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Akt and Mammalian Target of Rapamycin
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Background. The ability of epithelial cells (ECs) to discriminate between commensal and pathogenic microbes is
essential for healthy living. Key to these interactions are mucosal epithelial responses to pathogen-induced damage.

Methods. Using reconstituted oral epithelium, we assessed epithelial gene transcriptional responses to Candida al-
bicans infection by microarray. Signal pathway activation was monitored by Western blotting and transcription factor
enzyme-linked immunosorbent assay, and the role of these pathways in C. albicans–induced damage protection was
determined using chemical inhibitors.

Results. Transcript profiling demonstrated early upregulation of epithelial genes involved in immune responses.
Many of these genes constituted components of signaling pathways, but only NF-κB, MAPK, and PI3K/Akt pathways
were functionally activated. We demonstrate that PI3K/Akt signaling is independent of NF-κB and MAPK signaling
and plays a key role in epithelial immune activation and damage protection via mammalian target of rapamycin
(mTOR) activation.

Conclusions. PI3K/Akt/mTOR signaling may play a critical role in protecting epithelial cells from damage during
mucosal fungal infections independent of NF-κB or MAPK signaling.

Keywords. Akt; Candida albicans; epithelial; inflammation; fungal; PI3 kinase; damage; MAPK; c-Fos; microar-
ray; mTOR.

The ability of mucosal surfaces to discriminate com-
mensal from pathogenic organisms is critical in

maintaining health. A distinguishing feature of
mucosal pathogens over commensals is their ability to
cause epithelial damage [1] and apart from activating
immune responses, an essential function of epithelial
cells (ECs) is damage limitation.

Innate immune response activation is mediated by
pattern recognition receptors (PRRs) via intracellular
signal pathways, including nuclear factor kappa B (NF-
κB), phosphoinositide 3 kinase (PI3K), mitogen-
activatedproteinkinase (MAPK)pathways [2, 3],nuclear
factor of activated T cells (NFAT), and interferon regu-
latory factors (IRFs) [3, 4]. Notably, in myeloid cells,
PI3K signaling is associated with suppression of PRR-
mediated responses [2, 5]. However, the role of the
PI3K pathway in epithelial PRR responses is unclear.
Likewise, the epithelial intracellular signaling pathways
associated with protecting ECs against microbial-
induced damage are poorly understood. Studies using
bacteria show protective responses mediated via p38

Received 17 July 2013; accepted 3 December 2013; electronically published 19
December 2013.

cPresent affiliation: Bioinformatics Unit, Source Bioscience, Nottingham, NG8
6PX, United Kingdom

aPresent affiliation: Department of Microbiology, Faculty of Biology, University of
Valencia, Burjassot, Valencia, Spain.

bPresent affiliation: Biomedical Research Centre, MRC Centre for Transplanta-
tion, Guy’s & St Thomas’ NHS Foundation Trust, London, United Kingdom.

Presented in part: 15th International Congress of Mucosal Immunology, 2011.
Abstract F.43; 16th International Congress of Mucosal Immunology, 2013; and
Society for General Microbiology Autumn Conference 2013.

Correspondence: David Moyes, Department of Oral Immunology, Hodgkin Build-
ing, King’s College London Dental Institute, King’s College London, London SE1
1UL, UK (david.moyes@kcl.ac.uk).

The Journal of Infectious Diseases 2014;209:1816–26
© The Author 2013. Published by Oxford University Press on behalf of the Infectious
Diseases Society of America. This is an Open Access article distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in
any medium, provided the original work is properly cited.
DOI: 10.1093/infdis/jit824

1816 • JID 2014:209 (1 June) • Moyes et al

mailto:david.moyes@kcl.ac.uk
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


signaling [6], and NF-κB and MAPK signaling are associated
with inflammation-induced cell death [7, 8]. However, host sig-
naling pathways associated with protecting ECs against fungal-
induced damage remain unidentified.

The opportunistic human fungal pathogen Candida albicans
is a normal microbiota constituent in approximately 50% of in-
dividuals but causes mucosal diseases with significant morbidi-
ty in immunocompromised hosts [9]. Most host–fungal
interaction studies have been performed using myeloid cells,
but ECs can also play an active role [10–14]. Understanding
how ECs interact with C. albicans is of paramount importance
in determining how ECs respond to fungal-induced damage.
Earlier work characterized the global transcriptional changes in
C. albicans cells during infection of oral ECs [15]; however, the
transcriptional profile of ECs during C. albicans infection has
only recently been addressed [16].

Using targeted proteomics, we previously identified that
Candida species activate MAPK and NF-κB signaling in oral
and vaginal ECs [11, 17–19]. We discovered that yeast/hyphal
discrimination was dependent on MAPK-p38 and constituted
activation of proinflammatory cytokines via the c-Fos tran-
scription factor [11, 17]. Furthermore, this EC activation mech-
anism results in neutrophil-dependent, epithelial Toll-like
receptor (TLR4)–mediated protection of mucosal surfaces
against C. albicans infection [10].

In this study, we used gene expression profiling to determine
which signaling pathways are activated by C. albicans infection
of oral epithelium. We discovered that in addition to MAPK
and NF-κB, PI3K/Akt signaling is also activated by C. albicans.
Although PI3K/Akt signaling is not associated with EC dis-
crimination of C. albicans morphology, it is involved in regula-
tion of granulocyte macrophage colony-stimulating factor
(GM-CSF) and granulocyte colony-stimulating factor (G-CSF)
secretion independent of MAPK or NF-κB signaling. Crucially,
PI3K/Akt signaling activates damage protection cellular pro-
cesses in response to C. albicans.

MATERIALS ANDMETHODS

Cell Lines and Reagents
All monolayer experiments were performed using the TR146
buccal epithelial carcinoma cell line. Cells were cultured in Dul-
becco’s modified Eagle medium 10%/fetal calf serum 1% peni-
cillin/streptomycin. Cells were serum starved overnight and
infections performed in serum-free conditions. Reconstituted
human oral epithelium (ROE) created using TR146 cells was
purchased from SkinEthic Laboratories and used as previously
described [10]. Wortmannin, LY294002, Ku-63794, and
SB203580 were from Calbiochem. All inhibitors were dissolved
in dimethyl sulfoxide (DMSO) with equivalent quantities of
DMSO used as vehicle controls. Antibodies to phospho-c-Jun,
phospho-MKP1 phospho-Akt, phospho-PDK1, phospho-IκBα,

phospho-GSK3β, phospho-IRF3, phospho-STAT3, and c-Fos
were purchased from Cell Signaling Technologies (New
England Biolabs). Antibody to α-actin was purchased from
Millipore. The C. albicans SC5314 strain was used in all experi-
ments [11, 17].

RNA Isolation and Analysis
RNA was isolated using the GenElute total mammalian RNA
miniprep kit (Sigma). Genomic DNA contamination was
removed using the Turbo DNase free kit (Ambion). For micro-
array analysis, RNA was amplified using the MessageAmp
Premier RNA Amplification Kit (Ambion), then hybridized
onto U133a 2.0 gene chips (Affymetrix) after fragmentation.
Chips were scanned (Affymetrix GeneChip Scanner 3000) and
checked using Affymetrix Command Console (AGCC) soft-
ware suite. These data was statistically analyzed using Partek
Genomics Suite (version 6.4). Gene Ontology analysis was per-
formed using MetaCore (version 2.4, GeneGo Inc). Real-time
reverse transcription polymerase chain reaction (qRT-PCR)
analysis was carried out using primers listed in Table 1, primers
and probes previously described for TLR5 [20], or assay-on-
demand set for YWHAZ (Applied Biosystems). Reactions were
performed using a Rotogene 6000 (Qiagen) for 45 cycles of
95°C for 5 seconds and 60°C for 20 seconds. Data were analyzed
using the 2 standard curve method.

Immunoblotting
Cells were lysed as previously described [11] using RIPA lysis
buffer containing protease (Sigma) and phosphatase inhibitor
cocktails (Perbio). Protein content was assayed using a bicin-
choninic acid protein assay (Perbio) and 15 µg was separated
on 12% sodium dodecyl sulfate polyacrylamide gel electropho-
resis gels, transferred to polyvinylidene fluoride (GE Health-
care), probed with primary and secondary antibodies, and then
developed using an Enhanced Chemiluminescent substrate
(Millipore) before being exposed to photographic film (GRI
Ltd).

Transcription Factor Analysis
Nuclear proteins were isolated from cells using a nuclear
protein extraction kit (Active Motif ). Protein levels were
assayed as above and 5 µg was used in a TransAM enzyme-
linked immunosorbent assay (Active Motif, Belgium).

Cytokine Determination
Cytokine levels were determined using the Fluorokine microbe-
ad assay system (R&D Systems) and measured on a Bioplex-
200 machine (Bio-Rad).

Epithelial Cell Damage Determination
EC damage was determined by measuring lactate dehydroge-
nase (LDH) activity in cell-culture supernatant using the
Cytotox 96 nonradioactive cytotoxicity assay (Promega).
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Statistical Analysis
Data were analyzed using the 2-tailed t test. In all cases, P < .05
was taken to be significant.

RESULTS

Microarray Gene Expression Analysis of C. albicans–Infected
Reconstituted Human Epithelium
The transcriptional response of C. albicans during EC interac-
tions has been categorized into 3 phases: early attachment phase
(1–3 hours), intermediate invasion phase (3–12 hours), and late
infection phase (12–24 hours) [15]. Here, we determined EC
transcriptional responses during the intermediate (6 hours) and
late (24 hours) phases in the C. albicans–ROE model using mi-
croarrays. Whole-genome expression of 3 independent ROEs
treated for 6 hours or 24 hours with 107 colony-forming units/
mL of C. albicans yeast cells (epithelial cells induce a rapid
switch of yeast to hyphal growth by 1–2 hours [21]) or phos-
phate-buffered saline (PBS) was analyzed. The pattern of gene
transcription revealed clear differences between the 2 different
time points relative to PBS controls (Supplementary Figure 1A).
A total of 266 genes were significantly (P < .001) altered at least
2-fold at 6 hours and 2887 genes at 24 hours, with 233 genes
altered at both time points (Supplementary Figure 1B). At 6
hours postinfection, 205 genes were up-regulated and 62 genes
down-regulated, whereas at 24 hours postinfection, 1126 genes
were up-regulated and 1782 genes down-regulated (Supplemen-
tary Figure 1B). At both time points, 183 genes were up-regulat-
ed and 44 genes down-regulated (Supplementary Figure 1B).
Multiple cytokine, signaling, and inflammatory genes were up-
regulated at both time points (Table 2). Analysis of cell damage
showed significant increases in LDH levels only after 12 hours
(Supplementary Figure 2), indicating that the majority of
damage occurs during the late phase of infection.

Intermediate gene up-regulation is associated with detection
of fungal infection, whereas the later time point contains genes
involved in prolonged EC responses to infection. At both
time points, MAPK-induced transcription factors (TFs) and
phosphatases, NF-κB signaling, other signaling pathway TFs,

and cytokines demonstrated changes (Table 2). Up- or down-
regulation of selected genes previously implicated as important/
involved in inflammatory processes or EC responses to C. albi-
cans was confirmed by qRT-PCR (Supplementary Figure 3).

Among the most highly up-regulated genes at both time
points were MAPK phosphatases dusp1 (MKP1), dusp5 (HVH3),
and dusp6 (MKP3), with increased expression of other genes in-
volved in MAPK regulation (sprouty-2 and -4 and tribbles-1), as
well as MAPK TFs (Fos and Jun family members) (Table 2).
Other signaling and TF genes showed increased expression at 6
hours, including egr1, egr3, and socs1. tlr5 and dectin-1 (clec7a)
were down-regulated whereas ptx3 and galectin-3 were up-
regulated and TLR-associated adapters and regulators (trif, a20,
and itch) showed up-regulation. We observed increased expres-
sion of cytokine genes in common with our previous studies
demonstrating increased cytokine protein expression [11].

Gene Ontology Analysis of C. albicans–Infected Reconstituted
Human Epithelium
At 6 hours, several pathways showed significant enrichment in
gene expression (Figure 1A), including immune response
pathways (interleukin [IL] 17 signaling [−log P value = 6.6], IL-1
signaling [5.1], Macrophage migration Inhibitory Factor (MIF)-
mediated glucocorticoid regulation [4.61], and Triggering Recep-
tor Expressed on Myeloid cells-1 (TREM-1) signaling [4]). There
is also significant enrichment in other pathways (ErbB family sig-
naling [4.7], epidermal growth factor receptor [EGFR] signaling
[3.6], and extracellular matrix remodeling [4.7]). Analysis of Meta-
Core Process Networks enrichment (Figure 1B) provides further
evidence of immune activation, with Th17-derived cytokines
(6.5), ERBB-family signaling (5.3), MIF signaling (3.6), and innate
inflammatory response (3.6) among the 10 most enriched process-
es. Several cell survival processes show enrichment (negative regu-
lation of cell proliferation [4.4], antiapoptosis mediated by
external signals via PI3K/Akt [4.3]). These data suggest that ECs
mount an immediate and robust response to C. albicans infection.

The responses 24 hours postinfection are more heterogeneous,
reflecting the variety of stimuli affecting ECs at this time point.
The most enriched MetaCore pathways include those involved in

Table 1. Primers Used for Quantitative Polymerase Chain Reaction Validation

Gene Sense Antisense

mmp1 5′–ACTCTGGAGTAATGTCACACCT–3′ 5′–GTTGGTCCACCTTTCATCTTCA–3′
mmp10 5′–CCCACTCTACAACTCATTCACAG–3′ 5′–TCAGATCCCGAAGGAACAGAT–3′
timp-1 5′ - GGGTTCCAAGCCTTAGGGG–3′ 5′–TTCCAGCAATGAGAAACTCCTC3′ -
cox2 5′ - ATATGTTCTCCTGCCTACTGGAA–3′ 5′–GCCCTTCACGTTATTGCAGATG–3′
dusp1 5′ - GGCCCCGAGAACAGACAAA–3′ 5′–GTGCCCACTTCCATGACCAT–3′
dusp6 5′ - ACACCCCTCCTTGCTGGAAT–3′ 5′–CACACACAAAGAAAGCAGCCC–3′
dusp5 5′ - GCGACCCACCTACACTACAAA–3′ 5′–CTTCATAAGGTAAGCCATGCAGA–3′
β-def4 5′ - GGTGGTATAGGCGATCCTGTT–3′ 5′–AGGGCAAAAGACTGGATGACA–3′
c-fos 5′–GGGCAAGGTGGAACAGTTATC–3′ 5′–CCGCTTGGAGTGTATCAGTCA–3′
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metabolism (Figure 2A), and analysis of enriched MetaCore
Process Networks identifies several DNA damage-associated
processes (Base Excision Repair-Nucleotide Excision Repair
(BER-NER) repair [8.9], DNA Mismatch Repair (MMR) repair
[6.3], DBS repair [4.9], and core processes [3.9]) (Figure 2B).
Furthermore, there is enrichment of networks involved in cell
cycle (DNA production (S phase [4.2]), likely linked with
DNA repair processes. Along with enrichment in mitochondrial
translation genes (translation in mitochondria [2.1]), these may
represent a continuation of earlier apoptotic processes. Other en-
riched processes suggest changes in intercellular communication
(NOTCH signaling [2.1]) and stress responses (response to
hypoxia and oxidative stress [2.2]). Together, these data suggest
a general response to an invasive, damage-inducing pathogen.

Table 2. Selected Genes Showing Significant Up-regulation in
Reconstituted Human Oral Epithelium 6 Hours and 24 Hours After
Infection With Candida albicans

Gene

6 Hours Postinfection 24 Hours Postinfection

P Value
Fold

Change P Value
Fold

Change

Transcription factors

FOS (c-Fos) 5.61 × 10−03 3.5 nc
EGR3 7.03 × 10−04 4.3 2.75 × 10−05 32.4

FOSL1
(Fra1)

7.88 × 10−05 7 1.05 × 10−05 12.9

ATF3 5.81 × 10−04 4.2 5.56 × 10−05 8.4

ELK3 nc 1.47 × 10−05 5.4

EGR1 4.61 × 10−06 4 3.38 × 10−04 5.3
JUN nc 4.54 × 10−05 4.0

FOSB nc 5.35 × 10−04 3.2

CREB1 nc 8.26 × 10−04 2.7
MAPKmodulators

DUSP1
(MKP1)

1.95 × 10−04 4.7 2.27 × 10−05 7.6

DUSP5
(HVH3)

2.6 × 10−04 5.6 1.19 × 10−04 7.0

DUSP6
(MKP3)

9.14 × 10−05 8.8 8.86 × 10−04 6.8

SPRY2 2.93 × 10−04 4.4 1.33 × 10−04 5.9

TRIB1 1.9 × 10−04 4.8 5.38 × 10−05 4.7

SPRY4 4.72 × 10−03 3 9.49 × 10−05 4.7
Signaling molecules

INPP4B 1.42 × 10−05 10.9

ITPKC 6.15 × 10−04 4 nc
GADD45A nc 9.62 × 10−05 5.4

SOCS1 7.91 × 10−04 2.6 7.11 × 10−05 5.0

TNFAIP3 5.79 × 10−03 3.2 1.03 × 10−04 4.7
PITPNC1 nc 4.28 × 10−04 4.0

NFKBIA nc 8.71 × 10−06 3.0

NFKBIE nc 5.66 × 10−05 3.0
NFAT5 nc 3.6 × 10−04 3.0

SOCS3 nc 6.98 × 10−05 2.8

BCL10 nc 1.9 × 10−04 2.5
TRIF nc 4.49 × 10−05 2.4

IL-1 family cytokines

IL-1F9 3.8 × 10−04 8.1 9.59 × 10−05 34.7
IL-1α 2.16 × 10−03 6.6 1.11 × 10−04 10.0

IL-1β 1.63 × 10−03 3.6 1.16 × 10−04 7.9

IL-1F5 nc 1.53 × 10−04 7.0
IL-1ra nc 8.51 × 10−04 6.1

IL-6 family cytokines

CLCF-1 1.32 × 10−05 6 2.09 × 10−05 12.7
LIF 2.66 × 10−04 3.9 6.33 × 10−05 7.1

IL-6 1.53 × 10−03 3 5.07 × 10−05 5.6

Other cytokines/chemokines
IL-8 5.12 × 10−05 6.5 3.45 × 10−04 24.2

GM-CSF 1.67 × 10−06 24.2

HBEGF 1.32 × 10−05 6.4 8.11 × 10−06 11.3
CCL20 8.13 × 10−04 6.8 5.40 × 10−08 10.6

Table 2 continued.

Gene

6 Hours Postinfection 24 Hours Postinfection

P Value
Fold

Change P Value
Fold

Change

IL-11 6.48 × 10−03 2.3 2.5 × 10−04 6.3

IL-24 nc 2.80 × 10−05 4.3
Surface receptors

CEACAM6 nc 2.60 × 10−06 42.1

CEACAM1 nc 1.07 × 10−05 15.6
PTX3 5.83 × 10−03 5.3 5.15 × 10−05 11.2

ICAM1 6.65 × 10−03 3.5 1.05 × 10−05 5.6

TLR5 nc 2.4 × 10−03 −8.1
CLEC7A nc 3.13 × 10−04 −9.2

Proteases/inhibitors

SERPINB2 8.20 × 10−05 7.6 1.06 × 10−04 42.3
MMP10 4.27 × 10−04 3.5 4.30 × 10−06 28.1

MMP1 1.02 × 10−03 5.7 1.79 × 10−06 17.7

SERPINB1 nc 6.1 × 10−04 7.9
TIMP1 nc 3.54 × 10−05 3.9

Apoptosis

BCL2A1 8.51 × 10−03 3.3 6.4 × 10−04 20.0
BCL2L1 nc 4.4 × 10−04 2.2

CASP8 nc 6.89 × 10−04 −2.1
BCLAF1 nc 1.51 × 10−04 −3.7

Antimicrobial peptides

DEFB4 nc 1.69 × 10−04 30.8

S100P nc 1.36 × 10−06 6.4
S100A12 nc 9.85 × 10−04 3.2

Interferon-stimulated genes

ISG20 nc 6.54 × 10−05 4.9
PRKRIR nc 6.87 × 10−04 −2.1
IFI16 nc 1.34 × 10−05 −2.2
IFIT3 nc 2.25 × 10−03 −2.4
IFIT5 nc 2.87 × 10−05 −5.2
IFIT1 nc 3.43 × 10−04 −3.15

Abbreviations: GM-CSF, granulocyte macrophage colony-stimulating factor; IL,
interleukin; nc, no change.
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Candida albicans Does Not Induce IRF-3, NFAT, or STAT1
Signaling in Epithelial Cells

As well as NF-κB and MAPK signaling [11], the microarray
data indicated increased IRF3 and Janus kinase/signal trans-
ducer and activator of transcription (JAK/STAT)–regulated
genes, as well as increases in NFAT expression (Table 2).

Therefore, we determined whether these pathways and their
downstream TFs were functionally activated (phosphorylated)
in response to C. albicans at early time points (optimum 2
hours [11]) in monolayer TR146 ECs, which comprise the ROE
model. TR146 monolayers were used to maximize the signal,
and times up to 2 hours were optimum to identify signal

Figure 1. Pathways (A) and networks (B) enriched in reconstituted human oral epithelium 6 hours after infection with Candida albicans.
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pathways driving 6-hour gene expression. Despite the well-
documented link between MAPK, NF-κB, and IRF3 signaling
after PRR stimulation [3], IRF3 phosphorylation was not
detected up to 2 hours postinfection (data not shown), even
though NF-κB and MAPK signaling is activated [11]. To
confirm that this lack of response was not a result of a defect in
the TLR3 or RIG-I pathways, we stimulated TR146 monolayers
with the TLR3 (Poly I:C) and IPS (Poly dA:dT) agonists. Both
these agonists increased the production of G-CSF from TR146
cells (Figure 3C), indicating that these pathways are functional
in TR146 cells. STAT3 phosphorylation was not detected up to
2 hours postinfection (data not shown), and STAT1 DNA

binding and transcriptional activity showed no increase at 30
minutes or 3 hours postinfection (Figure 3A). Finally, although
NFAT signaling is associated with myeloid cell responses to
C. albicans [4], we found no NFAT DNA-binding activity at 30
minutes or 3 hours postinfection (Figure 3B). Together, these
data suggest that IRF3, JAK/STAT, and NFAT signaling play no
role in EC responses to C. albicans infection.

Candida albicans Infection Induces PI3K/Akt Signaling
Microarray analysis demonstrated several PI3K-activating re-
ceptor-ligand interactions (ERBB family signaling, EGFR sig-
naling, antiapoptosis (Table 2, Figures 1 and 2). To investigate

Figure 2. Pathways (A) and networks (B) enriched in reconstituted human oral epithelium 24 hours after infection with Candida albicans.
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the functional significance of these observations, we looked for
phosphorylation of PDK1, Akt, and GSK-3β. Immunoblot anal-
ysis of C. albicans–infected TR146 oral ECs demonstrated
increased PDK1 phosphorylation as early as 5 minutes postin-
fection, peaking at 2 hours (Figure 3D) with a matching increase
in Akt phosphorylation (Figure 3D). We also observed increases
in GSK-3β phosphorylation with similar kinetics (Figure 3D).

Because PI3K/Akt signaling plays a role in modulating TLR-
induced cytokine production in ECs [22], we inhibited this
pathway with 2 separate PI3K inhibitors, wortmannin (1 µM)
and LY294002 (50 µM), to determine its functional significance
in EC cytokine responses. Both inhibitors significantly reduced
GM-CSF levels (P < .05 and P < .001; Figure 4A), whereas
LY294002 additionally reduced G-CSF levels (P < .001). In con-
trast, IL-1α production was increased, although not significan-
tly (Figure 4A), whereas IL-6 production was unaffected. Given
that IL-1α production is associated with damage [23], these
data suggest a role for PI3K/Akt signaling in protection/preven-
tion of damage by C. albicans. Therefore, we analyzed 24 hours
postinfection supernatant LDH levels with or without inhibi-
tion, finding significantly increased LDH release (Figure 4B).
Inhibition of p38 signaling had no effect on LDH release
(Figure 4B), indicating that despite mediating discrimination
between C. albicans yeast and hyphae via c-Fos [11], p38 plays
no role in EC damage protection in fungal infection.

The Akt target, mammalian target of rapamycin (mTOR),
plays an important role in cell survival [24]. Therefore, to deter-
mine whether the protective effect regulated by PI3K/Akt sig-
naling was mediated via mTOR, we inhibited mTOR and found
a significant increase in LDH release (P < .01), indicating in-
creased cell damage (Figure 4C). As with PI3K/Akt inhibition,
levels of G-CSF (P < .05) and GM-CSF (P < .001) were signifi-
cantly reduced (Figure 4D). However, unlike Akt inhibition,
there was a significant increase in IL-6 production (P < .05).
The increased damage in PI3K/Akt/mTOR-inhibited cells was
not due to toxic effects of the inhibitors, as treatment with in-
hibitors alone did not result in a significant increase in LDH
release (data not shown).

MAPK and NF-κB Signaling Induced by C. albicans Is
Independent of the PI3K Pathway
PI3K/Akt signaling can modulate activation of NF-κB and
AP-1 TFs [2, 25]. Thus, we investigated whether activation of
PI3K/Akt signaling modulates NF-κB (IκBa) or MAPK (c-Jun,
MKP1, c-Fos) responses to C. albicans infection as previously
identified [11]. PI3K/Akt inhibition had no effect on IκBα,
phospho-c-Jun, or MKP1 phosphorylation or c-Fos production
at 30 minutes or 2 hours (Figure 4E and 4F), indicating that
NF-κB and MAPK signaling is independent of PI3K/Akt sig-
naling in response to fungal infection.

Figure 3. Levels of DNA-binding activity of STAT1 (A) and NFAT (B) in TR146 cells 30 minutes and 3 hours postinfection with Candida albicans. C, Pro-
duction of granulocyte colony-stimulating factor by TR146 cells in response to TLR3 (poly I:C, 25 μg/mL) and RIG-I (Poly dA:dT, 1 μg/mL) agonists. D, In-
creasing phosphorylation of PDK1, Akt, and GSK3β from 5 minutes up to 2 hours postinfection. In all cases, multiplicity of infection = 10. Candida albicans
was added as 100% yeast that switched to hyphal growth by 2 hours after infection. Results shown are the mean (A–C) or representative (D) of 3 indepen-
dent experiments. Abbreviation: PBS, phosphate-buffered saline.
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DISCUSSION

In this study, we describe the global transcriptional response of
oral ECs to C. albicans infection and identify PI3K/Akt signal-
ing in addition to MAPK and NF-κB signaling as the major

epithelial response pathways against this fungus. PI3K/Akt sig-
naling is independent of NF-κB and MAPK signaling, and al-
though it plays a minor role in inducing EC proinflammatory
responses, PI3K/Akt signaling may play a key role in protecting
ECs from C. albicans–induced damage.

Figure 4. Inhibition of PI3K/Akt/mammalian target of rapamycin (mTOR) signaling induction in TR146 cells infected with Candida albicans. A, Effect of
inhibition of PI3K/Akt signaling by 1 µM wortmannin or 50 µM LY294002 on cytokine production after 24 hours (multiplicity of infection [MOI] = 0.01)
shown as percentage of the dimethyl sulfoxide (DMSO) vehicle control. B, Effect of inhibition of PI3K/Akt (wortmannin [1 µM] and LY294002 [50 µM]) or
p38 (SB203580 [10 µM]) signaling on cell damage (lactate dehydrogenase [LDH] release) after 24 hours (MOI = 0.01) shown as percentage of the vehicle
control (DMSO). C, Effect of inhibition of mTOR activity with 10 μM Ku-63794 on cell damage (LDH release) after 24 hours (MOI] = 0.01) shown as percent-
age of DMSO vehicle control. D, Effect of inhibition of mTOR activity with 10 μM Ku-63794 on cytokine production after 24 hours (MOI = 0.01) shown as
percentage of the vehicle control (DMSO). E, Effect of inhibition of PI3K/Akt signaling by 1 µM wortmannin or 50 µM LY294002 on phosphorylation of
IκBα 2 hours postinfection (MOI = 10). F, Effect of inhibition of PI3K/Akt signaling by 1 µM wortmannin or 50 µM LY294002 on phosphorylation of MKP1
and c-Jun and on the production of c-Fos 2 hours postinfection (MOI = 10). Candida albicans was added as 100% yeast, which switched to hyphal growth
by 2 hours postinfection. Data are the mean (A–D) or representative (E and F ) of at least 3 independent experiments. *P < .05, **P < .01, ***P < .001. Ab-
breviations: G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte macrophage colony-stimulating factor; IL, interleukin.
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The transcriptome of C. albicans–infected ROE reveals inter-
esting findings. At 6 hours postinfection, several enriched
immune response pathways were related to cytokine and other
receptor signaling pathways but, notably, neither TLR or other
conventional fungal PRR receptor pathways were enriched,
supporting our previous findings implying no role for TLRs or
other conventional PRRs in early recognition of C. albicans by
ECs [11]. In contrast, ERBB family signaling showed significant
enrichment, and previous studies support a role for EGFR-
ERBB1 signaling during C. albicans infections [26, 27]. Al-
though the TREM-1 signaling pathway was enriched, we found
no increase in the PRR TREM-1 expression. Thus, this enrich-
ment possibly represents an increase in PRR signaling-associated
gene expression. Enrichment of amphoterin and IL-1 signaling
pathways suggests involvement of damage-associated molecular
patterns in EC responses to C. albicans. This is expected given
the stress/damage resulting from tissue invasion. Together,
these pathways probably form the core EC response to fungal
invasion and damage. The increase in the protease inhibi-
tor SerpinB2 is interesting but should be interpreted with
caution as a role has yet to be identified in host infection
responses [13].

The 24-hour pathways and networks show enrichment in
cell survival, DNA repair, or metabolism, reflecting differing
EC priorities during late infection, predominantly targeting ap-
optosis and cell growth. Along with increases in tissue remodel-
ing genes, this suggests a general damage repair mechanism,
maintaining mucosal barrier integrity. The late appearance of
apoptosis genes suggests that apoptotic mechanisms are
induced at later stages of infection, as previously reported for
C. albicans [28, 29] and bacterial EC infection [30].

In the intermediate infection stage (6 hours), NF-κB–
induced genes were up-regulated, which was expected given
this pathway’s role in EC antifungal responses [11]. Although
no MAPK proteins showed increased expression, we observed
increases in expression of MKP1 (dusp1) and other members of
this family—HVH3 (dusp5) and MKP3 (dusp6). As with
MKP1, these proteins negatively regulate MAPK signaling, but
with different specificity, acting to dephosphorylate ERK1/2
[31]. Given their high degree of up-regulation, these phospha-
tases potentially form the core MAPK-regulatory response
mechanism during C. albicans infection. Other up-regulated
MAPK regulators include 2 Sprouty genes, spry2 and spry4, in-
volved in regulating ERK1/2 signaling [7, 32], and trib1 control-
ling activation of MAPKs by MAP2Ks [33] and involved in
antifungal responses of Caenorhabditis elegans [34].

In addition to MAPK regulatory factors, we observed up-
regulation of several AP-1 proteins, persisting throughout
infection, confirming a central role for AP-1 in EC antifungal
responses [11]. In particular, ATF3, a transcriptional repressor
modulating responses to infection [35], is upregulated early,
possibly as part of a negative feedback loop. Alternatively,

ATF3 may work in conjunction with other TFs, allowing for
shifts in gene expression profile during infection.

Along with MAPK and NF-κB pathways, other signaling
pathways and TFs show upregulation after C. albicans infection,
most notably EGR1 and EGR3. These proteins are associated
with myeloid cell responses to C. albicans [4, 36], playing a role
in NFAT signaling via dectin-1, although their role in fungal
EC responses is unknown. Elevation of EGR1 and EGR3
despite a lack of signaling via dectin-1, Syk [11], or NFAT (this
study) implies that EGR gene activation in ECs occurs via dif-
ferent pathways, potentially via ERK1/2 [13, 31]. Other genes
associated with PRR regulation and immune response signals
are upregulated, particularly those involved in ubiquitin signal-
ing, including A20 and ITCH [37].

The observed discrepancy between microarrays and function-
al studies reflects the difference between RNA expression and
subsequent protein activation, with many signaling pathways
showing crossover in target genes. Microarray data represent an
expression snapshot, whereas signal activation data from 0–3
hours postinfection represent EC responses to C. albicans rather
than subsequent secreted components. Despite the microarray
evidence, only PI3K/Akt signaling via PDK1/Akt appears to be
functionally activated alongside MAPK and NF-κB, with no evi-
dence for activation of IRF, STATs, or NFAT. Required for
dectin-1 signaling in myeloid cells [4, 36], the lack of NFAT sig-
naling confirms our previous findings that dectin-1 is not in-
volved in EC recognition of C. albicans [11]. Induction of PI3K/
Akt pathway activity in ECs was expected, given the wide range
of stimuli and receptors reported to activate this pathway [38]
and the demonstrated role of PI3K/Akt signaling in monocytes
during fungal immunity [39, 40], TLR-mediated pathogen detec-
tion [13], and cytokine secretion [22, 41]. Here, we demonstrate
PI3K/Akt/mTOR signaling is important in regulating G-CSF
and GM-CSF production from ECs. Notably, these cytokines are
associated with mucosal healing, having been used to treat
damaged mucosa [42, 43]. In contrast, IL-1α production in-
creased when PI3K/Akt/mTOR signaling was inhibited, correlat-
ing with increased EC damage, implying that PI3K/Akt/mTOR
signaling may play a role in protecting ECs from damage induc-
tion during C. albicans infection. Given that PI3K/Akt signaling
also protects macrophages against fungal-induced killing [40],
our findings indicate that PI3K/Akt signaling may represent a
common mechanism by which host cells protect against patho-
gen-induced damage. Furthermore, as p38 inhibition did not
affect damage, EC damage protection is probably independent
of the p38/c-Fos hyphal recognition response we previously re-
ported [11]. Evidence from the MetaCore ontology analysis of
microarray data in this study suggests that this protection may
be induced by inhibiting apoptosis in infected cells, given the
enrichment in PI3K-induced antiapoptosis pathways.

PI3K/Akt signaling may be involved in other EC response
mechanisms connected to damage, for example, fungal invasion.
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Candida albicans–induced endocytosis in ECs is clathrin-
dependent, and PI3K/Akt signaling is thought to be crucial for
this process [44] and for microbe endocytosis [45]. Interesting-
ly, although PI3K/Akt signaling appears to initiate EC damage
protection/repair mechanisms, in contrast to myeloid cell PRR
ligation [25, 46, 47], it has no effect on NF-κB or MAPK signal-
ing. Consequently, the roles of PI3K/Akt signaling probably
differ between myeloid and ECs.

It is important to note that this work was carried out using
the TR146 carcinoma cell line and thus may not accurately
reflect findings in a normal host. However, this cell line has
been used extensively in C. albicans infection studies of both
monolayers and organotypic models [11, 18, 19, 21, 48–50] and
has been found to give comparable data to those obtained from
patient biopsies [11].

Our data suggest that the role of PI3K/Akt signaling in hyphal
discrimination is minimal but may constitute a major damage
protection response in ECs. We therefore propose a model
whereby (1) p38/c-Fos signaling identifies C. albicans hyphae
[11, 17], (2) p38/c-Fos and NF-κB drive cytokine production [11,
17], (3) ERK1/2 signaling (via MKPs) regulates p38/c-Fos activa-
tion [11, 17], and (4) PI3K/Akt/mTOR signaling induces cell
protection responses (this study). Together, these EC signaling
pathways act in concert to recognize potential fungal threats, ini-
tiating protective cellular responses limiting mucosal fungal in-
fections. This study identifies PI3K/Akt/mTOR signaling, a key
component of this mechanism, as potentially an important
target for future antifungal therapy development.
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