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Helix-helix interactions inside lipid bilayers 
Mark A. Lemmon and Donald M. Engelman 
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Far from being simple hydrophobic anchors, it is now clear that the 
transmembrane 0t-helices of integral membrane proteins can participate 
in strong, specific interactions that are important in their folding and 
oligomerization. Crystallographic studies of 21 such helices have indicated 
that these interactions are similar to those described for soluble proteins. 
Helix-helix interactions are also important in the oligomerization of a 
number of proteins that have a single transmembrane 0t-helix. The 
interactions are rather specific, involving interhelical salt bridges, hydrogen 
bonds or precise packing interactions. In some cases, such oligomerization 
is required for exit from the endoplasmic reticulum. The transmembrane 
helices of some Golgi-residing proteins also contain sufficient information 
to ensure their retention in this compartment. Finally, interactions 
between transmembrane 0t-helices may be important in the mechanism 
of transmembrane signalling by a number of membrane-bound receptors. 

Current Opinion in Structural Biology 1992, 2:511-518 

Introduction 

While the general notion that membrane proteins often 
contain largely hydrophobic transmembrane helices has 
been accepted for more than a decade, the specificity of 
their mutual interactions and the diversity of their roles 
are only now becoming apparent. Far from being simple 
hydrophobic anchors which locate proteins at a mem- 
brane, or weakly interacting structural elements which 
are stabilized by interactions outside the bilayer, it is now 
clear that transmembrane helices can participate in highly 
specific interactions. These interactions involve sutficient 
energy to drive folding or oligomerization in some cases, 
and are being shown to contribute to an increasingly di- 
verse set of functional roles. In this review, we highlight 
work of the past year in light of the conceptual and ex- 
perimental background that went before. A great deal of 
progress has been made and the pace is quickening. 

A useful conceptual framework for the consideration of 
helix-helix interactions within lipid bilayers is provided 
by the two-stage model for the thermodynamics of fold- 
ing of integral membrane proteins [1]. In stage I, inde- 
pendently stable 0t-helices are established across the lipid 
bilayer, and in stage II these interact to form functional 
transmembrane structures. Thus, the energetics of helix 
formation can be separated conceptually from those of 
the interactions between these helices to form higher- 
order structures. The model can be applied equally well 
to the helix-helix interactions occurring within polytopic 
membrane proteins and to those involved in oligomeriza- 
tion. 

Structural studies have characterized 21 
transmembrane 0c-helices 

Most data concerning the structure of a-helical integral 
membrane proteins comes from X-ray crystallography 
of bacterial photosynthetic reaction centers (RCs; for 
reviews, see [2,3]), electron crystallographic [4] and 
neutron diffraction [5] studies of the structure of bac- 
teriorhodopsin, and, most recently, electron crystallogra- 
phy of the plant light-harvesting complex [6°°], which 
together have a total of 21 transmembrane helices. The 
detailed consideration of helix-helix interactions in these 
cases is complicated by the influences of the abundant 
cofactors. Nonetheless, a view emerges from these struc- 
tures that the packing of the interior of integral mem- 
brane proteins is as efficient as that generally observed 
for water-soluble proteins. It is noteworthy that no in- 
terhelical salt bridges are seen, in contrast with what 
is proposed below for interactions between transmem- 
brane a-helices in the oligomerization of some bitopic 
membrane proteins. Furthermore, each helix contains, 
on average, less than one interhelical hydrogen bond. In 
the case of bacteriorhodopsin, for example, the map ob- 
tained from electron crystallographic studies [4] suggests 
that Asp212 in helix G is involved in hydrogen bonding to 
Tyr57 of helix B, Trp86 of helix C and to Tyr185 of helix 
F. Residues buried in the interior of these proteins are, 
on average, more hydrophilic than those which are lipid- 
exposed, and are also found to be the most well con- 
served between species. From the analysis of Rees et al. 

Abbreviations 
CD~circular dichroism; EGF--epidermal growth factor receptor; EGF-R--EGF factor; ER~ndoplasmic reticulum; 

GpA--glycophorin A; GT--J31,4-galactosyltransferase; NGF-R--nerve growth factor receptor; RC--photosynthetic reaction center; 
SDS~sodium dodecyl sulfate; ST-~z2,6-sialyltransferase; TCR--T-cell receptor. 

(~) Current Biology Ltd ISSN 0959-440X 511 



512 Membrane proteins 

[7], this appears to be a general phenomenon for poly- 
topic a-helical integral membrane proteins (e.g. [8]). 

In the 6h  structure of the trimeric plant light-harvesting 
complex [6",], two of the three transmembrane a-helices 
are longer than those seen in bacteriorhodopsin or the 
RC, and are associated as in a right-handed supercoil [9], 
separated from one another by a contact distance of 10k. 
The subunit boundaries in the trimeric complex are not 
unambiguous, but it is clear that both helix-helix and 
helix-chromophore contacts stabilize the structure of the 
individual subunits as well as the interactions between 
them. 

One aspect of the interaction between a-helices in lipid 
bilayers that has received attention during the past year 
is the role of proline residues, which occur frequently 
in the transmembrane domains of transport proteins. 
A proline residue in the middle of a transmembrane 
a-helix results, in many (but not all) cases, in a kink 
in that helix. Analysis of such kinked helices in the 
RC and bacteriorhodopsin structures has suggested that 
they tend to bury their convex sides against other helices 
[10"]. The exception is helix C of bacteriorhodopsin, for 
which the convex, most hydrophobic, face is in contact 
with lipid. Consideration of a number of proline-contain- 
ing transmembrane a-helices predicted from sequence 
analysis has suggested that, in general, the postulated 
convex side is the most polar face of the helix, which 
is predicted to be disposed towards the protein inte- 
rior or towards the pore of a channel [10o,11.]. Indeed, 
where charged residues appear in such transmembrane 
domains, they tend to lie on the expected convex face. 
In contrast, in water-soluble proteins, the convex side of 
proline-kinked a-helices tends to be exposed to the sol- 
vent. It has also been proposed that proline residues in 
transmembrane a-helices may provide structural figidi W 
which optimizes the positioning of important side chains 
(for a review, see [12]). 

Helix-containing fragments of membrane 
proteins can reassociate 

Chymotryptic cleavage of bacteriorhodopsin yields two 
fragments: C1, which contains five of the seven trans- 
membrane a-helices; and C2, which contains the remain- 
ing two helices. The two fragments have been isolated 
and reconstituted into separate populations of lipid vesi- 
cles, and were seen by circular dichroism (CD) to retain 
their m-helical structure. Upon mixing of the two popula- 
tions of vesicles, followed by vesicle fusion, the fragments 
reassociate. The resulting complex binds retinal and ac- 
quires spectroscopic properties characteristic of native 
bacteriorhodopsin, as well as the lattice formation char- 
acteristic of purple membrane [13,14]. Recently, this ap- 
proach has demonstrated a three-way association of Cl, 
helix A and helix B (the two helices of C2) to form bac- 
teriorhodopsin [15o.]. Circular dichroism and Fourier 
transform infrared spectroscopy studies of the isolated A 
and B helices have shown them to be independently sta- 
ble transbilayer a-helices (,.IF Hunt, O Bousche, KM Mey- 
ers, KJ Rothschild, DM Engelman, abstract W-AM-K2, 35th 
Annual Meeting of the Biophysical Society, San Francisco, 

February 1991). These data demonstrate that the covalent 
linkages between helices A and B and between helices B 
and C are not required for the correct folding of bac- 
teriorhodopsin, and ~ o w  that interactions between 
transbilayer a-helices are a major determinant in the fold- 
ing of this integral membrane protein. 

Similar experiments have also been reported for /ac 
permease from Escherichia coli, which has 12 putative 
transmembrane a-helices. Co-expression of a two-helix 
fragment with a 10-helix fragment [16] or of two six- 
helix fragments [17] resulted in restoration of lactose 
transport, where none of the individual fragments was 
capable of transporting lactose. It should, however, be 
noted that the individual fragments appear to be de- 
graded when expressed alone. Functional ]32 adrenergic 
receptor has also been obtained in Xenopus oocytes by 
the co-expression of two fragments corresponding to he- 
lices 1-5 and helices 6-7, respectively [18]. These results 
provide further support for the two-stage model for fold- 
ing of integral membrane proteins [1]. 

Helix-helix interactions in oligomerization 

There has been much study over the past year of the 
role of intramembraneous helix-helix interactions in the 
assembly of oligomeric complexes of proteins contain- 
ing single transmembrane ¢~-helices. In the absence of 
oligomerization, degradation of subunits can occur in the 
endoplasmic reticulum (ER). The main system for such 
studies is that of the T-cell receptor (TCR4 for a review, 
see [19]). It has been shown that the single transmem- 
brane domain of TCRa, which includes two basic amino 
acid side chains, can target this protein for degradation 
in the ER (for a review, see [20]). Furthermore, a nine- 
amino-acid segment from the transmembrane domain of 
TCR~, which includes these two basic residues, contains 
all of the information necessary for its association with 
CD38, which has one acidic residue in its single trans- 
membrane domain [21]. The interaction of TCRa with 
CD38 masks determinants in both of these proteins for 
ER degradation, i.e. in the absence of CD36, TCR0t is de- 
graded, whereas in the absence of TCRa, CD38 is de- 
graded. Thus, it appears that the transmembrane deter- 
minants for association of TCRa with CD38 and for ER 
degradation are co-localized [22], such that if oligomer* 
ization occurs, degradation is blocked. 

Reports published this year have delineated further the 
roles of the potentially charged residues in the transmem- 
brane domains of these receptor subunits. Bonifacino et 
a/. [23"] reported that a single arginine or aspartic acid 
residue can cause targeting for retention and degrada- 
tion in the ER when placed at central positions within 
the transmembrane domain of the Tac antigen, which is 
normally transported to the cell surface. One hypothesis 
that arises from these data is that interaction of these po- 
lar groups with a transmembrane domain of a protein of 
the ER degradation apparatus may occur. The same lab- 
oratory also reported further studies concerning the role 
of these potentially charged residues in the assembly of 
the TCR complex [24..]. In a chimeric protein consisting 
of the extramembraneous portion of Tac and the trans- 
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membrane domain of TCR0t, mutation of either one of 
the basic residues has relatively little effect upon inter- 
action with CD38, whereas mutation of both of them 
completely abrogates the association. The TCR clono- 
typic 8 chain, which has the same two basic residues 
in its transmembrane domain as TCR~t, was also able 
t o  interact with CD38. Mutation of one residue in the 
transmembrane domain of Tac to an arginine could cause 
this protein to interact with CD38 in much the same way 
as such mutations cause Tac to be degraded in the ER 
[23°°]. Mutation of the single aspartic acid residue in 
the transmembrane domain of CD38 abrogated the in- 
teractions of this protein with TCRa and TCR8 as well 
as the Tac mutants bearing a basic residue in the trans- 
membrane domain. By altering the position of this as- 
partic acid residue within the transmembrane domain, 
the influence of the position of  the arginine residue 
within transmembrane domain of Tac upon its associ- 
ation with CD38 was altered. Most effective interaction 
was seen when the acidic residue of CD38 and the basic 
residue introduced i n t o  Tac were such that these residues 
would be at approximately the same level in the lipid bi- 
layer. These results were interpreted as suggesting that 
interhelical salt bridges, which are expected to be very 
strong in the low dielectric environment of the mem- 
brane [25-27], are important in the assembly of the 
TCR complex. It should be noted that the intramem- 
braneous interaction may either occur between formal 
charges or involve strong hydrogen bonding of the un- 
charged groups [25-27]. In contrast with this case, no 
interhdical salt bridges are seen in the RC structures de- 
termined at high resolution, or in bacteriorhodopsin. 

A situation similar to that for TCR assembly is also seen 
for the assembly of the transmembrane form of  the Fc~/ 
receptor (Fc~/RIII or CD16) (for reviews, see [28,29]). 
The amino acid sequence of the single transmembrane 
domain of this receptor is highly conserved between 
species, as is also true for other Fc~/Rs [28]. In order for 
the 0t-subunit of Fc),RIII to reach the plasma membrane, 
it must associate with either the ~/-subunit of FceRI or the 
4-subunit of  the TCR/CD3 complex or both (as a3'2, 0~42 
or a)'4) [30"]. The ~/- and 4-subunits both have a single 
transmembrane domain, which is almost identical in the 
two cases, and contains one aspartic acid residue. I~ a 
manner analogous to that described for the TCR0~-CD38- 
case, ), or 4 protects Fc~,RIII~t from degradation in the 
ER. Studies of chimeric proteins [30"] suggest, as for 
TCRa, that the signal that determines the degradation of 
Fc),RIRat in the ER resides in its transmembrane domain, 
which contains an aspartic acid residue. Interaction be- 
tween the transmembrane domain of the a-subunit and 
that of ~/or 4 appears to mask this determinant. This hy- 
pothesis is strengthened by the finding that substitution 
of an isoleucine for a leucine residue in the transmem- 
brane domain of human 4 reduces the extent of its inter- 
action with Fc~/RIIIa by 65 %. This leucine is conserved in 
human 7, but is an isoleucine in mouse 4. Mutation of this 
isoleucine in mouse 4 to leucine led to a fivefold increase 
in its association with Fc),RIIIa. No such effects were seen 
when mutations were made at the few other positions 
n o t  conserved in mouse 4. Thus, these data clearly sug- 
gest that specific interactions between transmembrane 
a-helices are important ih this assembly process. Each of 

the aspartic acid residues in the transmembrane domains 
of a, 4 and "f is important for the interhelical interactions. 

There exist other examples of ER retention signals in 
transmembrane domains which do not involve poten- 
tialy charged residues. For example, membrane IgM is 
retained in the ER of non-B cels. Its transmembrane 
domain contains a number of we l  conserved amino 
acids with hydroxyl side chains, the mutation of which t o  
aliphatic residues abrogates this ER retention [31]. Some 
of these residues are also important in the mechanism of  
transmembrane signalling of  IgM in B cells [32]. 

In addition to these studies of ER retention and degrada- 
tion signals within transmembrane domains, there have 
also been reports over the past year of Golgi reten- 
tion signals in the transmembrane domains of a num- 
ber of proteins. Through the construction of a series of 
chimeric molecules and analysis by immunofluorescence 
microscopy, it has been shown that the transmembrane 
domain of N-glucosaminyltransferase I is sufficient t o  
confer Golgi retention on several heterologous proteins 
[33°°]. Similar results have been obtained for the trans- 
membrane domains of a2,6-sialyltransferase (ST) [34"] 
and [31,4-galactosyltransferase (GT) [35",36°°,37°']. In 
the latter case, a 10-amino-acid region from the lume- 
nal half of the transmembrane domain was sufficient for 
retention of a heterologous protein in the t r a n s  Golgi cis- 
temae [36"].  That the lumenal half of this domain may 
n o t  be the sole determinant is suggested by a separate 
study [37°°], which identified a cysteine and a histidine 
residue in the cytoplasmic half of the transmembrane do- 
main that are important for the Golgi retention of GT. 
There is no apparent sequence similarity between the 
transmembrane domains of these glycosyltransferases. 

Golgi retention of a coronavims E1 protein has also 
been found to be determined by the first of its 
three membrane-spanning domains [38.°]. Replacing the 
transmembrane domains of two proteins normally des- 
tined for the plasma membrane with this domain leads 
to their retention in the Golgi. Polar uncharged residues 
in this transmembrane domain, which would line up on 
one face of an a-helx, are well conserved among corona- 
viruses. Mutation of these residues to isoleucine, or in- 
sertion of two isoleucines to disrupt the helical period- 
icity, results in the transport of some of the protein to 
the plasma membrane. These data should be compared 
with those obtained with the E1 protein of the mouse 
hepatitis virus A59 [39°°]. In this case, the data obtained 
suggest that the Golgi retention signal is a more general 
property of the molecule. The reasons for this difference 
are unclear. 

Another intriguing case of potential interactions be- 
tween intramembraneous domains is that involving 
the 44-amino-acid E5 oncogene product of fibropapil- 
lomaviruses. The amino-terminal two thirds of E5 has a 
sequence suggesting a transmembrane a-helix, whereas 
the 14-amino-acid hydrophilic carboxy-terminal tail ex- 
tends into the lumen of the Golgi apparatus (for a re- 
view, see [40]). A conserved glutamine residue within 
the hydrophobic domain is important for association 
with the hydrophobic 16kD subunit of the vacuolar 
H+-ATPase [41o]. However, there appear to be no spe- 
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cific sequence requirements in the remainder of the 
hydrophobic region for this association to occur. The 
glutamine residue is also important for the transforming 
ability of ES. For this activity, however, there are specific 
sequence requirements in the hydrophobic domain of E5 
[42.-]. The transmembrane domain of E5 may also serve 
as its Golgi retention signal. 

The formation of bundles of transmembrane ~-helices 
appears to occur in some other cases. One such exam- 
ple is the 52-amino-acid protein phospholamban, which 
is a regulator of the Ca 2 + -ATPase of cardiac muscle sar- 
coplasmic reticulum. Phospholarnban forms pentamers 
that are stable in sodium dodecyl sulichte (SDS), although 
the relevance of this to "its function is not yet clear. 
Residues within the predicted transmembrane ct-helix 
have been shown to be involved in pentamer formation 
[43]. In the case of ion-conducting channel proteins, 
the pore itself may consist of a bundle of amphipathic 
or-helices. Specific peptide sequences, which it has been 
predicted would form the channel-lining helices, have 
been synthesized, and shown to reproduce a number of 
properties of the channels from which their sequences 
were derived (for a review, see [44] ). 

Perhaps the best characterized example of interactions 
between transmembrane or-helices is the human eryth- 
rocyte sialoglycoprotein glycophorin A (GpA), which 
forms a dimer that is stable in SDS. Bormann et  al. [45] 
showed that the GpA dimer was disrupted upon addi- 
tion of a synthetic peptide corresponding in sequence 
to its transmembrane domain. The addition of a num- 
ber of heterologous transmembrane peptides did not 
disrupt the dimer. Further studies using a chimeric pro- 
tein have shown that the GpA transmembrane domain 
alone contains all of  the information required for this 
specific association [46..]. In addition, mutational analy- 
sis of the chimera shows that even very subtle alterations 
in the nature of certain side chains can significantly dis- 
rupt the interaction. For example, mutation of a valine 
to a leucine in the transmembrane domain disrupts the 
dimerization, and therefore this residue is proposed to lie 
at the dimer interface. If the or-helix geometry is canonical 
as CD data would seem to suggest, this valine would lie 
on the same face of the helix as several of the glycine 
residues in the transmembrane domain, There are no 
highly polar residues in the transmembrane domain of 
GpA, which thus serves as a contrast to the cases men- 
tioned above. 

Intramembraneous helix-helix interactions in 
transmembrane signalling by receptors 

It is now widely accepted that the primary event in trans- 
membrane signalling by receptors such as the epidermal 
growth factor receptor (EGF-R), is ligand-stimulated re- 
ceptor dimerization (for a review, see /47,48..]. Since it 
was found that the mutation of a valine to glutamic acid in 
the transmembrane domain of the n e u  oncogene prod- 
uct causes this EGF-R-Iike receptor to become constitu- 
tively active as a tyrosine kinase [49] and increases the 
proportion of the receptor existing as a dimer [50], there 
has been much speculation concerning the possible role 

of interactions between transmembrane cz-helices in this 
signalling mechanism [51"']. 

A number of experiments have been reported in which 
transmembrane domains of related proteins have been 
swapped, resulting in the production of inactive recep- 
tors. For example, Yan et  al. [52"] made chimeric recep- 
tors in which the ectodomain was derived from EGF-R, 
and the intracellular domain was from the low-affinity 
nerve growth factor receptor (NGF-R) represented by the 
p75 NGFR protein. A morphological response to epider- 
mal growth factor (EGF) stimulation was seen for PC12 
cells expressing a chimera in which the transmembrane 
domain was derived from the p75 NGF-R, but not if it was 
derived from the EGF-R. The low-affinity p75 NGF-R may 
interact with the trk  oncogene product (pl40pr°t°trk), 
another low-affinity NGF-R, to form high-afflnity bind- 
ing sites for NGF [53"]. The experiments of Yan et a l  
[52"], and the fact that the sequence of the transmem- 
brane domain of p75 NGF-R is highly conserved between 
species [54], suggest that this predicted transmembrane 
cz-helix may be involved in interactions with other pro- 
teins, such as pl40P r°t°trk. 

Based upon consideration of the amino acid sequence 
surrounding the activating Val--+Glu mutation in the 
transmembrane domain of the n e u  oncogene product, 
and comparison with a similar region of other related 
receptors, a model has been proposed in which a five- 
amino-acid motif is responsible for the specific dimer- 
ization of transmembrane a-helices in a number of re- 
ceptors of this type [55]. A recent mutational analysis of 
the n e u  oncogene product has confirmed that a sub- 
domain within its transmembrane domain, consistent 
with the nature of this motif, is required for activation 
of transformation by the Val--+Glu mutation mentioned 
above [56"]. In contrast with the conclusions drawn 
from this study, analysis of the effects of deletions and 
mutations in the transmembrane domain of the insulin 
receptor [57"] and EGF-R [58",59] seems to indicate a 
passive role for these domains in signal transduction by 
these receptors. Furthermore, the extracellular and trans- 
membrane domains of v-erbB, the truncated and consti- 
tutively active form of the EGF-R, can b e  replaced by a 
myristyl anchor without affecting transformation potency 
or specificity [60,]. This argues against the dimerization 
of the transmembrane domain of EGF-R being important 
in activating the tyrosine kinase domain of  this receptor. 

Whatever their exact role, transmembrane domains must 
be important in signal transduction, as they comprise the 
only connection between the ligand-binding domain of 
the receptor and the effector region in the cytosol. Recent 
studies of the chemotactic aspartate receptor (Tar) of 
E. co l imay  shed some light upon this issue. The structure 
of the ectodomain of this dimeric receptor, both with and 
without ligand, was reported last year [61".], and showed 
a small ligand-induced rotation of the subunits about an 
axis parallel to the membrane. It is proposed that this 
rotation is translated to a relatively large alteration in the 
relative disposition of the endodomains of the dimer, re- 
suiting in their activation. An extensive analysis of disul- 
fide crosslinking of cysteine-substituted proteins within 
the membrane region of this receptor by Pakula and Si- 
mon [62.-] has provided data for the construction of a 
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model in which the four transmembrane domains (two 
from each transmembrane subunit; TM1 and TM2) form 
a distorted four-helix bundle, the two TM1 helices inter- 
acting the most extensively. Residues capable of partici- 
pating in crosslink formation were found to be restricted 
to one face of each helix, implying that the TM1-TMI' 
interaction is axially symmetric. The face of each helix 
thus shown to be involved in helix-helix interactions 
was identified as the most hydrophilic and most con- 
served face [63.o], using the analytical method of Rees 
et  al. [7]. For example, there are glutamine and serine 
residues in the TM1-TMI' interface, which may partici- 
pate in interhelical hydrogen bonding. It will be very in- 
teresting to see how the pattern of disulfide crosslinking 
changes in the aspartate-stimulated receptor. Preliminary 
data suggest that the two TM1 helices are closer together 
in the activated receptor [63o-]. 

Conclusions and perspectives 

Many generalizations have been put forward for mem- 
brane helix properties during the past decade. Some 
of these apply relatively broadly, others more specifically; 
few describe the full range of properties without excep- 
tion. A number of notions that are useful from a structural 
perspective now exist. The side chains of a transmem- 
brane a-hdix are largely hydrophobic. A limited number 
of potentially charged groups may be included, although 
it is not clear that they would be ionized within the 
bilayer. Proline residues occur more commonly in the 
transmembrane a-helices of polytopic membrane pro- 
teins than in cz-helices of soluble proteins, and may cause 
a kink in many cases. Where transbilayer helices are sig- 
nificantly amphipathic, the more polar surface is likely to 
be involved in interactions with other helices and pros- 
thetic groups rather than with the lipids. Association of 
cz-helices within the bilayer may be driven by strong polar 
interactions and/or detailed van der Waals fits. These in- 
teractions can be highly specific, and can have sufficient 
energy to drive association between helices without co- 
valent linkages outside the membrane. 

On the functional side, a rapidly expanding list is becom- 
ing established, including roles in defining channels arrd 
transmembrane transport pathways, signals for oligomer- 
ization and for degradation if oligomerization fails, po- 
sitioning of prosthetic groups for electron-transfer reac- 
tions, signals for selective localization in specific mem- 
brane compartments, and as mediators of transmem- 
brane signalling. It is clear that transmembrane helices 
are more than mere hydrophobic anchors. It seems a 
reasonable hope that the future will allow an understand- 
ing of the function of these important structural elements 
that will permit a chemical understanding of the myriad 
functions that they perform. 
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