12g).
The proposed method adjusts the NIR coefficients to have the same distribution as RGB
data and obtain a wavelet scale map for fusion. Thus, our method effectively handles
the discrepancy between RGB and NIR images and produces both fusion and denoising
without contrast attenuation compared to GWS (see Figures 9–12e,h).

Moreover, the contrast preservation term and visibility ratio detect high and visi-
ble contrasts from the NIR wavelet coefficients and then transfer them to RGB compo-
nents. Thus, our results successfully preserve visible local contrast from the NIR data
(see Figures 9–12h). The proposed method reduces more noise and artifacts compared
with DWLS (see Figures 9 and 10c,h, and the zoomed region in Figure 10i) because of the
Laplacian distribution modeling of the fusion wavelet coefficients. As shown in Figure 11,
the proposed method preserves the local contrast of RGB images better than DWLS and
SM (see the red blocks on the wall of Figure 11c,d,h).

This is because the low visibility ratio on the wall, i.e., the low visibility degree
in the NIR data, reduces the effect of the contrast preservation term. As the gradient
denoising term provides gradient enhancement for the scale map guided by the NIR
wavelet coefficients, the proposed method is very effective in enhancing the details in the
boxes compared to DenseFuse and UDIF (see the red blocks on the boxes in Figure 11f–h
and its zoomed regions in Figure 11i).

As shown in Figure 12, the proposed method achieved better performance in detail
preservation and color reproduction compared with the other methods. Finally, the pro-
posed method generates the fusion results with vivid colors compared to DenseFuse and
UDIF (see Figures 9, 11 and 12f–h) because we enhance the colors corresponding to the
luminance variation.

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o)

Figure 8. Test image pairs with noisy RGB images (top) and NIR images (bottom).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Experimental results for a test image. (a) Noisy RGB image. (b) NIR image. (c) DWLS [11].
(d) SM [8]. (e) GWS [1]. (f) DenseFuse [17]. (g) UDIF [20]. (h) Proposed method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 10. Experimental results for a test image. (a) Noisy RGB image. (b) NIR image. (c) DWLS [11].
(d) SM [8]. (e) GWS [1]. (f) DenseFuse [17]. (g) UDIF [20]. (h) Proposed method. (i) Zoomed regions
of red blocks (From top left to bottom right: (b–d,f–h)).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 11. Experimental results for a test image. (a) Noisy RGB image. (b) NIR image. (c) DWLS [11].
(d) SM [8]. (e) GWS [1]. (f) DenseFuse [17]. (g) UDIF [20]. (h) Proposed method. (i) Zoomed regions
of red blocks (From Left to Right: (b,f–h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Experimental results for a test image. (a) Noisy RGB image. (b) NIR image. (c) DWLS [11].
(d) SM [8]. (e) GWS [1]. (f) DenseFuse [17]. (g) UDIF [20]. (h) Proposed method.

Moreover, we performed the quantitative measurements in terms of the discrete
entropy (DE) [32], feature-based blind image quality evaluator (FBIQE) [33], and color
image quality (CIQ) [34]. DE [32] is defined as

H(p) = −
i=0

∑
L−1

p(i)log2(p(i)) (28)

where p(i) is the probability density function at the intensity level i and L is maximum
pixel value (L = 255). DE estimates the detail amount of an image based on the histogram
distribution. FBIQE measures the modified Bhattacharyya distance between the natural
statistics of distorted images and the reference naturalness statistics in terms of the local
structures, contrast, multiscale decomposition, and colors [33]. FBIQE is calculated as

q =

√
(µ− µ′)T(

σ + σ′
2

(µ− µ′)) (29)
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where (µ, Σ) and (µ′, Σ′) represent the mean vector and variance matrix of natural statistics
features from the test and reference images. The natural statistics features are modeled
using multivariate Gaussian (MVG) model with (µ, Σ) as follows:

f (x) =
1

(2π)m/2‖σ‖−1 exp(−1
2
(x− µ)Tσ−1(x− µ)) (30)

where m is the dimension of the vector µ. The color image quality (CIQ) [34] metric assesses
the image quality in terms of sharpness, colorfulness, and contrast characteristics. In the
CIQ metric, the sharpness, colorfulness, and contrast measurement are calculated first and
then combined with multiple linear regression (MLR) as follows:

CIQ = c1 × color f ulness + c2 × sharpeness + c3 × contrast (31)

where c1, c2, and c3 are constants [34].
A larger DE indicates more details in the fused image, while a smaller FQBIE indicates

good image quality with less noise, a clearer structure, and more natural colors in the fused
images. Larger CIQ values indicate better image quality in the results with high contrast,
sharp structure, and saturated colors. Table 1 shows the quantitative measurements on
five methods.

The proposed method achieved the best performance in the average DE because the
gradient denoising term performs gradient enhancement in a wavelet scale map guided
by the gradients of the NIR wavelet coefficients. The detail-enhanced wavelet scale map
provides detail enhancement of the fused RGB images. In addition, the proposed method
achieved the best performance in FBQIE because the proposed method produced a fused
RGB image with less noise and better details. Due to the good color enhancement and gradi-
ent enhancement in the proposed method, the fusion results achieved the best performance
in the CIQ metric.

Table 1. Performance comparison between GWS [1], DWLS [11], SM [8], DenseFuse [17], UDIF [20],
and the proposed method.

Metrics DWLS SM GWS Dense. UDIF Pro.

DE 7.082 7.046 7.030 6.841 6.865 7.128
FBIQE 29.639 27.269 27.909 29.600 30.469 26.836

CIQ 0.912 0.914 0.904 0.788 0.841 0.961
Bold numbers represent the best performance in each metric.

3.2. Parameter Analysis

We provide the effects of key parameters on the fusion results by the proposed method
as follows. First, we perform the experiments to evaluate the effects of σ1 and γ1 (in the
contrast preservation term) on the fusion performance as shown in Figure 13. We observed
that the fusion results contained few NIR data with the increase of σ1 and γ1. This is
because increasing σ1 and γ1 converts most of the visibility ratio value (see (14)) into 0 as
shown in Figure 13c. Thus, few NIR data are transferred to the fusion result. We assess
the effects of λ and β (in the gradient denoising term) on the fusion result as shown in
Figure 14.

From the figures, increasing β leads to the blur effects (see Figure 14a,b) because a
large β reduces the gradient magnitude. By introducing the visibility ratio into λ, the fusion
result contains sharp details (see Figure 14b,c) because the visibility ratio adaptively selects
the NIR texture transfer and gradient denoising. A low visibility ratio enforces the gradient
enhancement in gradient denoising terms. Finally, we provide experiments on the effect of
η in the denoising term for the fusion result as shown in Figure 15. We concluded that the
results with large η distorted the image details (see the red blocks) because a large η set the
small wavelet coefficients of the fusion result to 0 in (23).
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(a) (b) (c)

(d) (e) (f)

Figure 13. Fusion results from the MFD framework with different σ1 and γ1 pairs in the contrast
preservation term. (a) Noisy RGB image. (b) NIR image. (c) Transfer function (blue, red, and green
curves corresponding to (d–f)). (d) σ1 = 0.1 and γ1 = 2.0. (e) σ1 = 0.5 and γ1 = 4.0. (f) σ1 = 1.0 and
γ1 = 8.0.

(a) (b) (c)

Figure 14. Fusion results from the MFD framework with different λ and β in the gradient denoising
term for wavelet scale map estimation. (a) β = 1.2 and λ with visibility ratio; (b) β = 2.0 and λ with
visibility ratio. (c) β = 2.0 and λ without visibility ratio. The visibility ratio means VINIR/VIRGB

in (14).

(a) (b) (c)

Figure 15. Fusion results from the MFD framework with different η in the denoising term for fused
RGB image. (a) η = 0.001. (b) η = 0.005. (c) η = 0.01.

3.3. Comparison between Different Wavelet Transforms

We implement the proposed method on DWT and DT-CWT decompositions based
on the visibility measurements provided by [24,35]. Figure 16 shows the fusion results
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from the proposed method under DWT and DTCWT. From the figures, the results from
DT-CWT contain less artifacts and sharper details compared with DWT (see the red boxes
in Figure 16). Thus, we implement the proposed method under DT-CWT.

(a) (b) (c) (d)

Figure 16. Fusion results from the MFD framework under DWT and DTCWT. (a) Noisy RGB image.
(b) NIR image. (c) Fusion under DWT. (d) Fusion under DT-CWT.

3.4. Comparison with Different Color Spaces

We tested the proposed method on the YCbCr, HSV, and CIELAB color spaces. We
used fifteen test images for the experiments in Figure 8. Figure 17 shows the visual
comparison among three color spaces by the proposed method. The proposed method in
YCbCr color space generated the results with the least color distortion (see the red blocks in
Figure 17d,e and the greenish color artifacts in Figure 17c). Table 2 shows the performance
comparison among the HSV, CIE LAB, and YCbCr color spaces with the proposed method.
The proposed method achieved the best performance in the quantitative measurements.
Thus, we adopt the YCbCr color space for the proposed method.

(a) (b)

(c) (d) (e)

Figure 17. Fusion results from the proposed method on different color spaces. (a) Noisy RGB image;
(b) NIR image; (c) Fusion result on HSV; (d) Fusion result on CIE LAB; (e) Fusion result on YCbCr.
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Table 2. Performance comparison among the HSV, CIE LAB, and YCbCr color spaces with the
proposed method.

Metrics HSV CIE LAB YCbCr

DE 7.015 7.032 7.128
FBIQE 28.057 29.747 26.836

CIQ 0.764 0.896 0.961
Bold numbers represent the best performance in each metric.

3.5. Computational Complexity

In this section, we provide the runtime of the proposed method and the compared
methods on Table 3 (image size: 512× 512). The average processing time of the proposed
method was 14.94 s/image, which was the longest times among the methods. In the future,
we will consider improving the speed of the proposed method by optimization in (18).

Table 3. Computation time of the six compared methods (image size: 512× 512).

Methods DWLS SM GWS Dense. UDIF Pro.

Time(s/image) 3.42 7.99 0.60 0.40 0.29 14.94

3.6. Application to RGB-NIR Images under Normal Illumination

We applied the proposed method to the paired images captured under a normal
illumination condition. As there is little noise in RGB images, we remove the chroma
denoising in the proposed method and the denoising term in (23). (23) is rewritten to (25).
However, the gradient denoising term is kept because it provides detail enhancement from
the visible NIR components in the fusion results. As shown in Figure 18, the proposed
method generates the enhanced results with a clearer structure and finer details (see the
red blocks in Figure 18).

(a) (b) (c)

Figure 18. Experimental results for the paired images under normal illumination conditions. (a) RGB
images; (b) NIR images; (c) Fusion results.

3.7. Fusion of RGB Luminance Channel and NIR Image in a Local Manner

We provide local scale map estimation and fusion on the RGB luminance channel
and NIR image. Chroma denoising and color enhancement are then used to obtain fused
color images. In the local scale map estimation and fusion stage, we first divide the RGB
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luminance channel and NIR image into overlapping blocks. Then, we apply the proposed
method to each block pair and estimate the local scale map. We obtain each fusion block
y′p corresponding to the local scale map. Finally, we combine all overlapping blocks with
gaussian kernels as follows:

Y′p =
∑x ωp(x) · y′p(x)

∑
ωp(x)
x

(32)

where Y′p is the global luminance at the pixel location p and y′p(x) is the local fused
luminance in a m× m window at the center pixel p; m is the window size; ωp(x) is the
weight function, which is inversely proportional to the l2 norm distance between the center
pixel p and the neighbor pixel x, which is formulated as follows:

ωp(x) = exp(− (x− p)2

γ
) (33)

where γ is the Gaussian parameter, which is set to 3. The relationship between the minimum
size of window m and the maximum decomposition level M of wavelet is m = 2(M+1). This
is because the image patches should be decomposed fully (i.e., the size of last decomposed
image should be larger than or equal to 2× 2). In this work, we set the maximum decom-
position level to 3–5. Thus, the minimum window size corresponds to 16–64. Figure 19
shows the experimental results from the proposed method in a local manner. The proposed
method worked on the test images in a local manner and achieved good performance.

(a) (b)

(c) (d)

Figure 19. Experimental results from the proposed method in a local manner (the maximum decom-
position level is 4). (a) RGB image; (b) NIR image; (c) Fusion result using a 64× 64 local window; (d)
Fusion result using a 128× 128 local window.

3.8. Application to RGB-NIR Images with JPEG Compression

We applied the proposed method to the test images with JPEG compression. We
performed JPEG compression on the test images using the imwrite function in MATLAB. In
the imwrite function, we set the compression degree to 0.25, 0.5, and 0.75. In the previous
manuscript, the lossless test images had the png format. Figure 20 shows the visual quality
of the proposed method on the compressed test images. As shown in Figure 20, in a high
compression degree (i.e., 0.25), the ringing artifacts appeared in the NIR images, and noisy
blocking artifacts appeared in the RGB images (see Figure 20a,b).

The fusion results contained ringing artifacts (see Figure 20e,f). However, in a low



Sensors 2021, 21, 3610 21 of 24

compression degree (i.e., 0.75), the proposed method achieved the same enhancement
results on the compressed images as the lossless png format images (see Figure 20g,h).
Table 4 shows the performance of the proposed methods on the compressed images with
different compression degrees.

From the FBIQE and CIQ metrics, the results were corrupted under the high JPEG
compression degree and had good quality under the low JPEG compression degree. This is
because ringing artifacts decrease the performance of naturalness and contrast measure-
ments in FBIQE and CIQ metrics. The DE values did not change significantly and were
even better under the high compression degree because ringing artifacts appear in the
fusion results (see Figure 20e,f), and the DE metric considers the artifacts as the amount
of details.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 20. Fusion results from the proposed method on the compressed test images with different
compression degrees: (a) 0.25; (b) 0.5; (c) 0.75; (d) png format; (e) Fusion results for (a); (f) Fusion
results for (b); (g) Fusion results for (c); (h) Fusion results for (d). (From (a) to (d), top: RGB images;
bottom: NIR images).
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Table 4. Performance comparison of the proposed method on test images in terms of the DE, FBIQE,
and CIQ metrics.

Metrics 0.25 0.5 0.75 png

DE 7.137 7.134 7.132 7.128
FBIQE 29.283 27.486 26.895 26.836

CIQ 0.803 0.826 0.934 0.961
Bold numbers represent the best performance in each metric.

3.9. Limitation and Future Work

There are two limitations of the proposed MFD framework. First, we did not consider
the calibration problem for RGB and NIR image fusion. The proposed method generates
fusion results with artificial edges when the data are not calibrated well. One solution is
to combine the affine transform into the proposed MFD method to solve the registration
problem [36]. Second, the proposed method does not work well on NIR regions with
weak structure.

When NIR images contain weak structure and RGB images are seriously corrupted by
noise, the weak gradients of the NIR regions smooth the fusion results, and the proposed
method attenuates the details in the fusion regions (see the red blocks of grass in Figure 21).
The adaptive selection of static denoising (NIR guidance denoising) and dynamic denoising
(RGB self-denoising) is one solution to overcome this problem [37].

(a) (b) (c)

Figure 21. Experimental results on test paired images with weak structure in the NIR images. (a) RGB
image; (b) NIR image; (c) Fusion result.

4. Conclusions

In this paper, we proposed MFD of RGB and NIR images based on multi-scale wavelet
analysis. We conducted MFD by MAP estimation in the wavelet domain. In the luminance
channel, we provided a discrepancy model to deal with the discrepancy between the RGB
and NIR images. The discrepancy was obtained by the correlation between the two types
of data. We used the priors of the wavelet scale map and its gradient as the contrast
preservation term and gradient denoising term, respectively. Then, we adjusted the NIR
image based on the scale map to fuse it with the RGB image.

The prior of the fusion wavelet coefficients was modeled as the Laplacian distribution
with an adaptive scaling parameter based on the adjusted NIR image to reduce noise. In
the chrominance channels, we used the guided filter to denoise the noise with the guidance
of the fused luminance. Finally, we employed color enhancement based on the variation
of the luminance after the fusion process. Our experimental results demonstrated that
the proposed method achieved excellent fusion performance with clear structure and
good details.
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