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Protsiv et al. used three sets of data to demonstrate that human core body temperature had
decreased by 0.03◦C per decade since the industrial revolution in the US (1). They proposed that a
1.6% temperature drop over a period of almost 200 birth years had occurred. Anthropometrics,
gender, or race were excluded as potential factors. The authors postulated that the principle
contributor to this reduction was reduced inflammation, reflecting better, healthier environments
and improved hygiene measures (1). Although hygiene has increased and hence reduced death
from infectious disease, other factors in our environment have also changed significantly. Here we
propose another plausible and potentially testable mechanism, that of the contribution of factors
interfering with thyroid hormone (TH) metabolism.

TH is an essential physiological cue that acts at central and peripheral levels to affect internal
temperature in endotherms (2). Humans strive to live at thermoneutral conditions, in which
peripheral muscle metabolism generates sufficient heat as a by-product to maintain temperature
without the need for additional heat-generating mechanisms (3). For us, the resting metabolic rate
(RMR) is thus a crude proxy for core body temperature. TH directly affects the RMR by altering
mitochondrial biogenesis and oxidative phosphorylation via TRα1, the principle TH receptor
isoform in muscle (Figure 1) (4). TH fluctuations within the normal range alter the RMR in
humans (5, 6), suggesting that subtle changes in TH homeostasis could have consequences for body
temperature. Recent data indicate that TH also safeguards core body temperature at the central
level. Peripheral sensors relay temperature information to hypothalamic nuclei where temperature-
sensitive neurons further calibrate body temperature to a pre-fixed set point (7, 8). Mice in a
thermoneutral environment that were given high doses of TH either systemically, or via direct
hypothalamic injection, had an acutely elevated central temperature set point (9–11). These central
TH effects are most-likely an example of pyrexia, or a controlled set point change, as opposed to
uncontrolled hyperthermia (9). In mice lacking TRα1, the central thermostat was downregulated
(12, 13) in addition to reduced metabolism and impaired heat dissipation (14). Of note, in small
mammals like mice, TH also activates brown adipose tissue to generate additional heat through
adaptive thermogenesis (15), a process that is possibly less relevant in healthy adult humans, though
this point is under continual debate (16).

But how do these actions affect core body temperature in humans? Back in 1894, a medical
doctor T.C. Railton observed the significant impact TH can have on body temperature (17). His
patient was a 14-year-old hypothyroid boy with an abnormally low body temperature of 35◦C. After
giving 36 grains of sheep’s thyroid gland (thyroxin or T4 was not isolated until 1914 by Edward
Kendall), his temperature rose to a staggering 39.1◦C. Adjusting the dose to 5 grains twice a day
normalized his body temperature to approximately 37◦C (17). This one-person trial proved that the
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amount of thyroid tissue, and thus THs, dose-dependently alters
body temperature. Similarly, the doctor treating the first-ever
myxedema patient by hypodermic injection of thyroid extract,
noted that her body temperature increased by several degrees
(18). More recently, intravenous injection of high doses of
levothyroxine reversed the low body temperatures (34–35.8◦C)
of seven comatose myxedema patients to more than 36◦C (19).

Another intriguing case that demonstrates these temperature
effects of TH is Wilson’s Temperature Syndrome, first described
in 1990. Patients display a form of chronic fatigue syndrome
with symptoms that are hallmarks of hypothyroidism, as well
as a lower-than-normal body temperature. Giving cyclic oral
supra-physiological doses of T3 (up to 30 µg/day) elevated the
average body temperature from 36.34 to 37◦C in 11 tested
patients (20). While the temperature fluctuations in Railton’s
case were in the range of several degrees, Friedman’s data
show that smaller doses of THs can induce body temperature
changes around 0.5◦C. It would be very interesting to know
whether subclinical hypothyroidism, a condition marked by
lower but within the normal range levels of TH that affects
around 10% of the population (21), also alters average body
temperature in an even narrower regimen. So far, only one
cross-sectional study has been reported on the subject (22).
This study included 306 subclinically hypothyroid subjects,
however, the authors observed no body temperature differences
with euthyroid individuals. Three potential caveats need to
be mentioned here, first that temperature measurements only
included one digit after the decimal point, whereas in the study
carried out by Protsiv et al. (1) the authors extended their findings
to two digits. The second is the small number of subclinical
hypothyroid patients in the cohort tested and third, to be classed
as subclinically hypothyroid, T4 levels must lie within the normal
range, whereas TSH levels are elevated. As the cut-off range for
elevated TSH varies according to region, but can easily be a 10
fold span, this emphasizes the difficulty of classing someone as
subclinically hypothyroid.

If a similarly deregulated TH homeostasis lies at the base
of the gradual temperature decrease during industrialization,
what could have disrupted TH metabolism in the first place? A
number of factors have changed in our environment since the
industrial revolution. Chemical production has increased 300-
fold since 1970, both in terms of diversity and quantity (UNEP,
2013—Global Chemicals Outlook - Toward Sound Management
of Chemicals). These so-called endocrine disrupting chemicals
(EDCs) affect each and every one of us in a gender-, race-,
and anthropometric-independent manner (23). Apart from the
range of effects on our daily body physiology, especially that
of future generations, we hypothesize that the long-term use of
chemical compounds might even have changed our own body’s
homeostatic mechanisms, including the RMR.

A myriad of studies have now unequivocally proven that
this constant exposure to low doses of chemical mixtures can
deregulate the thyroid axis, and alter human body homeostasis
(24). The most evident adverse effect comprises impaired
neurodevelopment, and human epidemiological data provide
two lines of worrying evidence in that regard (25). First, deviating
maternal TH levels, but within the normal range during fetal

development lead to irreversible, structural changes in the central
nervous system of infants and unfavorable outcomes such as
lowered intelligence quotient (25, 26). Second, some of the
investigated widely-used chemicals induce changes in TH levels
(27) of the magnitude seen in the study of Korevaar et al. (26).

We speculate that chemically disrupted TH signaling
interferes with the development and functioning of central
thermoregulation (Figure 1). A population of parvalbuminergic
neurons in the anterior hypothalamic area integrate temperature
information to control heart rate and blood pressure (28).
As abnormal maternal TH levels disrupt neuronal migration
and differentiation, resulting in permanent hypertension and
temperature-dependent tachycardia (29) it is possible that
developmental disruption of maternal/fetal TH signaling by
EDCs could adversely affect the fine-tuning of the temperature
set point in a similar way. A clear-cut example is the persistent
organochlorine pesticide dichlorodiphenyltrichloroethane
(DDT) that is still found in significant levels in breast milk
and amniotic fluid. Average concentrations of 3.49 ng DDT
per g lipid, and 198.34 ng/g of its main metabolite DDE, were
detected in pregnant women of a 2003–2004 cohort in the
NANHES study (30). DDT is a very potent thyroid disruptor
in animals (31, 32) and humans (33). Female mice exposed to
1.7mg DDT per kg body weight during a two-week perinatal
period, had a permanently lower core body temperature
up until the age of 5 months (34). When combined with a
high-fat diet, average body temperature in the adult mice
dropped even more, causing many other complications such
as insulin resistance and altered glucose/lipid metabolism
(34). In obese people too, body temperature is lower than
average (35). These comorbidities are associated with metabolic
syndrome, a global health hazard that is mainly considered a
non-communicable disease primarily caused by a sedentary
lifestyle and calorie-rich diet, but also endocrine disruption. Such
data suggest developmental misprogramming due to chemical
exposure could be another trigger predisposing to metabolic
syndrome (36).

Another possibility is that EDCs affect adult thermoregulation
by interfering with TH-dependent central and peripheral
thermoregulation in the adult (Figure 1) (37). Key to our
reasoning is the fact that we are constantly exposed to low
doses of complex EDC mixtures (38). On the one hand, EDCs
can indirectly affect thermoregulation by disrupting thyroid
axis-regulated TH homeostasis. Polychlorinated biphenyls,
polybrominated diphenyl ethers, perchlorate, bisphenols,
phthalates, pesticides, and perfluoroalkyls all cause persistent
changes in circulating TH levels in animals and humans (39, 40).
For example, the individuals of a cohort of 679 male pesticide
applicators that were continuously exposed to the highest doses
of the insecticide aldrin or the herbicide pendimethalin had
higher TSH and lower T4 levels (41). These factors could thus
alter the RMR or alter hypothalamic TH signaling (37). On
the other hand, EDCs can interfere with the availability of THs
to activate TRs (Figure 1). Adult mice shortly exposed to 100
µg/kg bisphenol A, an antagonist of TH action (42), displayed
impaired muscle metabolism and lower body temperatures (43).
Chemicals can also deregulate central control of metabolism
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FIGURE 1 | Simplified scheme of how endocrine disrupting chemicals (EDCs) might interfere with human thermoregulation. The Hypothalamic-Pituitary-Thyroid (HPT)

axis, or thyroid axis, consists of neurons synthesizing thyrotropin-releasing hormone (TRH) that stimulates thyrotropes in the pituitary to release thyrotropin (TSH). TSH

stimulates the thyroid gland to produce and secrete the thyroid hormones (THs), which negatively feedback at the level of the HPT axis. THs reach central and

peripheral organs via the circulation. At the level of the hypothalamus, TH programs and safeguards the temperature set point (Tset). At the level of the muscle tissue,

TH alters the resting metabolic rate (RMR) by acting on oxidative phosphorylation and mitochondrial biogenesis, generating heat in the process that maintains core

body temperature (Tb). TH may additionally affect heat dissipation by regulating vasoconstriction. All the actions listed above, other than the thyroid axis set point,

occur primarily through TRα1. EDCs can interfere at every point in this interconnected network and disrupt TH homeostasis or interfere with the activation of TRα1,

causing impaired thermoregulation control through persistent temperature set point changes, a reduced RMR and altered heat dissipation.

and the energy balance (37), but whether they do so by
disrupting local TH signaling remains to be investigated. In
addition, EDCs also affect other hormone axes, as for instance
glucocorticoids that are intimately implicated in metabolism and
heat generation (44).

Data linking (developmental) chemical exposure, disrupted
TH signaling and permanently reduced core body temperature
are scarce, and need additional testing. A well-planned
experiment should aim to causally link this chain of events to
provide better proof for this paradigm. We recommend exposing
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mice to a well-known TH disrupting chemical (or mixture
of chemicals) during perinatal development and follow core
body temperature during postnatal life up until the adult stage.
Simultaneously exposing mice to T3 during specific intervals
could reveal critical time windows for establishment of the
hypothalamic temperature set-point. Data should be coupled
to mapping the neuroanatomical and (epi)genetic landscape in
the (developing) hypothalamic nuclei. In addition, adult-onset
exposure of adult wild-type and TRα1-deficient mice might
reveal at which levels a particular EDC is most liable to induce
disruption of thermoregulation. Such actions could be at the
peripheral level by interfering with the RMR in muscle tissue,
through impairing heat dissipation, or at the central level by
altering the temperature set point, or possibly a combination of
the above. To mimic effects on human thermoregulation best,
experiments should be performed at thermoneutral conditions
(45). Testing for dose-dependent effects on temperature will
be subtle and requires a high “n” number per group. In
the meantime, collecting data from large cohorts of patients
with thyroid conditions, for instance of children born to
(sub)clinically hypothyroxinemic mothers, could unravel similar
correlations with offspring body temperature. To strengthen
our hypothesis further, we should ideally have data from pre-
industrialization or from emerging countries that have not yet
fully industrialized to uncover possible trends. However, to the
authors’ knowledge no such data is available.

Our arguments remain merely speculative, but suggest yet
another plausible mode of action of how EDCs can interfere
with whole body homeostasis. While we are beginning to
understand the complex mechanisms by which industrial
chemicals endanger human health and wildlife preservation,
we can only surmise the consequences of long-term exposure.
With the advent of global crises such as climate change or
the recent COVID-19 pandemic, it is however imperative to
fully grasp the dynamic interaction between these factors so as
to protect future generations from these threats that include
chemical pollution.
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