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Gastric cancer (GC) is the most commonmalignancy of the stomach. This study was aimed at elucidating the regulatory network of
circRNA-miRNA-mRNA and identifying the precise inflammation-related targets in GC. The expression profiles of GSE83521,
GSE78091, and GSE33651 were obtained from the GEO database. Interactions between miRNAs and circRNAs were
investigated by the Circular RNA Interactome, and targets of miRNAs were predicted with miRTarBase. Then, a
circRNA/miRNA/mRNA regulatory network was constructed. Also, functional enrichment analysis of selected differentially
expressed genes (DEGs) was performed. The inflammation-/GC-related targets were collected in the GeneCards and GenLiP3
database, respectively. And a protein-protein interaction (PPI) network of DE mRNAs was constructed with STRING and
Cytoscape to identify hub genes. The genetic alterations, neighboring gene networks, expression levels, and the poor prognosis
of hub genes were investigated in cBioPortal, Oncomine, and Human Protein Atlas databases and Kaplan-Meier plotter,
respectively. A total of 10 DE miRNAs and 33 DEGs were identified. The regulatory network contained 26 circRNAs, 10
miRNAs, and 1459 mRNAs. Functional enrichment analysis revealed that the selected 33 DEGs were involved in negative
regulation of fat cell differentiation, response to wounding, extracellular matrix- (ECM-) receptor interaction, and regulation of
cell growth pathways. THBS1, FN1, CALM1, COL4A1, CTGF, and IGFBP5 were selected as inflammation-related hub genes of
GC in the PPI network. The genetic alterations in these hub genes were related to amplification and missense mutations.
Furthermore, the genes RYR2, ERBB2, PI3KCA, and HELZ2 were connected to hub genes in this study. The hub gene levels in
clinical specimens were markedly upregulated in GC tissues and correlated with poor overall survival (OS). Our results suggest
that THBS1, FN1, CALM1, COL4A1, CTGF, and IGFBP5 were associated with the pathogenesis of gastric carcinogenesis and
may serve as biomarkers and inflammation-related targets for GC.

1. Introduction

Gastric cancer (GC) is one of the most common gastrointes-
tinal malignancies in the clinic; in 2015, 1,313,000 people
were diagnosed with GC, and 813,000 people died from it
[1–9]. GC displays high heterogeneity with respect to histo-
pathological and epidemiological characteristics [1, 10] and
can be divided into proximal nondiffuse, diffuse, and distal
nondiffuse subtypes [1, 11]. Gastric adenocarcinoma (GA)

is the primary pathological type associated with environmen-
tal factors, including a high-salt diet, infectious agents, and
smoking, and this form of GC is characterized by ease of
invasion and metastasis and a very low early diagnosis rate
[5, 12]. Despite the tremendous efforts that have been paid
in the diagnosis of GC, together with improvements in surgi-
cal techniques and targeted chemotherapy in recent years,
the prognosis of patients with GC remains unsatisfactory
due to the prevalence of diagnosis of the disease at advanced
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stages that are often accompanied by lymphatic metastasis,
which limits successful therapeutic strategies [7]. Additionally,
cancer-related systemic inflammation is recognized as a flag
sign of cancer-related cachexia development and progression,
which results in an inappropriate systemic reaction, including
fevers, weight loss, and sweats [13]. Therefore, further explora-
tion of appropriate molecular biomarkers for early diagnosis
and identification of potential inflammation-related targets
of GC are urgently needed to expand the promising strategies
to enhance the therapeutic efficacy and clinical prognosis in
patients with GA.

Circular RNA (circRNA) is a novel type of endogenous,
noncoding RNA, which is also widely expressed in different
species and has been demonstrated to belong to a class of
RNAs with tissue-/developmental-stage specificity, making
them potential diagnostic and prognostic biomarkers [3, 14].
MicroRNAs (miRNAs) are a special type of small noncoding
RNAs comprising approximately 21 nucleotides that bind to
the 3′-untranslated regions (3′-UTRs) of target messenger
RNAs (mRNAs) and leading to mRNA degradation or block-
ing of translation, which contribute to the central regulation of
cell proliferation, differentiation, and apoptosis [9, 15, 16].
Recent studies have revealed that the abundance and evolu-
tionary conservation of circRNAs play significant effects in
regulating cancer progression-related processes such as metas-
tasis, apoptosis, and invasion and that circRNAs primarily
function as miRNA sponges, thereby relieving miRNA-
mediated target repression. For instance, circRNA-ZFR serves
as a sponge of miR-130a/miR-107 and modulates PTEN
expression, resulting in the suppression of GC cell prolifera-
tion and the promotion of apoptosis [17]. Another report by
Zhang et al. showed that circRNA-LARP4 inhibits cell prolif-
eration and invasion in GC by sequestering miR-424-5p and
regulating LATS1 expression [18]. Besides, it has been
reported that knockdown of ciRS-133 reduced cancer cachexia
by activating PRDM16 and suppressing miR-133 in tumor-
implanted mice [19]. Although several circRNAs have been
identified to participate in the pathogenesis of GC, it is still
necessary to conduct a more comprehensive analysis of
circRNA-miRNA-mRNA regulatory networks and to identify
potential inflammation-related targets in GC.

In this study, we performed an integrated analysis of cir-
cRNA expression profiles in GC from the Gene Expression
Omnibus (GEO) database. miRNAs and mRNAs from GEO
datasets were employed to distinguish the circRNA-related
dysregulated miRNAs and the miRNA-related dysregulated
mRNAs, and then, a circRNA/miRNA/mRNA network was
constructed to elucidate the relationships among differentially
expressed (DE) circRNAs, miRNAs, and mRNAs. >GO (Gene
Ontology) and KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathway enrichment analysis revealed the potential
biological functions of selected miRNA target genes (DEGs).
Besides, the inflammation-/GC-related targets were collected
in the GeneCards and GenLiP3 database, respectively. Then,
a PPI network of the selected DE mRNAs was constructed to
identify the inflammation-related hub genes based on the
value of the overall degree, node betweenness, and closeness
through network topology calculations. Furthermore, genetic

alterations and neighboring gene networks were investigated
by cBioPortal, and the expression transcriptional level of hub
genes was explored using Oncomine databases with subse-
quent validation using the Human Protein Atlas. Finally, sur-
vival analysis of hub genes was performed using the Kaplan-
Meier plotter. These findings may enable us to identify novel
diagnostic or prognostic biomarkers and suggested that
THBS1, FN1, CALM1, COL4A1, CTGF, and IGFBP5 might
be inflammation-related candidate targets for GC. The work-
flow of the current study is shown in Figure 1.

2. Materials and Methods

2.1. Microarray Data.We chose the circRNA expression pro-
file GSE83521, the miRNA expression profile GSE78091, and
the mRNA expression profile GSE33651 from the GEO
(http://www.ncbi.nlm.nih.gov/gds/) database. GSE83521,
which was based on Agilent GPL19978 (Agilent-069978
Arraystar Human CircRNA Microarray V1), includes 6
tumors and 6 adjacent normal mucosal tissues. GSE78091,
which was based on Agilent GPL21439 (miRCURY LNA
microRNA Array), includes 3 cancer tissues and 3 normal
gastric mucosal tissues. The GSE33651 based on the platform
of GPL2895 (Agilent, USA), including 40 gastric tumor tissue
samples and 12 normal gastric tissue samples.

2.2. Data Processing. The raw data of microarray datasets
were preprocessed via background correction and normaliza-
tion. The box plot is a convenient way to quickly visualize the
distribution of data, and we used box plots to examine and
compare the distributions of expression profiles of samples
after normalization. Hierarchical clustering, the most widely
used clustering technique, allows us to observe the relation-
ships between samples, and we performed a cluster analysis
based on “All Targets Value-CircRNAs” in this study. DE cir-
cRNAs, miRNAs, and mRNAs were identified using GEO2R
(https://www.ncbi.nlm.nih.gov/geo/geo2r/), an interactive
online tool that permits users to compare two or more groups
of samples to find out genes that are DE across experimental
conditions [20]. ∣ log2fold change ðFCÞ∣ ≥ 2:0 and P value <
0.05 were used as the threshold criteria for the DE circRNAs,
miRNAs, and mRNAs.

2.3. Construction of the circRNA-miRNA-mRNA Regulatory
Network. DE circRNAs contain corresponding miRNA-
binding sites and act as miRNA sponges. To further explore
this connection, we predicted the interactions between the
miRNAs and circRNAs by using the Circular RNA Interac-
tome (http://circinteractome.nia.nih.gov) database [21].
Then, the circRNA-related miRNAs and DE miRNAs were
intersected. miRNAs play important roles in a variety of dis-
eases and regulate the expression of oncogenes and tumor
suppressors. The regulatory relationships between miRNAs
and mRNA were predicted using the miRTarBase database
(http://miRTarBase.mbc.nctu.edu.tw/) [22]. Subsequently,
the miRNA-related mRNAs and the DE mRNAs were also
intersected to identify the selected DEGs by using Venny
2.1 (https://bioinfogp.cnb.csic.es/tools/venny/index.html).
Finally, the DE circRNAs, predicted miRNAs, and mRNAs
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were added in a circRNA/miRNA/mRNA network. More-
over, the regulatory network was visualized with Cytoscape
3.4.0 (http://cytoscape.org/).

2.4. Functional Enrichment Analysis. GO and KEGG path-
way enrichment analysis of selected DEGs was carried out
using the DAVID (http://www.david.abcc.ncifcrf.gov/) data-
base. GO terms (biological processes, cellular components,
and molecular functions) and KEGG pathways with P <
0:05 were further analyzed. The enriched GO terms of
selected DEGs were ranked by the enrichment scores
(−log10 (P value)).

2.5. Identification of GC and Inflammation-Related Targets.
The GC-related targets and inflammation-related targets
were collected from the GeneCards (https://www.genecards
.org/) [23] and GenCLiP 3 database (http://ci.smu.edu.cn/
genclip3/analysis.php), respectively. GenCLiP 3, a web
server, is enhancing the analysis of human gene functions
and regulatory networks from PubMed based on cooccur-
rences and natural language processing [24]. In brief, the key-
words “inflammation” and “gastric cancer” were used in the
GeneCards and GenCLiP 3 database to search for GC-/inflam-
mation-related targets, respectively. Next, the inflammation-
related targets of GC were analyzed with Draw Venn Dia-
grams (http://bioinformatics.psb.ugent.be/webtools/Venn/).

2.6. PPI Network and Hub Gene Identification. The associa-
tions of the selected DEGs were analyzed using STRING
(http://string-db.org/) [25], which provides both predicted
and experimental PPI interaction information, and a PPI net-

work was then constructed, which was visualized with Cytos-
cape software. Required confidence ðcombined scoreÞ ≥ 0:4
was used as the threshold criterion. Subsequently, to further
analyze the more significant interactions of hub genes in
the PPI network, we calculated the network topology of node
degree, node betweenness, and closeness value using the
Cytoscape plug-in Network Analyzer.

2.7. Exploring Cancer Genomics Data of Hub Genes Using
cBioPortal. cBioPortal (http://cbioportal.org), an internet
resource platform, is making complex cancer genomic pro-
files accessible to researchers and clinicians without the need
for bioinformatics expertise [26, 27]. In the present study, we
used cBioPortal to investigate candidate hub genes via stom-
ach adenocarcinoma studies including 393 samples available
in the database (The Cancer Genome Atlas (TCGA), Provi-
sional). The results of the genomics datasets are shown
through a concise and compact graphical summary of geno-
mic alterations in multiple genes as heat maps, as well as mul-
tiple visualization networks of hub genes that are altered in
cancer.

2.8. Oncomine Analysis and Validation. The publicly avail-
able online cancer microarray database Oncomine (http://
www.oncomine.com), a collection of cancer microarray data-
sets with a comprehensive data-mining platform [28], can
facilitate discovery from genome-wide expression analyses.
Oncomine was chosen to explore the expression of hub genes
in GC tissues compared with those in normal tissues. We
chose to filter cancer vs. normal (analysis type), gastric ade-
nocarcinoma (cancer type), clinical specimen (sample type),
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Figure 1: Workflow for the identification and analysis of hub genes in gastric adenocarcinoma.
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and mRNA (data type) to investigate the clinical significance
in GC. Derrico gastric datasets were selected because they
were established based on mRNA levels and contain larger
numbers of samples (n > 50). In Derrico datasets, the thresh-
olds for significance were 2-fold change, P value = 1E-4, and
top 10% gene rank. The minimum, 10th, 25th, 75th, 90th, and
maximum percentile data of each hub genes in both GC and
normal tissues were plotted. Furthermore, the Human Pro-
tein Atlas (http://www.proteinatlas.org) was used to validate
the immunohistochemistry of candidate hub genes. The
direct links to these images in the Human Protein Atlas are
as follows: https://www.proteinatlas.org/ENSG00000137801-
THBS1/tissue/stomach#img (thrombospondin 1 (THBS1) in
normal tissue); https://www.proteinatlas.org/ENSG0000013
7801-THBS1/pathology/tissue/stomach+cancer#img (THBS1
in tumor tissue); https://www.proteinatlas.org/ENSG000001
15414-FN1/tissue/stomach#img (fibronectin 1 (FN1) in nor-
mal tissue); https://www.proteinatlas.org/ENSG00000115414-
FN1/pathology/tissue/stomach+cancer#img (FN1 in tissue);
https://www.proteinatlas.org/ENSG00000198668-CALM1/
tissue/stomach#img (calmodulin-1 (CALM1) in normal
tissue); https://www.proteinatlas.org/ENSG00000198668-
CALM1/pathology/tissue/stomach+cancer#img (CALM1
in tumor tissue); https://www.proteinatlas.org/ENSG00000
187498-COL4A1/tissue/stomach#img (collagen, type IV,
alpha 1 (COL4A1) in normal tissue); https://www.proteinatlas
.org/ENSG00000187498-COL4A1/pathology/tissue/stomach
+cancer#img (COL4A1 in tumor tissue); https://www
.proteinatlas.org/ENSG00000118523-CTGF/tissue/stomach#
img (connective tissue growth factor (CTGF) in normal tissue);
and https://www.proteinatlas.org/ENSG00000118523-CTGF/
pathology/tissue/stomach+cancer#img (CTGF in tumor
tissue).

2.9. Kaplan-Meier Plotter. The prognostic value of hub gene
mRNA transcription level was measured using the Kaplan-
Meier plotter (http://www.kmplot.com), an online open data-
base that consists of gene expression profiles and survival
information for 5,143 breast cancer, 1,816 ovarian cancer,
2,437 lung cancer, and 1,065 GC patients with mean follow-
ups of 69, 40, 49, and 33 months, respectively. To evaluate
the overall survival (OS) of patients with GC, we separated
individuals into two groups based on median gene expression
(high vs. low) and then validated their Kaplan-Meier survival
curves. Hazard ratios (HRs) with 95% confidence intervals
(CIs) and log-rank P values were calculated to evaluate the
associations of gene expression with survival, and the
number-at-risk values were displayed below the curves.

3. Results

3.1. Screening of DE circRNAs, miRNAs, and mRNA in GC.
The circRNA expression profile of GSE83521 was deposited
by Zhang Y from Southern Medical University, Nanfang
Hospital. This dataset has 6 tumor tissue samples and 6 nor-
mal mucosal tissues. As shown in the box plot (Figure 2(a)),
the median intensity values in different samples were almost
similar after normalization, which showed optimal standard-
ization. Next, the map showed the dissimilarity of circRNA

expression patterns among tissue samples (Figure 2(b)).
And a total of 26 DE circRNAs were identified after the anal-
ysis of GSE83521 (Tables S1 and S2), of which 25 were
upregulated and 1 was downregulated. A total of 151 DE
miRNAs were detected for GSE78091 (Table S3), of which
148 were upregulated and 3 were downregulated.
Furthermore, a total of 336 DE mRNAs were detected after
the analysis of GSE33651 (Table S4), of which 254 were
upregulated and 82 were downregulated.

3.2. Construction of the ceRNA Network. Increasing numbers
of reports have shown that by acting as competing for endog-
enous RNAs (ceRNAs), circRNAs can compete with miR-
NAs to influence the stability of target mRNAs or their
translation. In this study, 418 interactions were obtained
between 26 DE circRNAs and 196 miRNAs (Table S5). Ten
miRNAs were selected after the intersection of DE miRNAs
and circRNA-related miRNAs (Figure 2(c)). The target
genes of the 10 selected miRNAs were predicted using
miRTarBase, and 1569 interactions were detected between
these 10 selected miRNAs and 1459 miRNA-related
mRNAs (Table S6). Then, thirty-three DEGs were screened
after the intersection between DEGs and miRNA-related
mRNAs (Figure 2(c)).

More importantly, a ceRNA network was established to
uncover the connections between circRNAs, miRNAs, and
mRNAs in this study. This network contained 401
circRNA-miRNA pairs and 1568 miRNA-mRNA pairs,
including 26 circRNAs, 10 miRNAs, and 1459 mRNAs
(Figure 3). Subsequently, the selected DEGs were analyzed
with respect to their potential bioinformatics information.

3.3. Functional Enrichment Analysis of Selected DEGs. The
selected 33 DEGs of the associated circRNAs were used
to investigate the GO terms and KEGG pathways by using
DAVID. In GO analysis, all enriched terms for the DEGs
were ranked by enrichment score (-log10(P value)) as
shown in Figure 4. The most significantly enriched GO
term regarding molecular functions (Figure 4(a)) was
fibronectin binding (GO:0001968, P = 9:66E − 04). The
most significantly enriched GO terms with respect to cel-
lular components (Figure 4(b)) were extracellular matrix
(ECM) (GO:0031012, P = 0:010291067), fibrinogen com-
plex (GO:0005577, P = 0:013746239), and nucleoplasm
(GO:0005654, P = 0:019723458), and the top 3 most signif-
icantly enriched GO terms with respect to biological pro-
cess (Figure 4(C)) were negative regulation of fat cell
differentiation (GO:0045599, P = 0:002060324), response to
wounding (GO:0009611, P = 0:004577343), and regulation
of cell growth (GO:0001558, P = 0:007282945). Moreover,
the ECM-receptor interaction pathway (hsa04512, P =
0:011170014) associated with the genes COL4A1, THBS1,
and FN1 was represented as the most enriched pathway.

3.4. Analysis of the PPI Network. With the retrieving of the
GeneCards and GenCLiP 3 database, we finally obtained a
total of 15,784 and 16,027 genes related to GC and inflamma-
tion, respectively (Tables S7 and S8). After intersection with
selected DEGs, we found that 9 DEGs may be associated
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Figure 2: DE circRNAs in tumor tissues and adjacent normal tissues from GC patients, screening DE miRNAs and DE mRNAs, and
visualization of the circRNA-miRNA-mRNA regulatory network. (a) The box plot shows variations in circRNA expression. (b) The heat
map shows DE circRNAs in 6 tumors (T) and 6 normal (N) tissues. Gene expression profiles are shown in rows. “Red” suggests a high
relative expression, and “green” indicates low relative expression. (c) Based on DE miRNAs and circRNA-related miRNAs, Venn diagrams
were used to select the overlapping 10 miRNAs; based on DE mRNAs and miRNA-related mRNAs, Venn diagrams were used to select
the overlapping 33 mRNAs.

5Mediators of Inflammation



with the inflammation in the GC, including SOD2, FN1,
THBS1, MTA1, NPM1, IGFBP5, COL4A1, RORA, and
ADH1B (Figure 5(a)). To explore the relationships among
the 33 selected DEGs, we constructed the PPI networks for
genes using STRING and then visualized in Cytoscape.
Degree denotes the numbers of proteins interacting with a
specific protein, and a node with a high degree is deemed a
hub node [29]. Hub genes are obtained by analyzing the
connectivity degrees, betweenness, and closeness of the
nodes in PPI networks. As presented in Figure 5(b), the
genes UBN2, ARID5B, CBWD3, CBWD5, NPM1, ZFP36L2,
BOD1L1, UBE2V2, CRIM1, RORA, MTA1, KANSL1L,
TLK1, IFI6, PPP1R15B, and ZER1 with no interactions were
removed in the STRING database. The obtained PPI
networks consisted of 17 nodes and 14 edges, with 6 central
node genes identified using degree ≥ 2, and the most
significant 6 node degree genes for subsequent study were
THBS1 (degree = 5, closeness centrality = 1), FN1 (degree = 4,
closeness centrality = 0:83), CALM1 (degree = 2, closeness
centrality = 1), COL4A1 (degree = 2, closeness centrality =
0:625), CTGF (degree = 2, closeness centrality = 0:625), and
insulin-like growth factor-binding protein 5 (IGFBP5,
degree = 2, closeness centrality = 0:625).

3.5. Genetic Alterations in Hub Genes in GC. Combining the
results of functional analysis, the aforementioned Venn Dia-
grams and PPI network indicated that THBS1, FN1, CALM1,
COL4A1, CTGF, and IGFBP5 may play an important role in

GC as the inflammation-related targets. We further verified
the genetic alterations in the selected 6 hub genes in GC
patients by using the cBioPortal database. As illustrated in
Figure 6, alterations ranging from 11.11% to 25.11% were
found for the gene sets submitted for analysis (Figure 6(a)).
cBioPortal complements existing tools, including TCGA.
Multiple genetic alterations observed across each set of
tumor samples from TCGA Data Portal are presented using
OncoPrint to highlight the most pronounced genomic
changes. The results showed that 96 cases (24%) had an alter-
ation in at least one of the 6 queried genes. Most alterations in
the THBS1 and FN1 genes were classified as missense muta-
tions, along with a few cases of truncating mutations, ampli-
fications, and deep deletions (Figure 6(b)). A majority of
alterations in the COL4A1 gene occurred by amplification
and missense mutations, with a few cases of partial missense
mutations and deep deletions (Figure 6(b)). For the CALM1,
CTGF, and IGFBP5 genes, missense mutations, truncating
mutations, amplifications, and deep deletions occurred in
select cases (Figure 6(b)).

The potential of complexity, as well as the variability of
differences in interactions between hub genes in GC samples,
was studied from TCGA Data Portal with multiple visualiza-
tion networks generated. To identify potential interactive
analysis in GC, we used THBS1, FN1, CALM1, COL4A1,
CTGF, and IGFBP5 as core nodes for the network view and
investigated the resulting altered networks of interest. cBio-
Portal was used to construct a network containing FN1,

Figure 3: The circRNA-miRNA-mRNA regulatory network in GC. The circular nodes in blue represent mRNAs; the diamond-shaped nodes
in yellow represent miRNAs, and the octagonal nodes in purple represent circRNAs. The triangular nodes in red indicate upregulated DE
mRNAs, and the V nodes in green indicate downregulated DE mRNAs.
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CALM1, COL4A1, and CTGF in addition to THBS1 and
IGFBP5 (Figure 7). The interactions between FN1 and
COL4A1 were identified using a cutoff of ≥21.9% alteration.
The interactions between CALM1 and RYR2 hub genes were
revealed using a cutoff of 21% alteration. ERBB2 and
PIK3CA were observed with a cutoff of 18.5% alteration,
and the interactions between CTGF and HELZ2 hub genes
appeared when the cutoff was changed to 13% alteration
(Figure 7). The results of interactive network analysis provide
new perspectives on the role of hub genes, along with RYR2,
ERBB2, PIK3CA, and HELZ2, with respect to the develop-
ment of GC by querying multidimensional cancer genomics
data in cBioPortal.

3.6. Expression and Validation of Hub Genes in GC. We also
estimated the mRNA expression levels of the THBS1, FN1,
CALM1, COL4A1, CTGF, and IGFBP5 in GC compared
with those in normal tissues via the Oncomine database. In
Derrico datasets, which has 69 samples, the mRNA levels
separated the GC cases in Oncomine into intestinal, diffuse,
and mixed types. As shown in Figure 8(a), THBS1, FN1,
CALM1, COL4A1, CTGF, and IGFBP5 expression levels
were markedly upregulated in mixed-type GC than in nor-
mal controls. Besides, the protein levels of these 5 genes
(IGFBP5 is pending control and cancer tissue analysis) were
observably higher in tumor tissues than in normal tissues,

according to the data obtained from the Human Protein
Atlas (Figure 8(b)).

3.7. Survival Analysis. The Kaplan-Meier plotter was applied
to predict the prognostic value of the 6 identified hub genes.
According to the results, high expression levels of THBS1,
FN1, CALM1, COL4A1, and IGFBP5 were closely related
to the poor OS in GC patients (P < 0:05) (Figures 9(a)–
9(e)). In contrast, low expression of CTGF was associated
with poor OS in GC patients (P < 0:05, Figure 9(f)).

4. Discussion

GC still remains the commonest human malignancy in the
world [30, 31]. Nevertheless, surgical resection is the only
possible curative therapy for GC. In fact, approximately
60% of GC patients are diagnosed with metastatic and locally
advanced, which results in poor prognosis due to deficiency
of early detection and the loss of the opportunity for curative
resection [30]. Additionally, inflammation has long been rec-
ognized to play a crucial role in the pathogenesis of cancer
[13, 32]. Hence, the identification of novel diagnostic
markers and inflammation-related targets and the elucida-
tion of the underlying mechanisms of GC onset and progres-
sion have become major topics in GC research. In the current
study, the circRNA expression profile GSE83521, the miRNA
expression profile GSE78091, and the mRNA expression

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

GO:0045599 negative regulation of fat cell differentiation

GO:0009611 response to wounding

GO:0001558 regulation of cell growth

GO:0002576 platelet degranulation

GO:0071356 cellular response to tumor necrosis factor

GO:0006367 transcription initiation from RNA polymerase II promoter

GO:0010880 regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum

GO:0007568 aging

GO:0010881 regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion

GO:0060314 regulation of ryanodine-sensitive calcium-release channel activity

GO:0010906 regulation of glucose metabolic process

GO:0001836 release of cytochrome c from mitochondria

GO:0008284 positive regulation of cell proliferation

GO:0030198 extracellular matrix organization

GO:0031012 extracellular matrix

GO:0005577 fibrinogen complex

GO:0005654 nucleoplasm

GO:0005576 extracellular region

GO:0001968 fibronectin binding

GO:0005178 integrin binding

GO:0005520 insulin-like growth factor binding

GO:0008201 heparin binding

(a)

(b)

(c)

–log (P value)

Figure 4: The GO term enrichment analysis on 33 selected DEGs in GC. (a) Thin yellow bars represent molecular function terms. (b) Green
bars represent cell component terms. (c) Red bars represent biological processes.
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profile GSE33651 were acquired from the GEO database to
reanalyze DE circRNAs, miRNAs, and mRNAs between GC
tissues and normal tissues using bioinformatics method to
identify novel diagnostic markers and explore the
inflammation-related targets for GC. In total, 26 DE cir-
cRNAs including 25 upregulated and 1 downregulated cir-
cRNAs, 151 DE miRNAs including 148 upregulated and 3
downregulated miRNAs, and 336 DE mRNAs including
254 upregulated and 82 downregulated mRNAs with P <
0:05 and ∣ log2FC∣ ≥ 2:0 were screened; additionally, 33
DEGs were selected for further study after DE mRNA and
miRNA-related mRNA intersection.

The results of functional enrichment analysis showed
that the 33 DEGs were associated with the negative regula-
tion of fat cell differentiation, response to wounding, and reg-
ulation of cell growth. Compared with the study by Gu et al.
[3], which showed that the p53 signalling pathway and the
Hippo signalling pathway were significantly enriched in
GC, while the KEGG results indicated that the ECM-
receptor interaction pathway might be involved in the
development of GC in this study. Meanwhile, the results are
consistent with the previous study [33]. The ECM-receptor
interaction pathway has been identified in multiple cancers,
and it includes “cell adhesion molecules (CAMs)” and “cell
cycle” pathways [34]. Imbalances in these pathways lead to
the detachment of cells from the ECM and thus enhanced
metastasis, suggesting an essential role of this pathway in
cancer biology [34]

circRNAs are a class of endogenous noncoding RNAs that
primarily serve as miRNA sponges to regulate gene expression
and are reported to play important roles in many malignant
phenotypes, including the cell cycle, apoptosis, vasculariza-
tion, invasion, and metastasis [35–38]. In addition, circRNAs
may serve as a novel and stable biomarkers for the diagnosis
of GC. Li et al. demonstrated that hsa_circ_002059, a typical

circRNA, is significantly downregulated in GC tissues com-
pared with that in paired adjacent nontumor tissues, indicat-
ing its potential as a novel and stable biomarker for the
diagnosis of GC [39]. Another study by Huang et al. found
that the circRNA hsa_circ_0000745 can serve as a diagnostic
marker for GC [40]. Gu et al. [3] also revealed that CCND2
might be regulated by hsa_circRNA_105039 and hsa_cir-
RNA_104682 through hsa-miR-15a-5p. Compared with pre-
vious studies, we found that the hsa_circ_0001866/hsa_circ_
0003192-hsa-miR-421-COL4A1, hsa_circ_0055521-hsa-miR-
567-THBS1/IGFBP5, hsa_circ_0005217/hsa_circ_0004370-
hsa-miR-648-THBS1/CALM1, hsa_circ_0007094/hsa_circ_
0013048/hsa_circ_0008615/hsa_circ_0002570/hsa_circ_0001
789-hsa-miR-140-3p-FN1, hsa_circ_0004339/hsa_circ_0007
094/hsa_circ_0007613-hsa-miR-1205-THBS1, and hsa_circ_
0007404/hsa_circ_0051246/hsa_circ_0045602/hsa_circ_0031
027-hsa-miR-375-CTGF axes may play central roles in regu-
lating the development of GC.

Further, the mechanisms underlying of the molecular
targets in GC remains to be elucidated. In this study, THBS1,
FN1, CALM1, COL4A1, CTGF, and IGFBP5 might be iden-
tified as the hub genes associated with inflammation in GC
from the PPI network. We also identified missense mutations
and amplifications as the primary genetic alterations. Addi-
tionally, survival analysis showed that high mRNA expres-
sion of THBS1, FN1, CALM1, COL4A1, and IGFBP5 was
correlated with poor OS in GC patients; in contrast, high
mRNA expression of CTGF was associated with poor OS in
GC patients.

Thrombospondins are a family of homologous proteins
that regulate cellular phenotypes and extracellular struc-
tures for tissue genesis and remodelling [41]. The first
member to be identified, THBS1, is an extracellular glyco-
protein that plays multifunctional roles in the cell-matrix
and cell-cell interactions, angiogenesis, and tumor
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Figure 5: The identification of inflammation-related targets in GC by Venn diagram and PPI analysis: (a) Venn diagrams of the
inflammation-related targets between the selected DEGs and the integrated GC-/inflammation-related targets in the GeneCards and
GenCLiP 3 database; (b) the PPI network of 33 coexisting DEGs. Nodes represent genes, with the degree shown by the size and bright
colors, and edges represent interactions between two genes, with the combined scores displayed by the size and bright colors.
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progression [42–45]. THBS1 expression has been corre-
lated with tumor angiogenesis, tumor growth, and metas-
tasis [46]In GC, THBS1 may play a proangiogenic and
proinflammatory role due to its positive correlation with
vascular endothelial growth factor (VEGF), and elevated
THBS1 expression levels have been related to tumor
growth and lymph node metastasis in GC [47, 48]. The
function of THBS1 remains controversial, and increasing
numbers of cellular assays have indicated a role for THBS1
in cell invasion and migration; nevertheless, conflicting
results have been obtained in different cell types. Notably,
the pleiotropic nature of THBS1, which is a multimodular
and multifunctional protein, depends on environmental
conditions. We noted that the expression of THBS1 was
higher in cancer tissues than in adjacent normal tissues
in Derrico gastric datasets from the Oncomine database,
which indicated that the results of the GSE33651 microar-
ray were in agreement with the previous studies [43, 45].

FN1, a high molecular weight (~440 kDa) ECM cell-
adhesive glycoprotein, is predominantly expressed in various
cancer tissues but not in normal tissues [49] and involved in
the ECM-receptor interaction, focal adhesion pathway, path-
ways in cancer, and the regulation of endothelial cell survival,
proliferation, adhesion, migration, inflammation, and angio-
genesis through the activation of the focal adhesion kinase
(FAK) and downstream PI3K/Akt signalling pathways, as
well as the activation of NF-κB [50, 51]. Chen and Zheng
and Zhang et al. reported that miRNA-200c binds to and
inhibits the expression of FN1 to suppress the proliferation,
migration, and invasion of GC cells [52, 53]. COL4A1, an
essential component of the ECM that is also involved in the
ECM-receptor interaction and focal adhesion pathway, has
an essential role in angiogenesis, inflammation, and tumor
progression [50]. Huang et al. demonstrated that COL4A1
is overexpressed in GC tissues and trastuzumab-resistant
GC cells based on bioinformatics analysis [54], which is

Cross-cancer alteration summary for THBS1, FN1
CALM1, COL4A1, CTGF, IGFBP5 (6 studies / 6 genes)
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Case set: Tumor samples with sequencing and CNA data (393 patients / 393 samples)
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Figure 6: Exploring genetic alterations in THBS1, FN1, CALM1, COL4A1, CTGF, and IGFBP5 in GC by cBioPortal: (a) summary of changes
within THBS1, FN1, CALM1, COL4A1, CTGF, and IGFBP5 genes in genomics datasets available for stomach adenocarcinoma (TCGA,
Provisional) studies; (b) OncoPrint: a visual summary of alterations across a set of stomach adenocarcinoma samples (data are taken from
TCGA Data Portal) based on a query of the 6 genes (THBS1, FN1, CALM1, COL4A1, CTGF, and IGFBP5). Distinct genomic alterations
are summarized, color-coded, and presented as percent changes in particularly affected genes in individual tumor samples. Each row
represents a gene, and each column represents a tumor sample. Green squares indicate missense mutations; black represents truncating
mutations; red bars designate gene amplifications; blue bars represent deep deletions, and grey signifies no alterations.
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consistent with the expression data of COL4A1 in the
GSE33651 and Oncomine gastric datasets.

CALM, a ubiquitous eukaryotic calcium-binding pro-
tein that transduces much of the calcium signal [55] and
plays an important role in intercellular communication,

cell movement, cell differentiation, cell proliferation,
inflammation, and other physiological activities [56], is
encoded by three nonallelic CALM genes (CALM1,
CALM2, and CALM3). In the present study, the mRNA
expression level of CALM1 was higher in GC tissues than
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21%18.5%

13%
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Figure 7: Display of neighboring genes connected to THBS1, FN1, CALM1, COL4A1, CTGF, and IGFBP5 in GC. THBS1, FN1, CALM1,
COL4A1, CTGF, and IGFBP5 were used as seed genes (indicated with thick black borders) to automatically harvest all other genes
identified as altered in GC. Multidimensional genomic details are shown for COL4A1, FN1, CTGF, and CALM1 seed genes. Dark red
indicates an increased frequency of alterations (defined by mutation, copy number amplification, or homozygous deletion) in GC. Shown
in the figure are the full and pruned networks containing all or part neighbors of all query genes generated; the neighboring genes
connected to COL4A1, FN1, CTGF, and CALM1 are filtered by alteration (%).
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in adjacent normal tissues. Hence, further studies of
CALM1 in GC are necessary to clarify the role of CALM1
and its related molecular mechanisms in regulating physi-
ological activities in GC.

Cyr61/CTGF/Nov (CCN) proteins are a family of matri-
cellular proteins that consisted of an N-terminal secretory
signal peptide and four structural modules and play pivotal
context-dependent roles in many physiological and patho-
logical processes according to tumor type, including inflam-
mation [57]. CTGF (also known as CCN2) is involved in
comprehensive regulatory processes in angiogenesis, chon-
drogenesis, osteogenesis, inflammation, fibrogenesis, diabetic
nephropathy, and tumor development [58]. The Hippo sig-
nalling pathway is an emerging kinase cascade in gastrointes-
tinal homeostasis and tumorigenesis. Kang et al. first revealed

that CTGF is the key downstream effector for the oncogenic
function of YAP1 in GC and that it is highly expressed in pri-
mary tumors [59]. Jiang et al. also demonstrated that high
CCN2 expression is correlated with increased lymph node
metastasis, enhanced peritoneal dissemination, and short
five-year survival [60]; these findings are also consistent with
the expression of CTGF in GSE33651 and Oncomine GC
datasets, indicating a proliferation-promoting role of CTGF
in cancer.

Insulin and insulin-like growth factors (IGFs) consist of
three peptide ligands (INS, IGF1, and IGF2), three specific
cell surface receptors (INSR, IGF1R, and IGF2R), and ten
specific IGF-binding proteins (IGFBPs; IGFBP1-7, and
IGF2BP1-3) [61, 62], which are considered to play important
roles in hormonal regulation, inflammation, and signal
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Figure 8: mRNA and protein expression levels of THBS1, FN1, CALM1, COL4A1, CTGF, and IGFBP5 for clinical significance in GC: (a)
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transduction during energy metabolism and oncogenesis
[62]. IGF activity is tightly regulated by a family of IGFBPs.
IGFBP5, the most conserved member of the IGFBP family, is
significantly upregulated during the differentiation of several
key cell lineages and in human cancer and metastatic tissues.
IGFBP5 plays several outstanding roles in carcinogenesis to
regulate cell growth, migration, and invasion during the devel-
opment of cancer [63], but its function in the progression of
cancer is controversial. Accumulating evidence has revealed
that IGFBP5 can suppress tumor growth and metastasis in
various tissues and under different contexts, but IGFBP5 can
also function as an oncogene, promoting metastasis in a
context-dependent manner [64]. Furthermore, bladder cancer
[62], colorectal cancer [65], and breast cancer [66] tissues also
contain high levels of IGFBP5, but few studies have explored
the expression and mechanism for IGFBP5 in human GC.
Our previous study has revealed that IGFBP5 exhibits a dis-

tinctly different expression pattern in GC tissues based on
GSE33651 and Oncomine GC datasets.

In summary, we conducted an integrated analysis of DE
circRNAs, miRNAs, and mRNAs in GC and constructed a
potential circRNA-miRNA-mRNA regulatory network. We
identified THBS1, FN1, CALM1, COL4A1, CTGF, and
IGFBP5 as potential inflammation-related targets for the treat-
ment of gastric adenocarcinoma. Our bioinformatics analysis
represents a useful strategy to explore malignancy from a
new perspective. However, future studies are required to val-
idate the mechanisms related to the potential target genes.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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Figure 9: Prognostic curve for the six hub genes. The prognostic significance of the hub genes in patients with GC determined using the
Kaplan-Meier plotter. Affymetrix IDs (a) 201107_s_at, (b) 210495_x_at, (c) 213688_at, (d) 211980_at, (e) 203425_s_at, and (f) 209101_at
represent THBS1, FN1, CALM1, COL4A1, IGFBP5, and CTGF, respectively. Red lines represent patients with high gene expression, and
black lines represent patients with low gene expression.
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