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T cell receptor (TCR) signaling must be precisely tuned to limit collateral damage and 
prevent reactivity to self, while still allowing robust protective immune responses that 
control pathogen invasion. One process that can be used to promote, modify, or 
terminate TCR signaling is ubiquitylation. During ubiquitylation, ubiquitin is covalently 
attached to target proteins through a multistep process, in which E3 ubiquitin ligases 
promote the formation of ubiquitin chains on selected substrates. Ubiquitylation can 
facilitate protein–protein interactions, direct a protein to a specific subcellular location, 
or initiate protein destruction. Like phosphorylation, ubiquitylation is a reversible pro-
cess – deubiquitylating enzymes counteract ligase function by removing ubiquitin chains. 
This reversibility also allows for ubiquitin chain “editing.” Based on an emerging wealth 
of information from genetic loss-of-function studies showing that deregulation of ubiq-
uitylation pathways leads to immune dysfunction, it has become increasingly apparent 
that the dynamic process of ubiquitylation is critical for normal immune cell function. In 
this review, we will describe how ubiquitylation acts as a key modulator and integrator 
of signaling downstream of TCR engagement. Specifically, we highlight the known roles 
of the substrate-specific E3 ligases and deubiquitylating enzymes in TCR signaling and 
T cell activation. While it is clear that ubiquitin enzymes tune T cell signaling and T cell 
function, elucidating the molecular mechanisms by which these proteins modulate T 
cells has met with significant challenges. Identifying substrates of these enzymes has 
been a particular challenge, and thus substrates of many E3 ligases and deubiquitylating 
enzymes remain largely unknown. To that end, we discuss the promise, and some prac-
tical considerations, of using proteomics-based techniques for unbiased identification of 
putative substrates of ubiquitin cascade proteins within primary T cells. These methods 
provide an exciting opportunity for further defining how TCR signals are regulated and 
for identifying new targets for therapeutic modulation.
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iNTRODUCTiON

T cells are key organizers of the immune response. During an immune response, CD4+ T helper 
cells direct the response of other cell types through the production of cytokines, while CD8+ cyto-
toxic T cells mediate direct elimination of infected or altered-self cells. Both CD4+ and CD8+ T 
cells promote elimination of pathogens through a variety of means and provide protection against 
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FiGURe 1 | The ubiquitin cascade. (A) Free ubiquitin is activated in an ATP-dependent manner by conjugation to an E1. Subsequently, in a trans-thiolation 
reaction, ubiquitin is transferred from the E1 to the catalytic cysteine of an E2. The ubiquitin-conjugated E2 then interacts with an E3 ubiquitin ligase, to allow 
ubiquitylation on a lysine residue of a substrate. In the case of catalytic E3 ligases, an additional trans-thiolation reaction occurs to transfer ubiquitin from the E2 
catalytic cysteine to the E3 catalytic cysteine. The E3 then mediates covalent bond formation between the substrate and ubiquitin. (B) Ubiquitylation is a diverse 
modification, and distinct types of ubiquitylation – monoubiquitylation, multi-monoubiquitylation, and various polyubiquitylation linkages – are recognized by distinct 
ubiquitin-binding domains, leading to diverse final outcomes for the ubiquitylated protein.
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re-exposure by establishing long-lasting memory cell popula-
tions. To acquire these protective functions, T cells are first acti-
vated via their T cell receptor (TCR) by an antigen-presenting cell 
(APC) presenting an antigenic peptide-MHC (pMHC). During 
activation, quantitative (strength) as well as qualitative (presence 
or absence) signals are integrated to specifically tailor the T cell 
response to the host’s need to clear a specific type of pathogen 
or limit collateral damage from other responding immune cells. 
The combination of signals from engagement of the TCR, co-
stimulatory molecules, and cytokine receptors (also known as, 
respectively, signals one, two, and three) allows appropriate, con-
textual activation and differentiation of T cells (1–4). Depending 
on the type of pathogen encountered, CD8+ T cells and distinct T 
helper subsets play more or less important roles in directing the 
immune response.

Inappropriate signaling downstream of TCR/co-stimulatory 
molecule engagement can lead a T cell to respond aberrantly, 
resulting in hypo- or hyper-responsiveness to antigenic stimula-
tion (5–7). The expression levels and function of cellular proteins 
that relay signals initiated downstream of TCR and co-stimulatory 
molecule engagement are therefore tightly regulated to prevent 
inappropriate T cell responses. Post-translational modifications 
play critical roles in regulating these signal transduction path-
ways. In this regard, phosphorylation and dephosphorylation 
events have been a primary focus of research on TCR signaling 
pathways, particularly TCR-proximal signaling. However, there 
is growing appreciation that covalent attachment of the 8-kDa 
protein ubiquitin, either single or in chains, is another key 
post-translational modification driving T cell signaling and fate 
decisions.

The most commonly considered outcome of ubiquitylation is 
protein degradation via the proteasome. However, monoubiqui-
tylation or polyubiquitylation of accessible target protein lysines 
can alter protein fate and function in diverse ways, resulting in 
protein degradation, activation or inhibition of function, altered 

trafficking, or providing a scaffold for protein–protein interac-
tions (8, 9). In T cells, ubiquitylation can affect T cell activation 
and anergy, as well as helper T cell differentiation, cytokine 
production, and cell cycle progression (10, 11).

Conjugation of ubiquitin to lysines on target proteins (sub-
strates) occurs in a series of steps, illustrated in Figure  1A. 
First, ubiquitin is activated in an ATP-dependent manner by 
conjugation to an E1, or ubiquitin activating enzyme. Second, in 
a trans-thiolation reaction, ubiquitin is transferred from the E1 to 
the catalytic cysteine of an E2, or ubiquitin conjugating enzyme. 
The ubiquitin-conjugated E2 then interacts with an E3 ubiquitin 
ligase, to allow ubiquitylation on a lysine residue of a substrate 
(8, 12). E3 ubiquitin ligases bring substrate specificity to this 
reaction. There are two types of E3 ubiquitin ligases: those that 
have intrinsic catalytic activity, homologous to E6AP carboxyl 
terminus (HECT) type and really interesting new gene (RING)-
between-RING (RBR) ligases, and those that do not, RING or 
U-box ligases (13). RING or U-box E3 ligases serve a scaffolding 
function, bringing ubiquitin-loaded E2 into close proximity 
to target protein lysines to facilitate covalent bond formation 
between the target lysine and the C-terminal glycine of ubiquitin. 
HECT-type ligases also bind to substrate and ubiquitin-loaded 
E2, but, in a second trans-thiolation reaction, ubiquitin is passed 
from the catalytic cysteine of the E2 to the catalytic cysteine of 
the E3, which then catalyzes ubiquitylation of the target lysine 
directly (14). RBR ligases have HECT-like catalytic activity in one 
RING domain, while the other retains the more common RING 
function, namely, the capacity to bind an E2 (15).

Ubiquitylation of a protein substrate can result in monoubiq-
uitylation –  the addition of a single ubiquitin to one or many 
accessible lysines of the substrates (known as multi-monoubiq-
uitylation) – or can lead to the formation of polyubiquitin chains 
on the substrate (Figure 1B). These distinct post-translational 
modifications are recognized as unique signals by proteins 
containing ubiquitin-binding domains (16). Polyubiquitylation 
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TABLe 1 | e3 ligases can promote or inhibit activation of T cells.

Promotes T cell 
activation and 
proliferation

Limits T cell 
activation

Ties T cell 
activation to 
co-stimulation

induces T 
cell anergy

Nedd4 Itch TRIM30 GRAIL

WWP2 Nedd4-2 TRAF6 Cbl-b

TRIM28 TRIM27 Cbl-b Itch

Cul1 Peli1 Itch

Stub1 Cbl-b

TRAF6 (c-Cbl)

TRAF2
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occurs when ubiquitin is processively conjugated to itself via 
one of its seven solvent accessible lysines (8, 9). It is worth 
noting that “head to tail” linked linear polyubiquitin chains, in 
which ubiquitin is linked via its N-terminal methionine were 
recently characterized; this unique linkage has been reviewed 
elsewhere (17).

Polyubiquitin chains linked via different lysines have distinct 
macromolecular structures. These distinct macromolecular 
structures are recognized by ubiquitin-binding proteins specific 
for certain polyubiquitin structures; these ubiquitin binding 
proteins  ultimately direct distinct downstream protein fates. For 
example, K63 chains can provide a scaffold for protein complex 
formation. By contrast, “canonical” K48 chains are recruited to 
the proteasome, and thus promote degradation. However,  dis-
tinct chains can target a protein for the same fate: all   “atypical” 
ubiquitin linkages except K63 (e.g., lysine 6, 11, 27, 29, or 33) are 
recognized by proteasomal ubiquitin-binding domain proteins 
(18). The purpose of this redundancy is as yet unknown, and it 
is further complicated by the fact that more complex, branched 
chains of mixed linkages (heterotypic chains) also occur, although 
few downstream effects of these mixed linkages have been deter-
mined in cells (9, 19).

Ubiquitylation involves formation of covalent bonds; however, 
as with other post-translational modifications, ubiquitylation is 
reversible. Ubiquitin can be removed from proteins by deubiqui-
tylating enzymes (DUBs), which can be specific for certain types 
of ubiquitin linkages and/or ubiquitylated protein substrates 
(12, 20). DUB activity is also required to generate a pool of free 
ubiquitin monomers from ubiquitin precursors, establishing 
these enzymes as key to initiating the ubiquitylation cascade (21). 
Thus, ubiquitylation is a highly dynamic, complex, and controlled 
form of molecular regulation, and a form of post-translational 
modification that impacts almost all proteins in the cell. To deal 
with such a vast array of possible targets, the substrate-specific 
components of the ubiquitylation cascade  –  E3 ligases and 
DUBs – show extensive diversity, while E1 and E2 enzymes are 
highly conserved and limited in number. Putative and verified 
ubiquitin enzymes in the mammalian genome are predicted to 
number more than 700 (12).

Our understanding of how ubiquitylation modulates TCR 
signaling is still in its infancy. Genetic loss-of-function studies 
are beginning to reveal some of the key enzymes and accessory 
proteins involved. Based on these studies, we now know that E3 
ligases and DUBs affect many steps within the signaling cascades 
downstream of the TCR that culminate in the activation of critical 
transcription factors, such as NF-κB, NFAT, and AP-1. Several 
E3 ligases have been shown to be key players in the induction 
of anergy and in the differentiation of T helper cell subsets (10). 
However, for most E3 ligases and DUBs with described roles 
in the immune system, the specific substrates that regulate the 
impacted signaling pathways have yet to be identified. Indeed, for 
many E3 ubiquitin ligases and DUBs, whether substrate binding 
or enzymatic function is required for their observed function in 
T cells has yet to be directly tested.

The studies done to date identifying substrates and roles for 
E3 ligases and DUBs in T cells have uniformly been targeted in 
nature, based on use of genetic loss-of-function mouse or cell 

models. This approach has characterized many critical ubiquity-
lation events in activated T cells. However, these targeted studies 
are inherently limited in scope and fail to integrate previously 
described ubiquitylation events downstream of the TCR with 
newly defined ubiquitylation substrates. Thus, more global 
profiling of ubiquitylation events is needed to validate previous 
findings and uncover new roles for ubiquitylation in T cells in a 
high-throughput manner, enabling more targeted future studies. 
In this regard, ubiquitylation studies in immune cells lag behind 
phosphorylation studies. Global phosphoproteome studies have 
characterized dynamic phosphorylation events that occur during 
engagement of the TCR and co-stimulatory molecules (22–28). 
Similar studies have yet to be done for ubiquitylation in T cells. 
New quantitative proteomics platforms have recently been devel-
oped that have the potential to identify ubiquitylation events 
critical for T cell function, validate previous mechanistic findings, 
and reveal relationships between ubiquitylation and protein fate 
in a more global fashion.

In this review, we have focused on families of E3 ligases and 
DUBs that are known to regulate TCR signaling. The paucity of 
mechanistic information demonstrates the need for new tools, 
techniques, and further research to reveal how ubiquitylation 
regulates substrate fate and function and how this impacts 
TCR signaling events. To this end, we discuss the potential and 
practical limitations of new proteomic approaches to probe the 
ubiquitylome of T cells, and thus aid in unbiased screening of 
substrates.

e3 Ubiquitin Ligases
E3 ubiquitin ligases have one common feature  –  the ability to 
select the protein substrates in the cell that will be covalently 
“tagged” with ubiquitin, thereby imparting substrate specificity 
to the ubiquitin cascade. Each E3 contains one or more domains 
that allow substrate binding, as well as a domain that binds 
an ubiquitin-conjugated E2. In the case of the HECT-type E3 
ubiquitin ligases, E2 binding occurs within the HECT domain, 
while among RING type ligases E2 binding occurs via the RING 
domain. Currently, there are only a few catalytic HECT-type 
ligases with known functions in T cells – all of these are members 
of the neuronal precursor cell expressed and developmentally 
down-regulated protein 4 (Nedd4) family discussed below. All 
other E3 ubiquitin ligases with known roles in TCR signaling are 
non-catalytic, RING-type ligases. In Table 1, we have categorized 
several well-known E3 ubiquitin ligases, described in more detail 
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below, based on the role of the ligase in promoting/preventing T 
cell activation.

CASiTAS B-LiNeAGe LYMPHOMA 
LiGASeS

The three highly homologous casitas B-lineage lymphoma (Cbl) 
proteins, Cbl (c-Cbl, Cbl2, or RNF55), Cbl-b (also termed RNF56), 
and Cbl-c/Cbl-3 (also termed Cbl-SL or RNF57), have a RING 
domain, which allows interactions with E2 conjugating enzymes 
(31, 32), and multiple protein–protein interaction domains to 
facilitate their selection of substrates (33, 34). These protein–
protein interaction regions include a tyrosine kinase-binding 
domain (TKB), a Src homology (SH2) domain, a proline-rich 
motif, an ubiquitin-associated (UBA) domain, and additional 
motifs known to be phosphorylated in a signal-dependent man-
ner. Cbl-b and c-Cbl were among the first E3 ubiquitin ligases 
implicated in TCR signaling (29, 30). The third family member, 
Cbl-c, is not known to be expressed in T cells. Their diversity 
of interaction motifs make Cbl-b and c-Cbl particularly well 
suited for binding mediators of signaling cascades, such as those 
downstream of the TCR.

Cbl-b negatively regulates T cell activation. Mice lacking Cbl-b 
spontaneously develop autoimmune disease as they age and are 
more susceptible to induced forms of autoimmune disease. This 
is not due to a defect in the thymic selection of Cbl-b deficient 
T cells, as Cbl-b is predominantly expressed in T cells only after 
they have completed thymic development (35). Rather, T cells 
lacking Cbl-b can become fully activated in the absence of CD28 
co-stimulation (29, 30, 36). Additionally, in vitro Cbl-b deficient 
CD4+ T cells show increased IL-2 production and proliferation 
in response to TCR/co-stimulation (29, 30). In peripheral T 
cells, TCR engagement drives activation of NFAT, which in turn 
leads to Cbl-b expression (37). Once expressed, Cbl-b has been 
proposed to mediate ubiquitylation of multiple TCR signaling 
mediators, including PLC-γ, the PI3 kinase subunit p85, and 
PKCθ (29, 30, 37–40). However, whether these are the relevant 
substrates remains somewhat controversial (41), and the precise 
means through which Cbl-b regulates TCR signaling via these 
and other substrates remains to be defined.

c-Cbl, like Cbl-b, negatively regulates TCR signaling. Unlike 
Cbl-b, c-Cbl is expressed predominantly in the thymus where it 
regulates levels of the TCR and signal strength upon receptor liga-
tion. T cells lacking c-Cbl have enhanced Zap-70 phosphoryla-
tion, elevated TCR levels, and altered thymic selection (42, 43). 
Following TCR ligation, Zap-70 recruits c-Cbl to ubiquitylate the 
TCRζ chain (44). Interestingly, Zap-70-deficient thymocytes do 
not show defects in TCR surface expression (45, 46), supporting 
that other molecules, such as SLAP, may help recruit c-Cbl to the 
TCR complex (47–51). Once ubiquitylated, the TCR is degraded 
within lysosomes, as degradation is blocked by the use of lyso-
somal inhibitors (51) or deficiency in lysosomal-associated pro-
teins, such as LAPTM5 (52, 53). Although c-Cbl has been shown 
to ubiquitylate other substrates, such as WASP (54), p85 (55), and 
CD5 (56), the relevance of ubiquitylation of these substrates in 
TCR signal modulation is less well-defined.

The similar yet non-redundant role of c-Cbl and Cbl-b in T 
cells is emphasized by the exacerbated phenotype of mice with 
doubly deficient T cells (57). Conditional deletion of both c-Cbl 
and Cbl-b in T cells leads to robust T cell-mediated inflammation 
mice: doubly deficient CD4+ T cells show defective surface TCR 
downregulation after ligand engagement, leading to prolonged 
signaling and T cell hyperesponsiveness (57).

More recently, Cbl-b has been described to work with other E3 
ligases. Cbl-b can bind to the prototypic member of the Nedd4-
family of E3 ubiquitin ligases, Nedd4 (58, 59). Nedd4 and Cbl-b 
have been shown to regulate each other’s function, either through 
degradation or by recruitment of the ligase to other factors (58, 
59). Additionally, as described below, Cbl-b can work with STIP1 
homology and U-box containing protein 1 (Stub1) to ubiquitylate 
FoxP3 (58–60).

NeURONAL PReCURSOR CeLL 
eXPReSSeD AND DeveLOPMeNTALLY 
DOwN-ReGULATeD PROTeiN 4 LiGASeS

The neuronal precursor cell expressed and developmentally 
down-regulated protein 4 (Nedd4) family of catalytic HECT type 
E3 ubiquitin ligases is highly conserved, with an ortholog in bud-
ding yeast (61). These catalytic E3 ubiquitin ligases serve double 
duty in the ubiquitin cascade – providing both substrate speci-
ficity and catalyzing the final transfer of ubiquitin to accessible 
lysines on the target protein. As with other catalytic E3 ubiquitin 
ligases, Nedd4-family members are regulated by autoinhibition 
and activated by phosphorylation or through interactions 
with accessory proteins (62). The nine Nedd4-family proteins 
expressed in mammals share a modular architecture consisting 
of two to four WW domains that facilitate protein–protein 
interactions, a lipid and calcium-binding C2 domain, and the 
catalytic HECT domain. These nine Nedd4-family members 
constitute ~1/3 of the known HECT type E3 ligases in mice 
and humans (14, 63). Of the nine family members, evidence 
exists in the literature for expression of four of these in T cells: 
Nedd4, Nedd4-2 (or Nedd4L), WWP2, and Itch. The similarity 
of the Nedd4 family members has made mechanistic studies 
particularly challenging. In many cases, substrates identified for 
one family member are capable of being ubiquitylated by most 
other family members in  vitro. Thus, while certain substrates 
have been described as being shared or context specific, cases of 
mistaken identity have also occurred (37, 62).

Nedd4 the archetypal family member, was originally charac-
terized, along with the highly homologous Nedd4-2, as a nega-
tive regulator of epithelial sodium channel (ENAC) expression 
(64–67). Follow-up studies revealed numerous other shared, as 
well as unique, substrates for these E3s, including other ion chan-
nel and growth factor receptors (63). These substrates have not 
been specifically investigated in T  cells, despite clear relevance 
for many of these proteins in T cell survival and TCR signaling. 
In the case of Nedd4, homozygous deletion resulted in embryonic 
lethality, and no T cell-specific knockout has been made; there-
fore, studies of Nedd4 function in T cells have been limited. Using 
fetal liver chimeras, Yang et al. found that Nedd4 promotes TCR 
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signaling via degradation of Cbl-b (59). Due to accumulation of 
Cbl-b, T cells lacking Nedd4 were hypo-responsive to stimuli. 
An additional substrate of Nedd4, and perhaps WWP2 and 
Nedd4-2 as well (63, 68, 69), PTEN is also thought to have a role 
in Nedd4−/− T cell hyporesponsiveness. Guo et al. proposed that, 
in the absence of Cbl-b, Nedd4 promotes PTEN inactivation via 
degradation, leading in part to the hyper-responsive phenotype 
of Cbl-b−/− T cells (70). There is some evidence that Nedd4 can 
also act as a negative regulator of T cell responses, as, together 
with Itch, Nedd4 was proposed to degrade Bcl10 in order to limit 
NF-κB responses after TCR stimulation (71).

A thorough characterization of the role for Nedd4-2 in T cells 
is also lacking, as knockout mice show lethality at 3  weeks of 
age (72) and no T cell-specific knockout mouse has been made. 
In CD4+ T cells, however, Nedd4-2 was recently published to 
degrade JunB, a transcription factor previously published as a 
substrate of the Nedd4-family member Itch (73). However, this 
remains to be validated and described in more detail.

WWP2 is a much less studied family member, and to date no 
phenotype for knockout animals has been published. Using exog-
enous over-expression in T cells, one study identified WWP2 as a 
positive regulator of T cell activation, similar to Nedd4, as WWP2 
was found to degrade Egr2, thereby limiting activation-induced 
cell death (74). The finding that PTEN can be degraded by WWP2 
in certain transformed cell lines (69) suggests that WWP2 could 
regulate PTEN levels and/or function during T cell activation, 
although this has not been investigated.

Of the Nedd4 family members, Itch is the best studied in 
immune cells due to the striking immunological phenotype of 
Itchy mutant mice, which develop fulminant auto-inflammatory 
disease, characterized by Th2 skewing of CD4+ T cells (75, 76). 
Along with gene related to anergy in lymphocyte (GRAIL) and 
Cbl-b, Itch is considered to be a tolerogenic E3 ligase with impor-
tant functions in restraining inappropriate immune responses. In 
activated T cells, Itch has been proposed to degrade PKCθ and 
PLCγ1 (37). In mouse peripheral T cells, one well-characterized 
substrate of Itch is JunB, an IL-4 transcription factor that accumu-
lates in the absence of Itch, contributing to the TH2-type inflam-
mation in Itchy mice (76, 77). However, over-expression of JunB 
only partially recapitulates the Itchy mouse phenotype, suggesting 
that other factors are also targets of Itch E3 ligase activity. Prior to 
the description of Itch as an E3 ligase for JunB, Itch was shown bio-
chemically to degrade Notch. This may explain why Itchy mutant 
hematopoietic stem cells display increased proliferation and long-
term self-renewing properties characterized by increased Notch1 
signaling (78–81). FoxO1 was recently described as a target of Itch 
in vaccinia responsive TFH, but how FoxO1 is regulated in other T 
cell compartments has yet to be addressed (82). Itch also has direct 
relevance to human disease, as humans with mutations in Itch 
also show immunological defects (83). However, the molecular 
mechanisms within human immune cells leading to aberrant 
immune responses have not been described.

TRiPARTiTe MOTiF LiGASeS

Tripartite motif protein (TRIM) E3 ligases are named for the pres-
ence of the tripartite motif, which contains a RING domain, one 

or two B-Box domains, and a coiled coil domain (84). This unique 
motif is invariably located at the N terminus, while there is broad 
heterogeneity in the C-terminal domains (85). TRIMs interact to 
generate homotypic and heterotypic multimers, forming discrete 
macromolecular structures in specific cellular compartments 
(84, 86, 87). TRIMs are a large, heterogeneous family in mam-
mals, with ~70 proteins in both mice and humans. Analysis of 
the C-terminal domains suggests that TRIMs have diversified 
extensively in vertebrates, perhaps in response to pathogens (88, 
89). The E3 ligase function of TRIMs is not limited to ubiqui-
tin – although TRIMs can promote ubiquitylation through their 
interaction with E2 ubiquitin conjugating enzymes, TRIM RING 
domains can also mediate sumoylation and ISGylation with a 
variety of other E2s (90–92). Much work has focused on a role for 
TRIMs in pathogen responses, particularly in promoting antiviral 
responses in innate immune cells (93–103). This literature has 
been the subject of several reviews (104–107). However, little is 
known about the role of TRIMs in adaptive immune cells.

The most well-characterized TRIM in CD4+ T cells is TRIM28 
(also called KAP/TIF1α), which contains histone interacting 
domains in addition to the tripartite motif, and is   inducibly 
phosphorylated during TCR signaling (108). TRIM28fl/fl 
CD4Cre+ mice have defective TCRα rearrangement  and reduced 
peripheral T cell numbers; these TRIM28-deficient T cells have 
impaired cell proliferation and IL2 production (108, 109). 
Somewhat surprisingly, however, these mice develop autoim-
mune disease, characterized by high percentages of TH17 cells 
and defective Tregs (108).

Several other TRIM family members have known or suggested 
roles in CD4+ T cells. TRIM27 is a negative regulator of CD4+ 
T cell activation by promoting degradation of PI3KC2β, thereby 
limiting calcium release and preventing a sustained calcium 
signal after TCR engagement (110). Similarly, TRIM30 also 
appears to negatively regulate TCR signals, as CD4+ T cells from 
TRIM30−/− mice show a loss of co-stimulatory molecule depend-
ence and increased homeostatic proliferation upon transfer into 
Rag1−/− recipients (111). Within innate cells, TRIM21 promotes 
ubiquitylation of IRF3, IRF7, and IRF8, with either pro- or anti-
inflammatory effects on cytokine production (112–114). One 
study of TRIM21−/− mice determined that several dysregulated 
cytokines are related to TH17 development (115); however, 
whether this is due to T cell intrinsic hyper-cytokine production 
remains to be seen. While many TRIMs have particularly high 
expression in innate cells, some are preferentially expressed 
within CD4+ T cells at the RNA level, including TRIM1, TRIM9, 
TRIM18, and TRIM46 (116). To date, no findings on these TRIMs 
in T cells have been published.

CULLiN RiNG LiGASeS

The cullin RING ligases (CRLs) are the largest known family 
of E3 ligases. Translational research on cullins has primarily 
focused on their potential role in cancer because they are known 
to affect genes involved in cell cycle progression, cell prolifera-
tion, apoptosis, and DNA repair (117). Despite the relevance of 
these processes to T cell function, minimal work has been done 
on cullins in immune cells. Cullin proteins themselves do not 
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possess an E3 ligase domain or function. Rather, cullins are the 
central scaffold of CRL complexes. CRLs are composed of cullin 
scaffold, a RING-box protein, a substrate recognition protein, 
and, in most cases, an adapter protein linking the cullin to the 
substrate recognition protein. There are 8 cullin family members, 
but there are over 200 CRLs due to the modular nature of these 
complexes (118, 119). The RING-box protein, Rbx1 or Rbx2, 
binds to the globular C-terminal domain (CTD) of the cullin 
and promotes CRL enzymatic activity by interaction with an E2 
conjugating enzyme. The cullin CTD also contains a conserved 
lysine that must be NEDDylated in order for the cullin to be in its 
active form (117). Within the cullin N-terminal domain (NTD), 
cullin repeats either bind directly to a substrate-binding protein 
or indirectly via an adapter protein (119, 120). Assembly and 
structure of CRL complexes have been studied extensively and 
have been reviewed elsewhere (121).

The most well-studied member of the cullin family is CUL1. 
CUL1 expression in human tissues is highest in the spleen, blood, 
and tonsils, suggesting a possible immune function (122). CUL1 
CRLs, also known as SCF complexes, are a complex of the adap-
tor Skp1, Rbx1, and 1 of nearly 70 different F-box proteins. The 
substrate specificity of the SCF complex is thought to be deter-
mined by the F-box protein (118). Of these 70 CUL1 CRLs, only 
3 have been fully characterized in terms of substrate and function 
(118, 123). Substrates of the SCF are within known TCR signal-
ing pathways and include the IFNα receptor 1 and IκBα (122, 
124–126). However, only one study has specifically looked at the 
role of CUL1 in TCR signaling. In this study, TCR stimulation led 
to the ubiquitylation of p27kip1 by SCFskp2. p27kip1 ubiquitylation 
and subsequent degradation allowed T cells to proceed into S 
phase. TCR stimulation increases expression of Skp2, the F-box 
protein that targets the ligase activity of SCF to p27kip1, in contrast 
transcription of CUL1 and Skp1 was not affected (127).

Two other cullins have known roles in T cells, although their 
function in TCR signaling is unclear. Recently, it was shown 
that knockdown of CUL2 and CUL3 in a T cell line led to a 
robust increase in IL-2 production following TCR stimulation 
(10). CUL3 is the only member of the cullin family for which 
a T-cell-specific knockout mouse exists. Ratios of thymic CD4+ 
and CD8+ T cells are normal in these mice, but specific effector 
cell populations are disrupted. Levels of TFH cells are abnormally 
high and NKT cells are significantly reduced in number (128). 
CUL3 associates with the BTB-ZF family of transcription factors 
to make epigenetic changes that direct the differentiation of 
these two T cell populations. CUL3 leads to the promotion of 
the NKT cell lineage and the inhibition of TFH cells by associating 
with PLZF and Bcl6, respectively (128, 129). This phenotype was 
shown to be independent of TCR signaling (129), so it remains 
unclear whether and how CUL3 regulation of TCR signaling 
regulates T cell biology.

Perhaps due to the relevance of cullins in cancer, several 
unbiased proteomic screens have been developed in cell lines 
and successfully used to identify CRL substrates bound by 
different F-box proteins. These screens have utilized substrate-
trapping mutations in the F-box proteins that prevent release of 
the ubiquitylated substrate, tagged versions of F-box proteins for 
specific immunoprecipitation, and the chemical inhibitor of the 

Nedd8-activating enzyme to prevent cullin activation (130–133). 
These large scale studies have achieved good specificity and 
reproducibility; however, utility of these published work flows is 
likely limited in primary immune cells due to the requirement for 
numerous replicates and a transfectable cell type.

GeNe ReLATeD TO ANeRGY iN 
LYMPHOCYTeS

As indicated by its name, gene related to anergy in lymphocytes 
(GRAIL) is a RING-type E3 ubiquitin ligase that is crucial for the 
induction of anergy in T cells. Resting T cells generally express 
low levels of GRAIL; these levels are further decreased following 
TCR/CD28 stimulation (134). Conversely, expression of GRAIL is 
rapidly increased following anergic stimulation of T cells. Resting 
T cells that over-express GRAIL produce greatly reduced IL-2 
in response to TCR  stimulation – this reduced IL-2 production 
depends on GRAIL E3 ligase activity (135). GRAIL over-expressing 
Jurkat and DO11.10 T cells exhibit impaired actin polarization at 
the immunological synapse following TCR stimulation, and also 
demonstrate impaired lymphocyte function-associated antigen 
(LFA) polarization and JNK phosphorylation downstream of 
TCR stimulation (136).

GRAIL knockout BALB/c mice have normal numbers and 
ratios of lymphocytes. However, established methods of inducing 
oral tolerance in these mice are ineffective (137). Aged GRAIL 
knockout mice develop autoimmune disease with infiltration of 
lymphocytes in their lungs and kidneys (138). CD4+ T cells from 
GRAIL knockout mice are more sensitive to TCR stimulation, 
exhibiting hyperproliferation and increased production of IL-2 
and IFN-γ (137). The CD3ζ chains have been implicated as a pos-
sible target of GRAIL’s E3 ligase activity. Following stimulation 
with αCD3 alone, there are fewer TCRs on the cell surface and a 
concordant increase in ubiquitylation of CD3ζ; in the absence of 
GRAIL, this downregulation of the TCR does not occur (138).

PeLLiNO 1

The three Pellino family members are highly homologous, and all 
contain a RING domain that is critical to their function. In T cells, 
Pellino 1 (Peli1) acts as a negative regulator of T cell activation via 
its interaction with the NF-κB pathway. Cells deficient in Peli1 
are hyper-responsive following TCR stimulation, with increased 
production of IL-2 and IFN-γ. These cells are also resistant to 
TGF-β-or Treg-mediated suppression (139). The hyper-responsive 
phenotype of Peli1 knockout cells correlates with increased pro-
tein levels of NF-κB and increased nuclear c-Rel following TCR 
stimulation. Peli1 has been shown to ubiquitylate c-Rel, forming 
K48 chains that initiate its degradation (139). Peli1 knockout mice 
have increased numbers of memory T cells in both the spleen 
and lymph nodes. Similar changes in T cell populations are seen 
among Peli-deficient T cells in mixed bone marrow chimeras, 
indicating that Peli1 acts intrinsically on these T cell populations. 
Aged Peli1 mice develop autoimmune disease with anti-nuclear 
antibodies in the serum, immune complexes in the kidneys, and 
lymphocyte infiltrates in the kidneys, liver, and lungs (139).
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STiP1 HOMOLOGY AND U-BOX 
CONTAiNiNG PROTeiN 1

The U-box E3 ubiquitin ligase Stub1, also known as carboxy ter-
minus of HSP70-interacting protein (CHIP) plays an important 
role as a “co-chaperone,” associating with protein folding machin-
ery to promote degradation of aberrantly folded proteins during 
new protein synthesis. Consistent with this role, Stub1 is highly 
expressed in metabolically active cells and tissues, in which a high 
level of translation is maintained (140, 141). In T cells, Stub1 has 
been shown to regulate NF-κB activation following TCR ligation, 
suggesting a role in tuning T cell activation. Stub1 also limits the 
levels of FoxP3 after TCR stimulation, supporting a role in Treg 
cell fate.

Specifically, Stub1 is thought to amplify NF-κB signaling 
through ubiquitylation of CARMA1. Jurkat T cells with Stub1 
knocked-down via RNAi show decreased phosphorylation of 
IκBα, decreased ubiquitylation of CARMA1, and decreased 
transcription of IL-2 in vitro (142). Following TCR ligation of 
regulatory T cells, Stub1 has been shown to ubiquitylate FoxP3. 
In Jurkat T cells constitutively expressing FoxP3, degradation 
of FoxP3 following TCR and inflammatory cytokine signaling 
depends on Stub1 ubiquitylation of FoxP3. Accordingly, knock-
down of Stub1 led to the accumulation of FoxP3 in this cell line 
(143). Stub1 also associates with FoxP3 upon TCR stimulation. 
Both Stub1 and Cbl-b can ubiquitylate FoxP3 following TCR 
stimulation, but Stub1 may play a more dominant role as T cells 
deficient in Cbl-b show reduced ubiquitylation, whereas T cells 
deficient in Stub1 have a complete lack of FoxP3 ubiquitylation 
(60). Much of the work thus far on Stub1 has been performed 
using cell lines or over-expression systems. Given that Stub1−/− 
mice develop spontaneous atopic lung inflammation (144), while 
it remains unclear whether or how these mechanisms regulate T 
cell function in vivo, an intrinsic role for Stub1 in regulation of 
activated T cells seems likely.

While many E3 ligases and DUBs operate as part of cellular 
quality control mechanisms, as is the case for Stub1, few also 
have specific, separable roles in signal responses. Thus, it will be 
interesting to see if future research identifies the Stub1 targets 
described thus far as client proteins of molecular chaperones.

TNF ReCePTOR-ASSOCiATeD FACTOR 
FAMiLY

TNF receptor-associated factor (TRAF) proteins are defined 
by their association with membrane-bound receptors in the 
tumor necrosis factor receptor (TNFR) family. All TRAF pro-
teins have a conserved TRAF domain at their C-terminus that 
interacts both with these associated membrane receptors and 
with other TRAF proteins to form hetero- and homodimers. 
All TRAF proteins except TRAF1 have an N-terminal RING 
domain (145). TRAF proteins facilitate K63 polyubiquitylation 
of their substrates, and thus promote protein–protein interac-
tions as opposed to targeting the substrate for proteasomal 
degradation (146).

While multiple TRAF E3 ligases are expressed in T cells, the 
most well-characterized in regards to TCR signaling is TRAF6. 
TRAF6 is required for NF-κB pathway activation following TCR 
stimulation. Knockdown of TRAF6 in Jurkat T cells greatly 
reduces NF-κB activation, likely due to loss of IκBα phosphoryla-
tion. TRAF6 can ubiquitylate MALT1 oligomers via K63 linkages 
that promote protein–protein interactions (147). The ubiquityla-
tion of MALT1 leads to the recruitment of NEMO/IKKγ to the 
CARMA1–MALT1–BCL10 (CMB) complex (148) where it is 
phosphorylated. TRAF6 also ubiquitylates NEMO (147) and 
recruits Caspase8 to lipid rafts. All of these steps are required for 
effective NF-κB signaling in T cells following TCR ligation (149). 
Somewhat surprisingly, although TRAF6 activates NF-κB in vitro, 
the primary phenotype of T cell-specific TRAF6 knockout mice is 
systemic autoimmune disease and a failure to induce anergy (150, 
151). T cells from these mice are resistant to suppression by Treg 
cells and do not require CD28 co-stimulation for their activation. 
These cells also have constitutively activated Akt and enhanced 
phosphorylation of p85 following TCR stimulation (even without 
co-stimulation). This hyperactivation of PI3K pathway compo-
nents may be responsible for the resistance to anergy in TRAF6-
deficient T cells (150). Additionally, TRAF6-deficient T cells have 
reduced Cbl-b expression following anergizing conditions (151). 
Although the specific connection between TRAF6 and Cbl-b 
remains unknown, dysregulation of Cbl-b could also contribute 
to the loss of anergy in TRAF6-deficient T cells.

TRAF2 is also involved in the activation of the NF-κB pathway 
in T cells, but the underlying mechanism is poorly understood. 
TRAF2 acts on the non-canonical NF-κB pathway through a 
signaling complex termed the OX40 signalosome. TCR and 
OX40 signaling leads to an association between OX40 and protein 
kinase B (PKB), and PKB activation. This association is reduced 
in TRAF2-knockdown T cells, resulting in decreased PKB activa-
tion and reduced IL-2 expression (152), suggesting that TRAF2 
ubiquitylation plays an activating role in formation of the OX40 
signalsome. The OX40 signalosome can also activate the CMB 
complex leading to NF-κB activation. TRAF2-knockdown T cells 
fail to fully activate NF-κB likely due to defective formation of the 
signalosome complex (153).

Genetic loss-of-function studies for other TRAFs hint toward 
a role in T cell function, but mechanisms are broadly lacking. For 
example, TRAF1-deficient mice have increased numbers of lym-
phocytes in peripheral lymphoid compartments and an increased 
T/B cell ratio. T cells from these mice are hyper-proliferative in 
response to TCR stimulation, and/or when stimulated with IL-2 
(154). By contrast, T cell-specific TRAF3 knockout mice show 
normal numbers of total T cells but increased numbers of Treg 
cells and CD4+ effector/memory T cells, with reduced numbers 
of CD8+ T cells (155, 156). In vitro, CD4+ T cells from these mice 
showed reduced phosphorylation of ERK, LAT, PLCγ1, and 
ZAP70, and reduced proliferation and cytokine production in 
response to TCR stimulation (155). This is quite different from 
what is seen in TRAF5 knockout mice. These mice show no 
 obvious phenotype or immune deficiency, but when challenged 
using a model of airways hypersensitivity, they show increased 
TH2 lung inflammation compared to WT mice. In vitro, T cells 
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from these mice preferentially differentiate into TH2 cells follow-
ing activation of TCR/OX40 signaling (157).

Deubiquitylating enzymes
The deubiquitylating enzymes (DUBs) are a class of proteases 
that cleave ubiquitin from its target protein, thus allowing 
ubiquitylation to be a reversible process. At this time, 95 putative 
DUB genes have been reported within the human genome based 
on having one of the five ubiquitin-specific protease domains: 
ubiquitin-specific protease (USP), ubiquitin C-terminal hydro-
lase (UCH), ovarian tumor (OTU), Machado-Josephin (MJD), 
or JAB1/MPN/Mov34 metalloenzyme (JAMM) (158). These five 
domains define the five subclasses of DUBs. Most DUBs act as 
cysteine proteases, relying on a cysteine followed by a histidine in 
the catalytic site. The histidine allows for the deprotonation of the 
cysteine residue, which then cleaves the C-terminus of ubiquitin 
by nucleophilic attack (20, 158). The substrate of a DUB can 
be a specific ubiquitin polymer or a specific target protein, but 
targets (substrates) for most DUBs are currently unknown. Mass 
spectrometry of epitope-tagged proteins has identified factors 
that interact with DUBs and have elucidated potential roles for 
DUBs in specific biological processes, many of which are relevant 
in T cells (159).

UBiQUiTiN-SPeCiFiC PROTeASeS

Ubiquitin-specific proteases (USPs) are one of the main families 
of cysteine proteases, and the largest family of DUBs. Since 
cleavage occurs between two ubiquitins within a polyubiquitin 
chain, most USPs contain at least two ubiquitin-binding sites, one 
for the distal ubiquitin and the other for the proximal ubiquitin 
(160). Several USP family DUBs have been shown to regulate 
TCR signaling, including USP9x, USP15, and USP7.

Usp9x is highly expressed in the spleen and thymus of mice 
(161–163), indicating a possible function in T cells. T cells from 
chimeric mice with shRNA knockdown of Usp9x demonstrate 
defective proliferation and reduced IFN-γ, IL-2, IL-4, and IL-17 
production, indicating an inhibition of helper T cell differentia-
tion or cytokine production (162). This inhibition seems to be due 
to a decrease in NF-κB activation following TCR stimulation in 
Usp9x knockdown T cells. Jurkat T cells with Usp9x knockdown 
show decreased phosphorylation of IκBα, decreased nuclear 
p65, decreased Bcl10 interaction with CARMA1, and increased 
ubiquitylation of Bcl10 (162). Thus, Usp9x may be acting on 
the NF-κB pathway via deubiquitylation of Bcl10. Specifically, 
Usp9x appears to deubiquitylate K48 ubiquitin linkages on Bcl10 
following TCR stimulation (162). Experiments in mice with a 
conditional knockout of Usp9x in T cells contradict this finding. 
Although T cells lacking Usp9x have diminished proliferation 
following TCR stimulation, they show no decrease in nuclear 
translocation of p65 or in the interaction between Bcl10 and 
Carma1 (163). Instead, there is  a decrease in phosphorylated 
LAT and PLC-γ1 following TCR stimulation. Mice lacking Usp9x 
in T cells ultimately develop a lupus-like autoimmune disease 
with splenomegaly and anti-nuclear antibodies (163). Usp9x has 
been shown to deubiquitylate Itch, protecting Itch from degrada-
tion in the proteasome after auto-ubiquitylation. Thus, increased 

degradation of Itch in the absence of USP9x could provide an 
alternative explanation for the increased autoimmunity in Usp9x-
deficient mice. However, the experiments examining Itch have 
been carried out in vitro in HEK-293T cells and COS-7 cells, not 
in T cells (161).

Recently, two additional USP DUBs have been published as 
having roles in T cells. USP15 is abundantly expressed in T cells, 
and T cells lacking this enzyme show increased IL-2 and IFNγ 
production. USP15 deubiquitylates MDM2, an E3 ligase that 
ubiquitylates and degrades P53 as well as NFATc2. In the absence 
of USP15, MDM2 levels are decreased and NFATc2 levels in the 
nucleus consequently increase, likely accounting for elevated IL-2 
and IFNγ production (164). Increased T cell responsiveness led to 
improved pathogen clearance as well as reduced tumor-induced 
lethality (164). USP7 decreased immune activation by binding 
to and stabilizing FoxP3 in regulatory T cells, perhaps serving to 
counteract the actions of Stub1 and Cbl-b, which can promote 
FoxP3 ubiquitylation (143, 165). Though USP7 and Stub1/
Cbl-b have not been investigated together, this post-translation 
regulation of FoxP3 may be an example of ubiquitin editing. 
Undoubtedly, future work will uncover additional USP family 
members that play important roles in modulating TCR signaling 
and responsiveness.

Ubiquitin editing
The relationship between E3 ligases and DUBs parallels that of 
kinases and phosphatases. The antagonistic functions of E3 ligase 
and DUBs can quickly create and modify post-translational modi-
fications, and the balance of their functions sets the signaling state 
of the cell. Ubiquitin, however, is not simply an on/off switch. The 
fate of the substrate depends not only on the presence or absence 
of ubiquitin but also on the length and specific linkage type of 
the attached ubiquitin chain. Ubiquitin itself has seven lysine 
residues, thus providing seven different locations for linkages in 
a polyubiquitin chain. The type of ubiquitin chain attached to a 
substrate dictates the fate of that protein. For example, while a 
K48-linked chain targets the substrate for proteasomal degrada-
tion, a K63-linked chain may recruit other signaling molecules 
to the substrate. Both E3 ligases and DUBs show preference for 
forming/removing certain types of ubiquitin linkages. For exam-
ple, the TRAF E3 ligases (Traf2, 3, and 6) build K63 ubiquitin 
chains, whereas Usp9x removes K48 ubiquitin chains (162, 166). 
The number and diversity of E3 ligases and DUBs make ubiqui-
tylation an incredibly dynamic post-translational modification. 
The dynamic alteration of ubiquitin chains is known as ubiquitin 
editing.

Because the precise substrates of many E3 ligases and DUBs are 
still unknown, the exact molecular interactions in most instances 
of ubiquitin editing remain elusive. Ubiquitin editing of NF-κB is 
the most well-studied model. The OTU-domain containing DUB, 
A20, plays a key role in the suppression of the NF-κB activation 
and uniquely demonstrates ubiquitin editing by contain both 
deubiqutylating and E3 ligase domains (167, 168). A20 deficient 
mice die within 3 weeks of birth due to rampant inflammation, 
likely due to over-activation of NF-κB (169). Because it contains 
both DUB and E3 ubiquitin ligase domains, A20 theoretically 
has the potential to form and edit chains on substrates without 
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partnering with other factors. This might be the case in the inter-
action of A20 with one of its known substrates, the kinase RIP. 
Downstream of TNF receptor signaling, RIP activity promotes 
activation of NF-κB; this is terminated by A20. Mechanistically, 
A20 is thought to facilitate the removal of K63 ubiquitin chains, 
which promote activity of RIP, and add K48 ubiquitin chains, thus 
targeting RIP for proteasomal degradation (170).

Most research on A20 has focused on its role in innate immune 
cells, where its function as an ubiquitin editor is well established. 
Few studies have focused on the role of A20 in NF-κB signaling 
following TCR activation. In contrast to innate immune cells, 
TNF does not induce the expression of A20 in T cells. Instead, 
A20 is constitutively expressed in mature resting T cells but is 
immediately down-regulated following T cell activation (171, 
172). In T cells, TRAF6 and A20 work in functional opposition 
to edit MALT1 ubiquitylation, thereby keeping NF-κB activation 
in check downstream of TCR stimulation. TRAF6 promotes 
K63 ubiquitylation of MALT1, leading to the association of the 
Carma1–MALT1-Bcl10 (CMB) complex with IKK, subsequent 
phosphorylation/activation of IKK, and NF-κB activation (148). 
It has been proposed that A20 facilitates deubiquitylation of 
MALT1 to limit the CBM–IKK interaction and suppress NF-κB 
activation (172). Thus, TRAF6 and A20 ubiquitin editing of 
MALT1 provides a rheostat for T cell activation.

Structure–function studies have recently challenged the 
direct role of A20 in ubiquitin editing. Specifically, A20’s role as 
a DUB was recently called into question. A knock-in mouse that 
specifically lacks A20 DUB activity was found to have normal 
NF-κB signaling and no overt phenotype (173), suggesting that 
A20’s DUB function is dispensable for normal NF-κB signaling, 
and its ubiquitin editing function may rely on its other domains 
(such as its E3 ligase RING domain) or higher complex forma-
tion. However, A20 may be required as a DUB in other signaling 
cascades. Specifically, A20 DUB activity was shown to regulate 
necroptosis in T cells, as well as in other cell types (174).

Similar to A20, the UCH-type deubiquitylating enzyme CYLD 
limits NF-κB activation by deubiquitylation. While A20 acts as 
a negative feedback mechanism to NF-κB stimulation, CYLD 
is thought to suppress basal NF-κB activation. In the absence 
of any robust stimulation of NF-κB (such as TCR engagement 
or cytokine signaling), CYLD deubiquitylates TRAF2, TRAF6, 
and NEMO, dampening NF-κB signaling by removing activating 
K63 chains formed by TRAF2/6 (175, 176). Additionally, in both 
macrophages and T cells, CYLD inhibits the ubiquitylation and 
subsequent activation of Tak1, a kinase that activates both IKK 
and JNK (177, 178). Therefore, CYLD is a key negative regulator 
of both the NF-κB and AP-1 pathways through negative regula-
tion of upstream signaling intermediates.

CYLD and A20 demonstrate how the balance and specificity of 
ubiquitylation/deubiquitylation can create a dynamic system for 
modulating immune signaling. In Figure 2, we have summarized 
the known roles in T cells for the ligases described here. While 
limited evidence of ubiquitin editing exists to date in primary 
CD4+ T cells, the opportunity for interplay and co-regulation of 
certain substrates by E3 ligases and DUBs during TCR signaling 
is clear, providing an exciting opportunity for further defining 
how TCR signals are regulated, which may provide new targets 

for therapeutic modulation. In this regard, the controversy sur-
rounding A20’s DUB function serves as an important warning 
that domain homology does not necessarily equate with func-
tion in all systems, and that detailed structure–function studies 
should be undertaken prior to attempts at therapeutic targeting. 
Figure 2 also highlights important aspects of many ubiquitylation 
studies in T cells: first, that targeted approaches typically yield 
only one enzyme–substrate relationship and, second, that several 
well-studied E3 ligases or DUBs have now been published with 
multiple, in some cases overlapping substrates. Thus, generally 
lacking from this work is integration of known ubiquitylation 
events with newly identified events into more cohesive signaling 
networks.

UNBiASeD PROTeOMiC APPROACHeS 
FOR iDeNTiFYiNG e3 LiGASe 
SUBSTRATeS iN PRiMARY T CeLLS

As exemplified in many of the specific ligase/DUB–substrate 
relationships described above, the post-translational attach-
ment of ubiquitin to cellular proteins can alter their function 
and half-life in diverse ways, thereby profoundly impacting 
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T cell signaling and function. Targeted approaches in T cells, 
such as knockout/knockdown or over-expression of E3 ubiq-
uitin ligases/DUBs, have aided in our understanding of how 
ubiquitylation affects specific cellular processes, such as T cell 
activation or effector function, and identified many specific 
protein substrates targeted by the ubiquitylation cascade during 
T cell signaling. However, these targeted approaches are limited 
in scope, and many fail to identify any specific substrate of 
ubiquitylation that is affected in the absence of the E3 ligase or 
DUB of interest.

While many specific E3 ubiquitin ligase and DUBs have 
been identified that impact immune function, as our review of 
the literature indicates there are relatively few (if any) identified 
substrates of these ligases and DUBs. Indeed, the majority of 
known ubiquitylation targets in T cells are attributed to function 
of only a handful of well-studied E3 ligases in which there is a 
robust immune phenotype in loss-of-function mouse models. 
Furthermore, targeted studies of ubiquitylation enzymes typically 
describe a single substrate that is altered in the absence of the 
E3 ligase or DUB; in most cases, it is exceedingly unlikely that 
altered ubiquitylation status of a single protein would be sufficient 
to explain a complex immunological phenotype. In this regard, 
high-throughput analysis of changes in ubiquitylation of many 
potential targets would be exceedingly beneficial both in new 
substrate discovery and in validation of previous findings.

Genomic and transcriptomic analyses of T cells lacking these 
various proteins are likely to suggest only indirect effects, i.e., 
downstream of changes that result from alterations in a substrate 
protein’s levels or function. Proteomics, specifically the analysis of 
proteins using mass spectrometry, is the logical high-throughput 
method for studying post-translational modifications. Proteomic 
analysis of phosphorylation sites has been used with great success 
to catalog dynamic changes in phosphorylation that occur within 
minutes of T cell stimulation (22–28). Similarly, in the ubiquityla-
tion field, proteomics has recently become de rigueur for global 
analysis of ubiquitylation sites and for substrate identification, 
although this has yet to translate to immunology.

Two general strategies have been used for high-throughput 
substrate identification. Candidate substrates can be identified 
based on observing interaction with the E3 ligase/DUB of inter-
est, or a more global analysis can be performed to catalog thou-
sands of ubiquitylated proteins, some of which may be changed in 
abundance in the absence or presence of a specific ubiquitylation 
enzyme. These are both mass spectrometry-based approaches 
that require high protein input. This presents a unique challenge 
for immunologists dealing with the limiting quantities of protein 
that can be obtained from primary lymphocytes. While limited 
studies have been done to date in primary T cells, ubiquitin-
specific proteomic methods can be adapted for primary cells. 
In Figure  3, we have schematized several strategies, described 
below, for probing ubiquitylation in primary T cells via LC-MS/
MS-based approaches.

The simplest proteomic approach to indirectly identify effects 
of perturbations in the ubiquitylation cascade is to compare levels 
of protein in experimental and control cells by LC-MS/MS analysis 
(Figure 3A). Such whole proteome analyses have been performed 
successfully on unmanipulated primary mouse and human cells 

(179–181), though not to probe explicitly for ubiquitylated pro-
teins. This proteomic approach needs to be paired with control 
experiments to dissect transcriptional vs. post-transcriptional/
translational effects. As ubiquitylation does more than lead to 
degradation of substrate proteins, altered protein abundance 
for specific substrates between experimental and control cells 
may not be observed. In this regard, reconstruction of a “virtual 
western blot” to identify polyubiquitin or ubiquitin-like chains on 
substrates by observing mass shifts in gel fractionated LC-MS/MS 
datasets may have some utility (182). Analysis of relative protein 
abundance is an important technique that is readily applicable to 
immune cells, as it requires little starting material to achieve good 
depth of proteome coverage and reproducible quantification of 
protein abundance. Although the detection of peptides from 
any given protein is dependent on the sample fractionation, the 
protein size, and trypsin (or other protease) cleavage sites, this 
type of relative abundance measurement can provide important 
insights into the relative expression of E3 ligases or DUBs as well 
as how abundance of these proteins are altered in distinct T cell 
subsets or under various T cell stimulation conditions.

A common approach to identify active ubiquitylation enzymes 
and their ubiquitylated substrates is to express epitope-tagged 
versions of ubiquitin (Figure  3C) or the enzyme of interest 
(Figure 3D). After immunoprecipitation against the tag, ubiqui-
tylated proteins or proteins in complex are analyzed by LC-MS/
MS to identify potential substrates that co-precipitated with the 
E3 ligase or ubiquitin itself (183, 184). If tagged ubiquitin is used, 
cell lysis and subsequent enrichment for ubiquitin can be carried 
out under harsh conditions, thereby minimizing detection of 
proteins that might not be directly modified by ubiquitin. For 
E3 ligase immunoprecipitations, which must be done under 
less stringent lysis conditions, identification of co-precipitating 
proteins can be coupled with in  vitro ubiquitylation assays of 
bound proteins to identify putative substrates from non-substrate 
interaction partners. As substrate interactions may be fleeting, 
a more robust approach is to express a mutated “substrate-
trapping” form of the ligase, which has been done successfully 
for SCF ligase complexes in cell lines (185). In most cases, this 
type of approach requires transfection/transduction, making it 
less feasible for primary immune cell applications, particularly 
in analysis of naïve cells. Utilization of CRISPR technology to 
engineer mice with epitope-tagged E3 ligases or ubiquitin may 
make these types of experiments more accessible for primary cell 
studies.

Alternative approaches exist for substrate screening based on 
modification by ubiquitin. In lieu of expressing tagged ubiquitin, 
enrichment of polyubiquitylated proteins from unmanipulated 
cells can be accomplished by using reagents containing linked 
ubiquitin-binding domains [such as tandem ubiquitin-binding 
entities (TUBEs), Figure  3B]. The linked ubiquitin-binding 
domains bind with high affinity to a variety of polyubiquitin 
chains, and can be used for affinity purification of endogenous 
polyubiquitylated proteins from unmanipulated cells (186–189). 
The ability to detect endogenous polyubiquitylated proteins via 
affinity purification makes ubiquitin-binding domains more 
attractive for use in primary cells. The use of reagents that bind 
polyubiquitin chains, as opposed to using tagged ubiquitin, can 
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be beneficial if researchers do not want to detect monoubiqui-
tylation events. However, as with the use of tagged enzymes for 
immunoprecipitation, with these reagents validation of direct 
ubiquitylation on candidate protein substrates is required, as 

enrichment is carried out under less stringent lysis conditions 
and likely to identify many cellular ubiquitin-binding proteins 
and protein members of larger ubiquitylation complexes in addi-
tion to direct substrates of ubiquitylation.
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Ubiquitylation of a specific lysine can be directly observed 
by mass spectrometry. Lysines covalently modified by ubiq-
uitin, or the ubiquitin-like proteins Nedd8 and ISG15 (UBLs), 
are protected from trypsin cleavage, and carry a diglycine, or 
ubiquitin remnant motif (K-ϵ-GG) after trypsin cleavage at the 
C-terminal arginine of ubiquitin, Nedd8, or ISG15 (183). These 
peptides are relatively rare in proteome analyses, even following 
enrichment on ubiquitin (~0.5–1% of proteins identified) (183). 
Development of an antibody against the ubiquitin remnant motif 
has revolutionized the ability to catalog ubiquitylated lysines. 
Direct immunoprecipitation of K-ϵ-GG peptides after enrich-
ment on tagged ubiquitin significantly enriches the percent and 
number of ubiquitylated lysines and proteins identified compared 
to affinity purification of ubiquitin alone (190). The initial report 
using a monoclonal αK-ϵ-GG antibody characterized only 
several hundred ubiquitin remnant peptides in a similar number 
of proteins; however, this effectively doubled the known number 
of ubiquitin-modified lysines in the human proteome (190). 
Subsequent studies, also in cell lines, have significantly improved 
upon this. By omitting the tagged ubiquitin affinity purification 
step and using direct antibody enrichment of trypsinized proteins 
from unmanipulated cells (Figure 3E), several labs report 5000 to 
20,000 ubiquitylation sites identified in several thousand proteins 
within a single experiment (191–193). This ubiquitin remnant 
“profiling” has made ubiquitylation the second most abundant 
post-translational modification annotated in the human pro-
teome (second only to phosphorylation) (192). Furthermore, it 
has been used quantitatively to successfully identify substrates of 
E3 ligases (133, 191). Thus far, however, no one has reported use 
of ubiquitin remnant profiling in primary T cells. Large amounts 
of starting protein material are required for highly specific enrich-
ment of ubiquitin peptides, representing a significant hurdle for 
those interested in applying this technique in T cells. However, 
the benefits of observing a protein with a modified lysine are 
clear. As an example of one advantage of this method, recently, 
it was reported that a lysine in RIPK3, discovered via ubiquitin 
remnant immunoprecipitation from control and A20−/− MEFs, 
was required for in vivo RIPK3 ubiquitylation in T cells (174). 
Thus, characterization of ubiquitylated lysine residues has ready 
application for immune cell biology.

Demonstrating the power of combination approaches, recently 
it was shown that expression of TUBEs in cells protects effectively 
against DUB activity. Following direct affinity purification of 
the TUBE construct from cells, tryptic peptides were subjected 
to diglycine immunoprecipitation, and a significant increase in 
ubiquitin remnant peptides was observed thanks to the protec-
tion of a variety of ubiquitin chains from DUB action. This 
method was successfully used to identify substrates of a previ-
ously uncharacterized F-box protein (133). However, this method 
requires transfection of the ubiquitin-binding TUBE construct as 
well as the ligase of interest, and therefore will require significant 
optimization before achieving utility in primary T cells.

For all ubiquitin-based enrichment techniques, it is common 
to include proteasomal inhibitors, such as MG132, in cell culture 
prior to LC-MS/MS analysis. However, use of these inhibitors 
carries important caveats. First, during T cell stimulation, 
degradative events may be critical for additional activation 

signaling to occur. Second, use of these inhibitors creates 
ubiquitin-proteasomal stress, and, while it is predicted that only 
about 6% of all K-ϵ-GG peptides come from UBL linkages, use 
of inhibitors can lead to the depletion of free ubiquitin and an 
increased entry of UBLs into the ubiquitin conjugation cascade 
(191). Finally, in comparison to efficient protection against DUB 
activity, pharmacological inhibition of the proteasome may only 
incrementally increase the pool of ubiquitylated proteins in a 
cell, preferentially promoting a build-up of proteins with K48 
polyubiquitylation (133).

Unlike the E3 ligases, where screens seek to identify substrates, 
unbiased screens for DUBs have relied primarily on activity 
profiling using chemical probes to identify isopeptidase activity 
of DUBs in cell lysates (194–199). Such probes can also be used 
to tag ubiquitin conjugating enzyme activity. Activity-based 
assays for E3 ligases utilize ubiquitylation in vitro to define new 
substrates. These assays are often dependent on recombinant 
expression of a range of possible substrates, and therefore more 
suited to specific hypothesis testing. Although there are com-
mercially available protein microarrays suitable for discovery 
purposes, these currently exist in a large-scale format only for 
human proteins (200, 201). For both E3 ligases and DUBs, many 
of which are characterized as such by domain homology, activity 
profiling generates important data on the relevance of enzymatic 
activity in cells.

CONCLUSiON

Ubiquitylation is a post-translational modification with critical 
roles in immune cell homeostasis and function that are only 
now being elucidated. Far from leading only to the degradation 
of proteins as part of cellular “maintenance,” ubiquitylation of 
target substrates can have varied consequences on protein activ-
ity, localization, and half-life. The type of ubiquitin modification 
and also the availability of ubiquitin-binding proteins and DUBs, 
which cooperate with or antagonize E3 ubiquitin ligases, dictate 
these diverse consequences. In this review, we have described 
what is currently known about E3 ubiquitin ligases and DUBs 
that regulate TCR signaling and T cell biology. Where possible, 
we have indicated the molecular mechanism by which these 
proteins are thought to exert effects on TCR signaling, specifically 
in the activated CD4+ T cells. However, for the majority of these 
proteins, the molecular mechanism(s) by which they impact 
T cell signaling, or the immune system more broadly, remains 
unknown. Indeed, in some cases, it is still unclear whether the E3 
ligase or DUB in question is acting via its ligase/DUB domains, 
as structure–function assays are largely lacking in T cells. We 
propose that proteomics techniques can be used in primary T 
cells to aid both hypothesis driven and exploratory experiments. 
Such studies will provide a more thorough understanding of how 
ubiquitylation pathways regulate TCR and other signaling path-
ways in CD4+ T cells and guide the rational design of therapeutics 
with which to treat immune-mediated diseases.
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