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Abstract Regulation of protein synthesis by viruses occurs at all levels of
translation. Even prior to protein synthesis itself, the accessibility

of the various open reading frames contained in the viral genome is

precisely controlled. Eukaryotic viruses resort to a vast array of

strategies to divert the translation machinery in their favor, in

particular, at initiation of translation. These strategies are not

only designed to circumvent strategies common to cell protein

synthesis in eukaryotes, but as revealed more recently, they also

aim at modifying or damaging cell factors, the virus having the

capacity to multiply in the absence of these factors. In addition to

unraveling mechanisms that may constitute new targets in view of

controlling virus diseases, viruses constitute incomparably useful

tools to gain in-depth knowledge on a multitude of cell pathways.
ABBREVIATIONS OF VIRUS NAMES
AAV-2
 Adeno-associated virus type 2

AMCV
 Artichoke mottled crinkle virus

APV
 Achritosiphon pisum virus

ASLV
 Avian sarcoma leukemia virus

BDV
 Borna disease virus

BLV
 Bovine leukemia virus

BNYVV
 Beet necrotic yellow vein virus

BSBV
 Beet soil-borne virus

BSMV
 Barley stripe mosaic virus

BVQ
 Beet virus Q

BWYV
 Beet western yellows virus

BYDV
 Barley yellow dwarf virus

BYV
 Beet yellows virus

CaMV
 Cauliflower mosaic virus

CarMV
 Carnation mottle virus

CCFV
 Cardamine chlorotic fleck virus

CCSV
 Cucumber chlorotic spot virus

CoMV
 Cocksfoot mottle virus

CNV
 Cucumber necrosis virus

CPMV
 Cowpea mosaic virus

CrPV
 Cricket paralysis virus

CRSV
 Carnation ringspot virus

CTV
 Citrus tristeza virus
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CVB
 Coxsackie virus B

CyRSV
 Cymbidium ringspot virus

DmeGypV
 Drosophila melanogaster gypsy virus

EAV
 Equine arterivirus

EBV
 Epstein–Barr virus

EIAV
 Equine infectious anemia virus

EMCV
 Encephalomyocarditis virus

EqTV
 Equine torovirus

FCV
 Feline calicivirus

FMDV
 Foot-and-mouth disease virus

HAstV
 Human astrovirus

HAV
 Hepatitis A virus

HBV
 Hepatitis B virus

HCMV
 Human cytomegalovirus

HCV
 Hepatitis C virus

HDV
 Hepatitis delta virus

HIV-1
 Human immunodeficiency virus 1

HPIV-1
 Human parainfluenza virus 1

HPV
 Human papillomavirus

HRV
 Human rhinovirus

HSV-1
 Herpes simplex virus 1

HTLV-1
 Human T-lymphotropic virus 1

IBV
 Infectious bronchitis virus

LIYV
 Lettuce infectious yellows virus

LRV1-1
 Leishmania RNA virus 1-1

MCMV
 Maize chlorotic mottle virus

MHV
 Murine hepatitis virus

MLV
 Murine leukemia virus

MMTV
 Mouse mammary tumor virus

MNSV
 Melon necrotic spot virus

MoMLV
 Moloney murine leukaemia virus

NV
 Norwalk virus

OCSV
 Oat chlorotic stunt virus

PCMV
 Peach chlorotic mottle virus

PCV
 Peanut clump virus

PEBV
 Pea early-browning virus

PEMV
 Pea enation mosaic virus

PLRV
 Potato leafroll virus

PPV
 Plum pox virus

PSIV
 Plautia stali intestine virus

PVM
 Potato virus M

RCNMV
 Red clover necrotic mottle virus

RhPV
 Rhodopalosiphum padi virus
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RTBV
 Rice tungro bacilliform virus

SARS-CoV
 Severe acute respiratory syndrome coronavirus

SbDV
 Soybean dwarf virus

SBWMV
 Soil-borne wheat mosaic virus

SceTy1V
 Saccharomyces cerevisiae Ty1 virus

SceTy3V
 Saccharomyces cerevisiae Ty3 virus

SCNMV
 Sweet clover necrotic mottle virus

ScV-L-A
 Saccharomyces cerevisiae virus L-A

SFV
 Semliki Forest virus

SINV
 Sindbis virus

STNV
 Satellite tobacco necrosis virus

SV40
 Simian virus 40

TBSV
 Tomato bushy stunt virus

TCV
 Turnip crinkle virus

TEV
 Tobacco etch virus

TMEV
 Theiler’s murine encephalomyelitis virus

TMV
 Tobacco mosaic virus

TNV
 Tobacco necrosis virus

TRV
 Tobacco rattle virus

TuMV
 Turnip mosaic virus

VSV
 Vesicular stomatitis virus

WDSV
 Walleye dermal sarcoma virus
OTHER ABBREVIATIONS
aa
 amino acid

CAT
 chloramphenicol acetyltransferase

3’-CITE
 3’-cap-independent translation element

CP
 coat protein

eEF
 eukaryotic elongation factor

eIF
 eukaryotic initiation factor

eRF
 eukaryotic release factor

4E-BP
 eIF4E-binding protein

GCN2
 general control nonderepressible-2

GP
 glycoprotein

IGR
 intergenic region

IRES
 internal ribosome entry site

ITAF
 IRES trans-acting factor

nt
 nucleotide

ORF
 open reading frame

P
 phosphoprotein

PABP
 poly(A) binding protein

Paip1
 PABP-interacting protein 1
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PCBP
 poly(rC) binding protein

PERK
 PKR-like endoplasmic reticulum kinase

PKR
 protein kinase RNA

PTB
 pyrimidine tract binding protein

RdRp
 RNA-dependent RNA polymerase

sORF
 short ORF

sg
 subgenomic

TAV
 transactivator

TC
 ternary complex (eIF2-GTP-Met-tRNAiMet)

TE
 translation enhancer

TLS
 tRNA-like structure

unr
 upstream of N-ras

uORF2
 upstream ORF2

UTR
 untranslated region

VPg
 viral protein genome linked
I. INTRODUCTION

Because of the small size of their genomes and hence of their limited
coding capacity, viruses have evolved a cohort of strategies to synthesize
a few—and borrow from their host many—of the numerous elements
required for their multiplication. The sophistication of the strategies ela-
borated by viruses is unsurpassed, and many of these strategies are
common among viruses, but are rare or even nonexistent in uninfected
cells. Many were first demonstrated in viral systems before being
described in cell systems (reviewed in Bernardi and Haenni, 1998). The
genome of viruses is compact and used to its limits: overlapping open
reading frames (ORFs) are frequent, intergenic regions (IGRs) are usually
short, and noncoding as well as coding regions are often involved in
regulation of replication, transcription, and/or translation.

This chapter presents an overview of the strategies used by viruses of
eukaryotes to regulate the expression of their viral genomes, ranging from
the production of the RNA templates to translation of the encoded pro-
teins. Emphasis is placed on RNA viruses, in which most of the strategies
were originally described; moreover, only a few examples are taken from
retroviruses, since the strategies used by these viruses have been dis-
cussed at length in several recent review articles (Balvay et al., 2007;
Brierley and Dos Ramos, 2006; Goff, 2004; Yilmaz et al., 2006). For further
information dealing with certain aspects of translation regulation
mechanisms used by viruses, the reader maywish to turn to other reviews
(Bushell and Sarnow, 2002; Gale et al., 2000; Mohr et al., 2007; Ryabova
et al., 2002).
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II. REGULATION PRIOR TO TRANSLATION

Viruses use several regulation strategies prior to translation to obtain
maximum protein diversity from their small genomes. Prior to initiation
of translation, the viral RNA, due to serve as template for protein synthe-
sis, can be modified so as to favor synthesis of certain viral proteins,
sometimes to the detriment of cell proteins. This can be achieved by
various mechanisms such as editing, splicing, and the production of
subgenomic (sg) RNAs including cap-snatching. The importance of regu-
lation at this level has, moreover, been highlighted in recent publications
showing that viral translation and transcription are coupled (Barr, 2007;
Katsafanas and Moss, 2007; Sanz et al., 2007).
A. Editing

Editing is a mechanism in which an RNA-encoded nucleotide (nt) is
modified, or one, two, or more pseudotemplated nts are inserted at the
editing site; various forms of editing have been described (Weissmann
et al., 1990). Viruses resort to editing by nt modification in the case of
Hepatitis delta virus (HDV; genus Deltavirus), and by the addition of one
or more nts in paramyxoviruses.
1. Editing by nucleotide modification
HDV is a highly pathogenic subviral particle totally dependent on theDNA
virus Hepatitis B virus (HBV; family Hepadnaviridae) for its propagation
(reviewed in Taylor, 2006); it requires the HBV envelope proteins to assem-
ble into HDV particles. The genome of HDV is a (�) sense, closed circular,
and highly structured single-stranded RNA (of � 1680 nts in HDV geno-
type III) referred to as the genomic RNA (Fig. 1); it is devoid of coding
capacity (i.e., devoid of ORF). However, the complementary antigenomic
RNA contains a unique ORF for the short surface antigen HDAg-S of 195
amino acids (aa); HDAg-S is produced from an 800-nt long linear sgmRNA
that is both capped and polyadenylated (Gudima et al., 2000). The protein is
produced throughout infection and is required for HDV replication. At late
times in infection, editing of the antigenomic RNA occurs by deamination
of the A residue (position 1012) of the UAG codon that ends the HDAg-S
ORF; editing does not occur on theHDAg-SmRNA.Hence the antigenome,
which is the template for editing, must be replicated to yield the edited
genomic RNA prior to being transcribed to produce the edited sg mRNA
that is also capped and polyadenylated. Editing also requires previous
refolding of the antigenome, from a rod-like to a branched double-hairpin
structure in HDV genotype III, or to a highly conserved base-paired struc-
ture in HDV genotype I (Casey, 2002; Cheng et al., 2003).
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Deamination of the A residue in UAG leading to an I (inosine) residue
and producing the triplet UIG (Fig. 1) is triggered by a host adenosine
deaminase that acts on RNA substrates. Upon replication of the edited
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antigenome, the I residue recognized as G leads to ACC in the edited
genomic RNA that is then transcribed as UGG coding for tryptophane in
the edited mRNA. As a consequence, the edited sg mRNA presents an
extended ORF and produces HDAg-L of 210 aa. The two viral proteins
share the same N-terminal region, the longer protein bearing an extended
C-terminal region; they are responsible for two distinct functions in the
HDV-infected cell. The longer protein inhibits replication and editing and
is necessary for virus assembly, whereas the shorter protein is required
for replication (Cheng et al., 2003). Editing is, therefore, a vital process for
HDV propagation, and an exquisite balance between the nonedited and
edited mRNAs, and between replication and virus production is a major
factor in maintaining optimum virus production. How this equilibrium is
reached remains largely speculative, although editing is known to involve
specific structural elements that depend on the HDV genotype considered
(Casey, 2002; Cheng et al., 2003).

2. Editing by nucleotide addition
In a coding RNA, the introduction of nontemplated nts leads to the
production of a new edited mRNA. In such an mRNA, a change in
reading frame at the point of editing has occurred, resulting in the syn-
thesis of a new protein. The new ‘‘edited’’ protein is identical to the
‘‘original’’ protein resulting from the nonedited mRNA, from the 50 ter-
minus to the editing site, but different thereafter. The protein resulting
from editing is usually endowedwith properties and/or activities that are
absent from the original protein.

Paramyxoviruses are animal viruses that belong to the order Mono-
negavirales. They possess a nonsegmented (also known as monopartite)
(�) strand RNA genome of 15–16 kb (reviewed in Nagai, 1999). Their
genome encodes a minimum of six structural proteins that are produced
from six capped and polyadenylated mRNAs. In the complementary
antigenomic RNA, the ORFs are separated by conserved sequences that
dictate initiation and termination of the six transcripts. Except for the
phosphoprotein (P) mRNA, each mRNA expresses a single protein from
a single ORF. The P gene is more complex. In most members of the
subfamily Paramyxovirinae (family Paramyxoviridae), editing of the P
mRNA results in the insertion of 1–5 nontemplated G residues within a
run of Gs at the level of a conserved AnGn editing sequence (Cattaneo
et al., 1989; Mahapatra et al., 2003; Steward et al., 1993; reviewed in Strauss
and Strauss, 1991), presumably as a result of a stuttering process (Vidal
et al., 1990). This causes a shift within the P ORF and may lead to the
synthesis of up to six nonstructural proteins from edited and nonedited
mRNAs depending on the virus. In Sendai virus, two mRNAs can be
produced by editing of the P/C (also known as P) mRNA, the V mRNA
(insertion of 1 G), and the W mRNA (insertion of 2 or 5 Gs) (Fig. 2A)
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(Curran et al., 1991). The V protein, a cysteine-rich protein, binds Znþ 2, a
characteristic related to virus pathogenicity in mice. Indeed, mutation of
the cysteine residues in the corresponding V protein in the Sendai virus
genome reduces Znþ 2 binding and pathogenicity (Fukuhara et al., 2002).

Editing is also observed for the synthesis of the structural glycopro-
teins (GPs) of Ebola virus (family Filoviridae, order Mononegavirales),
whose monopartite (�) strand RNA genome contains seven genes. Two
GPs are produced from the GP gene, a short and a long form that make up
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80% and 20% of the total GP protein synthesized, respectively; they differ
in their C-terminal region. The short form of GP is produced by the
unedited transcript, whereas the long form results from an edited tran-
script that has acquired an additional nontemplated A residue within a
stretch of seven conserved A residues in the GP ORF. The long form
possesses a transmembrane anchor sequence absent from the short form
(Sanchez et al., 1996; Volchkov et al., 1995).
B. Splicing

Splicing is a strategy used by DNA viruses such as those of the family
Adenoviridae and Polyomaviridae (reviewed in Ziff, 1980, 1985), the
Caulimoviridae (reviewed in Ryabova et al., 2006), the Baculoviridae
(Chisholm and Henner, 1988; Kovacs et al., 1991), and of the genus
Mastrevirus, family Geminiviridae (Schalk et al., 1989). It is less frequently
encountered among RNA viruses, although it is observed in certain RNA
viruses that replicate in the nucleus. This is the case of retroviruses whose
mRNAs undergo a complicated cascade of splicing and alternative splic-
ing events. The splicing mechanisms used by these viruses will not be
developed here, having received considerable attention in several review
articles (Cullen, 1998; Stoltzfus and Madsen, 2006). Examples of nonre-
troviruses whose RNA genomes multiply in the nucleus and employ
splicing are briefly presented here; they are Borna disease virus (BDV)
and Influenza virus.

BDV (family Bornaviridae) belongs to the order Mononegavirales.
However, it differs from the other members of this order by several
unique features (reviewed in de la Torre, 2002; Tomonaga et al., 2002).
As opposed to the other members of this order whose life cycle occurs
entirely in the cytoplasm, BDV is replicated and transcribed in the nucleus
of the infected cell and employs the cellular RNA splicing machinery. The
two splice donor and three splice acceptor sites follow the general mam-
malian splice site consensus (Fig. 3). The six ORFs contained in the anti-
genome are not separated by conserved IGRs as in other
mononegavirales. Rather, the six proteins of BDV are translated from
capped and polyadenylated transcripts that are initiated at only three
sites (S1–S3) and terminate at five possible sites (T1–T4, t6). The nucleo-
protein (known as N) is produced from a transcript initiated at S1, and the
X protein and P from a transcript initiated at S2. The matrix (M), glyco-
protein (G), and polymerase (L) are all produced from transcripts
initiated at S3, and resort to alternative splicing for the production of
the transcripts required. Splicing of intron I that overlaps the M ORF
abolishes synthesis of the corresponding protein and produces
protein G, while splicing of introns I and II (the latter corresponds to
most of the G ORF) leads to the synthesis of the L protein. Additionally,
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splicing of intron III that uses the same 50 splice donor site as intron II but
another 30 splice acceptor site also eliminates most of the G ORF as well as
the 50 region of the L ORF. This could lead to the production of yet another
BDV protein; this putative protein has so far not been identified (reviewed
in Jordan and Lipkin, 2001). Although translation of M is prevented
by splicing of intron I, this leaves a minicistron corresponding to the
N-terminal region of M which enhances translation of G, presumably by
promoting ribosomal reinitiation. However, mutation experiments using
the unspliced transcript, suggest that leaky scanning is also a mechanism
that could lead to the synthesis of G from the unspliced transcript
(Schneider et al., 1997).

Influenza viruses (family Orthomyxoviridae) are enveloped viruses
with a segmented (�) strand RNA genome; they are replicated and
transcribed in the nucleus by the viral RNA-dependent RNA polymerase
(RdRp) complex composed of PB1, PB2, and PA. In the nucleus of infected
cells, transcription of the viral RNAs into mRNAs by the RdRp requires
cooperation with ongoing transcription by the cellular RNA
polymerase II, since the RdRp initiates synthesis of viral mRNAs via
cap-snatching using capped cellular mRNAs (see below; reviewed in
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Lamb and Krug, 2001; Rao et al., 2003). Influenza A virus and Influenza B
virus are composed of eight RNA segments. Alternative splicing leads to
the synthesis of two proteins from segments seven and eight of Influenza
A virus. Regulation of the choice of the 50 or 30 splice sites is finely
controlled. Although alternative splicing occurs in many viruses, only in
a few cases have viral proteins been shown to be involved in this mecha-
nism. In segment seven of Influenza A virus, two alternative 50 splice sites
control the production of the shorter (mRNA3: 111 nts) and the longer (M2
mRNA: 151 nts) spliced mRNAs from the pre-mRNA known as M1
mRNA. Both spliced RNAs use the same 30 splice site. At early times
after infection, the more favorable upstream 50 splice site is used, leading
to the synthesis of mRNA3 that potentially codes for a 9-aa peptide (as yet
undetected). At later times after infection, the RdRp complex now pro-
duced in sufficient amounts binds to and blocks the upstream 50 splice
site, forcing the cell splicing machinery to switch to the less favorable
downstream 50 splice site. As a consequence, M2 mRNA is synthesized as
is also its encoded M2 ion channel protein of 97 aa (Shih et al., 1995).
C. Subgenomic RNA synthesis

Contrary to mRNAs of eukaryotic cells that are largely monocistronic, the
RNA genomes of many eukaryotic viruses contain multiple ORFs of
which generally only the 50-proximal ORF is accessible for translation.
Thus, viruses have evolved several strategies to synthesize the proteins
corresponding to 50-distal ORFs (reviewed in Miller and Koev, 2000;
White, 2002). One of the most common mechanisms is the production of
30-coterminal sgRNAs. In such templates, the internally positioned and
the 30-proximal ORFs in the genome of (þ) strand RNA viruses are
accessed by sgRNAs in which these ORFs become 50-proximal and serve
as mRNAs. sgRNAs are generally synthesized by internal initiation
of RNA synthesis on the complementary (�) RNA strand. They are
50-truncated versions of the genomic RNA and therefore perfect copies
of the region of the genome from which they derive.

A particular mechanism of sgRNA production is used by RNA viruses
whose genome segments are ambisense or of (�) polarity and resort to
cap-snatching. This mechanismwas first described for the synthesis of the
mRNAs of Influenza virus (Bouloy et al., 1978; Krug et al., 1979). The
endonuclease activity of the viral RdRp cleaves nuclear cellular capped
RNAs to generate capped primers of up to about 20 nts in length for viral
mRNA synthesis. As a result, the viral mRNAs contain capped nonviral
oligonucleotides at their 50 end. Several plant (members of the family
Bunyaviridae and of the genus Tenuivirus) and animal (members of the
family Bunyaviridae) viruses with (�) strand or ambisense RNA genomes
also use this transcription initiation mechanism. Since these viruses
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multiply in the cytoplasm, they use cytoplasmic rather than nuclear
cellular capped RNAs as primers (Garcin and Kolakofsky, 1990; Garcin
et al., 1995; Huiet et al., 1993; Raju et al., 1990; Ramı́rez et al., 1995; Vialat
and Bouloy, 1992).
III. INITIATION OF TRANSLATION

A. Cap-dependent initiation

The most common strategy of translation initiation encountered among
eukaryotes is cap-dependent translation (reviewed in Jackson and
Kaminski, 1995; Pestova et al., 2007). This occurs in capped, generally
monocistronic mRNAs, whose initiation codon lies close to the 50 cap
structure, and whose leader sequence also called 50 untranslated region
(UTR) possesses varying degrees of secondary structure. A number of
complex steps lead to binding of the small 40S ribosomal subunit to the
mRNA. The assembly of the eukaryotic initiation factor (eIF) 2, GTP, and
Met-tRNAiMet forms the ternary complex (TC). Interaction of the TC with
the 40S ribosomal subunit, facilitated by eIF1, eIF1A, and eIF3, leads to the
formation of the 43S preinitiation complex. eIF3 is composed of 13 sub-
units (eIF3a–eIF3m) (Hinnebusch, 2006). The cap structure is recognized
by the heterotrimer eIF4F composed of eIF4G (multivalent scaffolding
protein), eIF4E (cap-binding protein), and eIF4A (ATP-dependent heli-
case). The 43S preinitiation complex binds to the 50 end of the mRNAwith
the help of eIF4F in the presence of eIF4B, and the complex scans the
mRNA leader sequence until it reaches the initiation codon to form the
48S initiation complex (Kozak and Shatkin, 1978). The initiation codon is
usually the first AUG codon encountered; it is recognized by base-pairing
with the anticodon of Met-tRNAiMet and the efficiency of recognition
depends on the sequence context surrounding the initiation codon. The
most favorable context in mammals is RCCAUGG with purine (R) at
position � 3 (Kozak, 1986, 1991), and in plants it is ACAAUGG (Fütterer
and Hohn, 1996). At this step the 48S initiation complex is joined by the
large 60S ribosomal subunit to form the 80S ribosome. Joining
requires two additional factors: eIF5 and eIF5B. Hydrolysis of eIF2-
bound GTP induced by eIF5 leads to reduction in the affinity of eIF2 for
Met-tRNAiMet. In turn, the essential ribosome-dependent GTPase activity
of eIF5B leads to displacement of the eIF2-bound GDP and other initiation
factors from the 40S subunit (reviewed in Pestova et al., 2007). The assem-
bled 80S ribosome contains the initiator Met-tRNAiMet in the ribosomal P
(peptidyl) site and another aa-tRNA in the ribosomal A (aminoacyl) site.
The delivery of the aa-tRNA is mediated by the eukaryotic elongation
factor (eEF) 1A–GTP complex. After peptide bond formation (triggered
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by the peptidyl transferase in the ribosome) eEF2 binding and subsequent
GTP hydrolysis catalyze ribosomal translocation, and the elongation cycle
begins (Frank et al., 2007). This general strategy is also adopted by a large
number of eukaryotic viruses. Yet the RNA genome of certain viruses
lacks a cap structure; the 50 end of such RNA genomes can carry a
covalently bound viral protein designated viral protein genome-linked
(VPg), or begin with a di- (or a mono-) phosphate. In other cases, the 50

UTR of the viral RNA contains an internal ribosome entry site (IRES)
responsible for initiation of translation.
B. Closed-loop model or circularization

In most eukaryotic mRNAs, the 50 cap structure and the 30 poly(A) tail
appear to work together leading to efficient translation initiation. This is
believed to occur when the 50 and 30 ends are brought in close proximity,
referred to as the mRNA circularization or closed-loop model. The exis-
tence of cellular polyribosomes arranged in a circle was visualized using
electron microscopy (Christensen et al., 1987). Circularization is brought
about by binding of the initiation factor eIF4E to the 50 cap and to eIF4G.
In turn, eIF4G binds to the poly(A)-binding protein (PABP) bound to the
30 poly(A) tail (Fig. 4A). PABP contains four conserved RNA recognition
motifs in its N-terminal domain that are involved in RNA and eIF4G
interactions, and a C-terminal domain that binds to several proteins,
including eIF4B, the eukaryotic release factor (eRF) 3 and the PABP-
interacting protein 1 (Paip1). Therefore, PABP promotes the formation
of the closed-loop complex by binding directly to eIF4G (Gale et al., 2000;
Gallie, 1998; Imataka et al., 1998; reviewed in Dreher and Miller, 2006) or
through Paip1 binding to eIF4A (Craig et al., 1998) or by PABP interaction
with eIF4B (Bushell et al., 2001; Le et al., 1997) (Fig. 4A). Circularization
thus appears to be mediated by RNA–protein and protein–protein inter-
actions. Increasing evidence has been provided for the involvement of
both 50 and 30 UTRs of eukaryotic mRNAs and viral mRNAs in initiation
of translation (reviewed in Edgil and Harris, 2006; Hentze et al., 2007;
Komarova et al., 2006; Mazumder et al., 2003; Wilkie et al., 2003).
In addition to contributing to mRNA stabilization, circularization proba-
bly facilitates ribosome recruiting from the 30 end of the mRNA after a
terminated round of translation, to the 50 region for initiation of a second
round. This could be achieved via interaction of PABP with eRF3 that by
interacting with eRF1, would result in the formation of a closed loop by
way of the 50 cap—eIF4E–eIF4G–PABP–eRF3–eRF1—termination codon
(Fig. 4A) (Uchida et al., 2002).

Certain viral mRNAs are devoid of 50 cap structure or VPg, and some
of them are devoid of 30 poly(A) tail. Nevertheless, such mRNAs are
highly efficient, and circularization presumably required for efficient
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translation is achieved via various mechanisms. In the case of viral RNAs
with a poly(A) tail, circularization has been investigated by looking for
viral and/or host proteins that participate in circularization. For instance,
in Poliovirus (family Picornaviridae) RNA whose VPg is removed soon
after entry of the virus into the cell, the long 50 UTR of its genomic RNA
contains an IRES preceded by a cloverleaf structure (Fig. 4B). PABP
interacts with the poly(A) tail of the viral RNA. It also binds to the poly
(rC)-binding protein 2 (PCBP2) that binds to the IRES structure to circu-
larize the viral mRNA for translation (Blyn et al., 1997; Silvera et al., 1999;
Walter et al., 2002). Binding of PCBP2 to PABP leads to circularization of
the viral RNA with the formation of an RNA–protein–protein–RNA
bridge. In addition, the cellular protein SRp20 that is involved in cellular
mRNA splicing and nucleocytoplasmic trafficking and also cofractionates
with ribosomal subunits, interacts with PCBP2, and promotes Poliovirus
IRES-driven translation (Bedard et al., 2007).

Circularization can also be achieved by direct base pairing between a
region in the 50 UTR and a region in the 30 UTR of an mRNA; it is used in
particular by viral mRNAs that possess neither cap (or VPg) nor poly(A)
tail. In several instances, specific interactions have been detected and their
functional significance investigated by phylogenetic studies of conserved
regions within the ends of viral RNAs, and by mutation analyses of the
base-paired regions presumably involved (reviewed in Miller and White,
2006). Among plant RNA viruses, the region of the 30 UTR required for
translation is frequently referred to as 30-cap-independent translation
element (30-CITE). Several classes of 30-CITEs have been described
(reviewed in Miller et al., 2007). They presumably operate by long-
distance base pairing between the 30 UTR and a complementary region
in the 50 UTR, leading to interactions known as kissing stem–loop inter-
actions. Some of the well-studied cases are those of Tobacco necrosis virus
(TNV; family Tombusviridae; Meulewaeter et al., 2004; Shen and Miller,
2004), Satellite tobacco necrosis virus (STNV; Guo et al., 2001;
Meulewaeter et al., 1998) Tomato bushy stunt virus (TBSV; family Tom-
busviridae; Fabian and White, 2004, 2006), Barley yellow dwarf virus
(BYDV; family Luteoviridae; Guo et al., 2000, 2001), and Maize necrotic
streak virus (family Tombusviridae; Scheets and Redinbaugh, 2006).
FIGURE 4 Possible models of circularization. (A) Closed-loop model or circularization

of cellular mRNAs. eIF4EþeIF4GþeIF4A, eIF4F complex; Stop, termination codon.

(B) Models of circularization of Poliovirus genome. CL, cloverleaf structure; 3C and 3CD,

viral proteases. (C) Role of rotavirus NSP3 in mRNA circularization. NSP3 mediates viral

mRNA circularization (left) and inhibits cellular mRNA circularization (right). N and C,

N- and C-terminal regions of proteins; TE, translation enhancer. Dashed arrows indicate

interactions between proteins. Other indications are as in legend of Fig. 1.
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An interesting outcome of these studies has been the observation that in
certain cases, part of the 30 UTR can function by recruiting initiation
factors required for initiation of translation. This seems to be the case of
STNV in which a 30 translation enhancer (TE) mimics a 50 cap structure
(Gazo et al., 2004) by binding to eIF4E and this binding is enhanced by
eIF4G (or eIFiso4E and eIFiso4G of eIFiso4F, isoforms only found in
plants). Moreover, the 30 UTR of STNV RNA contains a region that has
been reported to be complementary of the 30 end of the ribosomal 18S
RNA (Danthinne et al., 1993). Thus, long-distance RNA–RNA interaction
between the 50 and 30 UTRs might bring eIF4F and the 40S subunit
positioned on 30 UTR close to the initiation codon, favoring initiation of
translation. Phylogenetic studies suggest that similar mechanisms may be
involved in stimulating translation of other viral mRNAs devoid of cap
and poly(A) tail (Gazo et al., 2004; Miller et al., 2007; Shen andMiller, 2004;
Treder et al., 2008).

Rotaviruses (family Reoviridae) contain 11 double-stranded generally
monocistronic RNAs; they are capped, and most of them contain a short
conserved sequence (UGACC) at their 30 end. This sequence serves as 30

TE. Enhanced gene expression by the 30 TE requires the viral nonstruc-
tural protein NSP3 (Fig. 4C). This protein binds not only to the 30 TE but
also to eIF4G, suggesting that it behaves as a functional homolog of PABP,
leading to circularization of the mRNA (Piron et al., 1998). Moreover,
upstream of the common UGACC sequence in its 30 UTR, the mRNA of
gene 6 coding for the structural protein VP6 possesses a unique gene-
specific TE that does not require NSP3 for activity (Yang et al., 2004).

Finally, in the tripartite (þ) strand RNA virus Alfalfa mosaic virus
(family Bromoviridae), whose RNAs are capped but lack a poly(A) tail, a
few molecules of coat (also known as capsid) protein (CP) appear to
replace PABP in promoting translation: the CP binds strongly to specific
regions in the 30 UTR and also to eIF4G (or eIFiso4G; Krab et al., 2005;
reviewed in Bol, 2005). When an artificial poly(A) tail is tagged to the 30

UTR, CPmolecules are no longer required for translation (Neeleman et al.,
2001).
C. VPg and initiation

The presence of a VPg linked covalently to the 50 end of an RNA is
characteristic of members of various virus families such as the Birnavir-
idae, Caliciviridae, Picornaviridae, Potyviridae, Comoviridae, and Luteo-
viridae (reviewed in Sadowy et al., 2001). The size of the VPg varies from
3 kDa (members of the Picornaviridae family) to 90 kDa (members of the
Birnaviridae family). Binding of VPg to eIF3 and eIF4E suggests that an
initiation complex is formed and recruited to the viralmRNA, a complex in
which VPg would behave as a cap substitute. VPg may therefore interfere
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with translation by interacting with initiation factors that are required for
initiation of both cap-dependent and IRES-containing mRNA translation.

In Poliovirus, whose genome contains a VPg and an IRES in its 50 UTR,
the VPg is removed from the genomic RNA early in infection and the viral
mRNA lacks a VPg. Therefore, VPg does not regulate initiation of trans-
lation in this virus and probably in other members of the Picornaviridae
family.

The genome of Turnip mosaic virus (TuMV, family Potyviridae) is
devoid of IRES and cap structure. Its VPg in the precursor form 6K-VPg-
Pro appears to favor translation of viral proteins by interacting with
eIFiso4E (Leonard et al., 2004; Wittmann et al., 1997). TuMV and Tobacco
etch virus (TEV; family, Potyviridae) can interfere in vitrowith the forma-
tion of a translation initiation complex on host plant cellular mRNA by
sequestering eIFiso4E, since the binding affinity of VPg for eIFiso4E is
stronger than that of capped RNA. VPg enhances uncapped viral mRNA
translation and inhibits capped mRNA translation. Moreover, it appears
to function as an alternative cap-like structure by forming a complex with
eIFiso4E and eIFiso4G (Khan et al., 2008; Miyoshi et al., 2006).

Furthermore, for viruses such as those of the family Caliciviridae that
are also devoid of cap or IRES, evidence for the involvement of the VPg in
translation initiation has been documented: in addition to binding to the
eIF3 complex (in particular to its eIF3d subunit), the Norwalk virus (NV)
VPg inhibits translation of cap-dependent and of IRES-containing
reporter mRNAs in vitro (Daughenbaugh et al., 2003). In Feline calicivirus
(FCV), the VPg directly interacts with eIF4E in vitro (Goodfellow et al.,
2005) and removal of the VPg from the FCV RNA results in dramatic
reduction of viral protein synthesis (Herbert et al., 1997).
D. IRES-directed initiation

Initiation of translation of the genome of numerous RNA viruses does not
comply with the general cap-dependent scanning mechanism of eukary-
otic protein synthesis (reviewed in Doudna and Sarnow, 2007; Kneller
et al., 2006). Rather, initiation can occur downstream of a (usually) long
GC-rich 50 UTR known as IRES that in contrast to classical cap-dependent
initiation of translation, plays an active role in 40S ribosomal subunit
recruitment. These viral 50 UTRs are generally highly structured, thereby
hindering movement of the scanning ribosomes. Animal viruses that
resort to this strategy are picornaviruses (reviewed in Belsham and
Jackson, 2000; Martı́nez-Salas and Fernández-Miragall, 2004; Martı́nez-
Salas et al., 2001; Pestova et al., 2001) and pestiviruses (Pisarev et al., 2005).

Ribosomal entry directly to an internal AUG initiation codon on an
mRNA devoid of cap structure was demonstrated by placing an IRES
between two mRNA cistrons in a dicistronic construct. The presence of
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the IRES allowed the expression of the downstream cistron independently
of the upstream cistron (Jang et al., 1988; Pelletier and Sonenberg, 1988).
Hence, cis-acting elements in the IRES appear to cap independently recruit
ribosomes to the initiation codon, and the 50 UTR can be considered an IRES
if it drives initiation of translation of the downstream cistron.

Considerablework has been directed toward deciphering the sequence
elements involved in IRES-mediated initiation, and the protein factors
participating in this step of translation. Translation by an IRES obviates
the need of certain host eIFs (that differ for different groups of IRESs), and
often requires additional host proteins, the IRES trans-acting factors
(ITAFs). These are mRNA-binding proteins such as the pyrimidine
tract-binding protein (PTB), ITAF45, PCBP2, the cellular cytoplasmic
RNA-binding protein designated upstream of N-ras (unr), and the La
autoantigen. The IRESs involved in initiation are part of the 50 UTR or of
the IGR, and their integrity is required for full activity. They sometimes
include 50 nts of the ORF following the IRES (Rijnbrand et al., 2001). Based
on their sequence and structure, the IRESs of members of the Picornavir-
idae family can be divided into three major groups; (1) Enterovirus
(Poliovirus) and Rhinovirus (Human rhinovirus, HRV), (2) Cardiovirus
(Encephalomyocarditis virus, EMCV and Theiler’s murine encephalomy-
elitis virus, TMEV) and Aphthovirus (Foot-and-mouth disease virus,
FMDV), and (3) Hepatovirus (Hepatitis A virus, HAV) (reviewed in
Belsham and Jackson, 2000; Kean et al., 2001; Martı́nez-Salas and
Fernández-Miragall, 2004).

Studies in vitro showed that the EMCV IRES-mediated initiation of
translation is ATP dependent and requires eIF2, eIF3, eIF4A, and eIF4B as
well as the central region of eIF4G to which eIF4A binds. eIF4E is not
required, and therefore cleavage of eIF4G as well as the absence of eIF1
which is important for 40S ribosomal subunit scanning do not abolish
EMCV IRES function. The same applies to the FMDV IRES-mediated
translation from the first initiator AUG (reviewed in Pestova et al., 2001).
PTB, an auxiliary cellular 57-kDa protein with four RNA recognition
motifs, strongly stimulates initiation of translation of all group 1 and
2 IRESs (Andreev et al., 2007; Borovjagin et al., 1994; Gosert et al., 2000;
Hunt and Jackson, 1999; Pilipenko et al., 2000). ITAF45 is additionally
required for FMDV IRES-mediated translation, and PCBP2 as well as unr
for Poliovirus and Rhinovirus IRESs (Andreev et al., 2007; Blyn et al., 1997;
Boussadia et al., 2003; Pilipenko et al., 2000). The La autoantigen stimulates
PV IRES-mediated translation (Costa-Mattioli et al., 2004).

The 50 UTR of hepatovirus RNAs such as Hepatitis C virus (HCV;
family Flaviviridae) are 342–385 nts long. Initiation at their IRES
differs from initiation in picornavirus IRESs in vitro: binding of the 40S
ribosomal subunit to the HCV IRES occurs directly, without requirement
for the translation initiation factors eIF4F and eIF4B (reviewed in
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Pestova et al., 2001). Thus, the IRES functionally replaces eIF4F on the 40S
ribosomal subunit (Siridechadilok et al., 2005). Lack of eIF4F is compen-
sated by conformational modifications in the 40S ribosomal subunit
(Spahn et al., 2001). Moreover, the activity of HCV-like IRESs is also
affected by the coding sequence immediately downstream of the
initiation codon. Not only flaviviruses but also RNA genomes of some
picornaviruses such as Porcine Teschovirus carry HCV-like IRES
elements within their 50 UTR (Pisarev et al., 2004).

An interesting variant of IRESs exists in viruses of the Dicistroviridae
family such as Cricket paralysis virus (CrPV), viruses originally believed
to be the insect counterpart of mammalian picornaviruses (reviewed in
Doudna and Sarnow, 2007; Jan, 2006). The monopartite RNA genome of
CrPV harbors a 50 VPg and a 30 poly(A) tail. It contains two nonoverlap-
ping ORFs separated by an IGR (as opposed to picornaviruses that have
only one ORF); the expression of the two ORFs is triggered by two distinct
IRESs, one in the 50 UTR and the other in the IGR ( Jan et al., 2003; Sasaki
and Nakashima, 1999, 2000; Wilson et al., 2000b). As shown using the long
(580 nts) 50 IRES contained in the Rhopalosiphum padi virus (RhPV)
RNA, the 50 UTR initiates translation of a nonstuctural polyprotein at
the expected AUG codon. No specific boundaries of this IRES can be
defined, suggesting that the IRES contains multiple domains capable of
recruiting ribosomes for translation (Terenin et al., 2005). The IGR of 175–
533 nts separating the two ORFs contains the second IRES (� 180 nts) that
initiates synthesis of a structural polyprotein on a non-AUG codon and
requires neither initiation factors nor Met-tRNAiMet but a small domain
(domain 3) downstream of the IGR IRES that docks into the 40S ribosomal
P site mimicking the tRNA anticodon-loop structure during translation
initiation (Costantino et al., 2008; Jan and Sarnow, 2002; Wilson et al.,
2000a). In most cases, initiation from the second IRES begins at a GCU,
GCA, or GCC triplet coding for alanine or at a CAA triplet coding for
glutamine (reviewed in Pisarev et al., 2005). In the model proposed for the
initiation of the second IRES, domain 3 within the IGR occupies the
ribosomal P site, the ribosomal A site remaining accessible for the Ala-
tRNA or the Gln-tRNA, and translocation occurs on the ribosome without
peptide bond formation (designated as the elongation-competent assem-
bly of ribosome). As in the case of the HCV IRES, binding of the CrPV IGR
to the 40S ribosomal subunit induces conformational changes on the
ribosome (Costantino et al., 2008; Pfingsten et al., 2006; Spahn et al., 2004).

The rates of cap- and IRES-dependent initiation pathways in vitro are
different: using FMDV RNA as template it was shown that cap-depen-
dent assembly of the 48S ribosomal complex occurs faster than IRES-
mediated assembly (Andreev et al., 2007). Moreover, some viruses
have evolved sequences that prevent their IRESs from functioning.
For example, the HCV IRES possesses a conserved stem–loop structure
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containing the initiation codon and this structure has been shown to
decrease IRES efficiency (Honda et al., 1996). One possible explanation is
that for successful viral infection, IRESs should work at a very specific level
of efficiency,whichdoes not necessarily correspond tomaximumefficiency.

As opposed to animal virus IRESs, plant virus IRES elements are shorter
and less structured. Moreover, such elements are not confined to the 50

UTRs on the genome of plant RNA viruses, and they are then at times
referred to as TEs. Depending on the plant viral genome, the IRES is located
(1) in the 50 UTR such as in the picorna-like virus Potato virus Y (family
Potyviridae; Levis andAstier-Manifacier, 1993), (2) within or betweenORFs
such as in a crucifer-infecting Tobacco mosaic virus (TMV, genus Tobamo-
virus; Jaag et al., 2003; Skulachev et al., 1999; Zvereva et al., 2004) and in
Potato leafroll virus (PLRV, family Luteoviridae; Jaag et al., 2003), or (3) in
the 30 UTRs of viruses such as in BYDV (Guo et al., 2001;Wang et al., 1997). In
the Hibiscus chlorotic ringspot virus (family Tombusviridae) genome, the
activity of the 50-located IRES is enhanced by the presence of a TE (also
known as CITE) located in the 30 UTR (Koh et al., 2002, 2003). The possible
mechanisms of action of 30 TEs has in recent years revealed the immense
variety of strategies used in translation initiation by plant RNA viruses
(reviewed in Miller and White, 2006).
E. Non-AUG initiation codons

In some cases in eukaryotes as also in prokaryotes, initiation of translation
of cellular and viral mRNAs occurs on a non-AUG codon. Table I sum-
marizes the situation for viruses that initiate some of their proteins on
non-AUG codons.

In addition to containing the P ORF, the Sendai virus P mRNA harbors
the C ORF in another reading frame that leads to the synthesis of a nested
set of C-coterminal proteins (proteins C0, C, Y1, and Y2) known jointly as
the C proteins (Fig. 2B). Except for C0 that is initiated upstream of the
P protein on the mRNA, the other C proteins are entirely contained within
the P ORF. C0 is initiated on an ACG codon in an optimum sequence
context, and nts þ 5 and þ 6 also appear to be important for initiation at
such non-AUG codons. The other C proteins (C, Y1, and Y2) are initiated
on downstream-located AUG codons in suboptimal contexts and are
presumably synthesized by leaky scanning or ribosome shunting
(Curran and Kolakofsky, 1988; Gupta and Patwardhan, 1988; Kato et al.,
2004). Use of ACG as initiation codon has been described in the neuro-
virulent strains of TMEV (van Eyll and Michiels, 2002).

The initiation codon in Human parainfluenza virus 1 (HPIV-1, family
Paramyxoviridae) for the synthesis of C0 is a GUG codon. In vivo, GUG
appears nearly as efficient as AUG in initiating C0 expression in the same
context (Boeck et al., 1992).



TABLE I Viruses shown or postulated to use non-AUG codons as initiators of protein synthesis

Family/genus RNAa Initiation codon Prot n References

Plant viruses

Caulimoviridae

Tungrovirus

RTBV 1 AUU ORF Fütterer et al. (1996)

Furovirus
SBWMV 2 CUG 28K Shirako (1998)

(Flexiviridae)

(Foveavirus)

PCMV 1 AUC ORF James et al. (2007)

1 AUA ORF 5b James et al. (2007)

Animal viruses

Parvoviridae

Dependovirus

AAV-2 1 ACG B Becerra et al. (1985)

Retroviridae

Lentivirus

EIAV 1 CUG Tat Carroll and Derse (1993)

Gammaretrovirus

MoMLV 1 CUG Pr75 ag Prats et al. (1989)
Deltaretrovirus

HTLV-1 1 GUG Rex Corcelette et al. (2000)

CUG Tax Corcelette et al. (2000)
ei

1

b

1

g



Paramyxoviridae

Respirovirus

Sendai virus 1 ACG C0 Boeck and Kolakofsky (1994),
Curran and Kolakofsky (1988),

and Gupta and Patwardhan (1988)

HPIV-1 1 GUG C0 Boeck et al. (1992)

Picornaviridae

Cardiovirus

TMEV 1 AUG/ACGc L* van Eyll and Michiels (2002)

Flaviviridae

Flavivirus
HCV 1 GUG/GCGc F Baril and Brakier-Gingras (2005)

Dicistroviridae

Cripavirus

CrPV 1 GCUd ORF 2 Wilson et al. (2000a)

PSIV 1 CAAe ORF 2 Sasaki and Nakashima (2000) and

Yamamoto et al. (2007)

RhPV 1 GCAd ORF 2 Domier et al. (2000)

For each virus, the RNA segment whose protein is initiated at a non-AUG codon is indicated as also the initiation codon used, and the designation of the resulting protein. The
brackets surrounding Flexiviridae and Foveavirus indicate that PCMV is presumed to belong to this family and genus.
a RTBV contains a double-stranded DNA; AAV-2 contains a single-stranded DNA.
b CP ORF.
c Depending on the variant.
d Ala as initiator.
e Gln as initiator.
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The Moloney murine leukemia virus (MoMLV, family Retroviridae)
genomic RNA codes for two in-phase precursor proteins Pr65gag and
Pr75gag. It uses an upstream CUG as translation initiation codon for the
synthesis of Pr75gag that migrates to the cell surface and is involved in
virus spread (Prats et al., 1989).

Among plant viruses, a non-AUG initiation codon exists in the poly-
cistronic mRNA of the pararetrovirus Rice tungro bacilliform virus
(RTBV; family Caulimoviridae). ORF I of the mRNA (harboring ORFs I–
III) is accessed by reinitiation after translation of a short ORF (sORF).
Following a long 50 leader sequence harboring several sORFs that are
bypassed by ribosome shunting, synthesis is initiated on an AUU codon
at ORF I (Fütterer and Hohn, 1996). Only 10% of the ribosomes initiate at
ORF I; the remaining 90% reach ORFs II and III and initiate on an AUG
codon (reviewed in Ryabova et al., 2006). A similar situation occurs in
other pararetroviruses. RNA 2 of the bipartite (þ) sense single-stranded
RNA genome of Soil-borne wheat mosaic virus (SBWMV, genus
Furovirus) codes for two proteins; the shorter (19K) CP is produced via
conventional AUG initiation, whereas the N-terminally extended 28K
protein is initiated at a CUG codon upstream of the CP ORF (Shirako,
1998). Under certain conditions, AUU codons located in the 50 UTR of the
TMV RNA can serve as initiation codons (Schmitz et al., 1996).

In the cases presented earlier, the non-AUG codons allow initiation
with a methionine residue. There is however an interesting situation of
methionine-independent translation initiation (reviewed in Pisarev et al.,
2005; Touriol et al., 2003). This is the case of the IRES-dependent initiation
of translation of members of the Dicistroviridae family whose structural
protein encoded by ORF 2 lacks an AUG initiation codon and translation
initiation occurs at a CAA (coding for Gln) or GCU or GCA (coding for
Ala) codon, depending on the virus (Table I).
F. Multiple reading frames

Whereas eukaryotic cell mRNAs are usually monocistronic, the mRNAs
of eukaryotic viruses frequently contain several ORFs, the AUG posi-
tioned close to the 50 end of the RNA generally constituting the initiation
codon. To reach downstream initiation codons that correspond to internal
ORFs on polycistronic RNAs lacking an IRES, viruses resort to either
leaky scanning, reinitiation, or shunting.

1. Leaky scanning
A mechanism commonly used by viruses to express polycistronic RNAs
is leaky scanning (reviewed in Ryabova et al., 2006), in which when the
initiation codon lies within less than 10 nts from the cap structure, or
when it is embedded in a poor context for initiation, some of the scanning
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ribosomes bypass this first initiation codon and start translation on a
downstream-located initiation codon whose context is more appropriate
for initiation (Fig. 2B). Leaky scanning also occurs when initiation is at a
non-AUG codon in an optimal context followed by an AUG codon. Two
possible situations can arise: in-frame initiation or overlapping ORFs.
a. In-frame initiation This occurs when an ORF harbors more than one
potential in-frame initiation codon; it is codon context-dependent. The
outcome of in-frame initiation is the production of two proteins that are
identical over the total length of the shorter protein. Table II lists the cases
of in-frame initiation reported. In FMDV and Plum pox potyvirus (PPV,
family Potyviridae), in-frame initiation is cap independent (Andreev et al.,
2007; Simon-Buela et al., 1997).
b. Overlapping ORFs This strategy is extremely common among viruses
and is generally also codon context-dependent. The result of this strategy
is the synthesis of two different proteins. A situation common to plant
TABLE II In-frame initiation

Family/genus

Genome

segment Protein References

Comoviridae

Comovirus

CPMV RNA M Movement
protein

Verver et al. (1991)

Hordevirus

BSMV RNA b Movement

protein

Petty and Jackson

(1990)

Furovirus

SBWMV RNA 2 Coat protein Shirako (1998)

Potyviridae

Potyvirus
PPV RNA Polyprotein Simon-Buela et al.

(1997)

Bornaviridae

Bornavirus

BDV RNA P 24- and 16-kDa

phosphoproteins

Kobayashi et al.

(2000)

Picornaviridae

Aphthovirus
FMDV RNA Polyprotein Andreev et al. (2007)

For each virus the genome segment that undergoes in-frame initiation is indicated.
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viruses belonging to several genera such as the carlaviruses and potex-
viruses (family Flexiviridae), and the viruses of the genera Furovirus and
Hordeivirus is the presence within their (þ) sense single-stranded RNA
genome of a group of three ORFs known as the triple gene block whose
expression leads to three proteins involved in movement of the virus
within the plant. Synthesis of these proteins requires the production of
two sgRNAs. The 50-proximal ORF is translated from a functionally
monocistronic sgRNA, whereas the two subsequent ORFs are translated
from the second sgRNA. Expression of the third ORF, which overlaps the
second ORF, occurs by leaky scanning and is codon context-dependent
(Verchot et al., 1998; Zhou and Jackson, 1996).

Peanut clump virus (PCV, genus Pecluvirus) contains a bipartite (þ)
sense single-stranded strand RNA genome. In RNA2, the first of two
ORFs that codes for the virus CP terminates with a UGA codon that
overlaps the AUG codon initiating the second ORF: AUGA. About one-
third of the ribosomes fail to initiate translation of the CP and scan the
template initiating translation of the second ORF, more than 100 residues
downstream of the first ORF (Herzog et al., 1995). RTBV contains a closed-
circular double-stranded DNA genome that is transcribed yielding two
mRNAs. The longer polycistronic mRNA (known as pregenomic RNA)
encodes three ORFs (I, II, and III) that are linked by AUGA, the termina-
tion codon of the upstream ORF overlapping the initiation codon of the
downstream ORF (Fütterer et al., 1997). ORF I is initiated at an AUU
codon, preceded by a long 50 UTR with several sORFs that are bypassed
by ribosome shunting. On the other hand, ORFs II and III initiate at a
conventional AUG codon. However, the AUG initiating ORF II is in a
poor context, and the majority of the ribosomes bypass this AUG to reach
the downstream more favorable AUG of ORF III. Leaky scanning there-
fore accounts for initiation of translation of ORFs II and III.

Turnip yellow mosaic virus (family Tymoviridae) is a monopartite (þ)
sense single-stranded RNA virus that bears a cap structure, and harbors a
tRNA-like structure (TLS) at its 30end that can be valylated in vitro and
in vivo. Its first two 50-proximal and largely overlapping ORFs code for the
movement protein (ORF1), and the replicase polyprotein (ORF2) in a
different reading frame. It has been reported that the valylated viral
RNA serves as bait for ribosomes directing them to initiate synthesis of
ORF2, and donating its valine residue for the N-terminus of the polypro-
tein in a cap- and initiator-independent manner (Barends et al., 2003);
interaction between the 30 TLS and the initiation codon of ORF2 would
lead to circularization of the RNA. However, recent studies suggest that
initiation of translation of the polyprotein is cap and context dependent,
the TLS having only a positive effect on translation of ORF2 without being
indispensable (Matsuda and Dreher, 2007). This mechanism allows dicis-
tronic expression from initiation codons that are closely spaced.
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2. Reinitiation
Another possibility for initiation at an internal start codon in a polycis-
tronic mRNA is reinitiation of translation of downstream ORFs following
expression of a 50-proximal ORF (of 30 codons or less; reviewed in
Ryabova et al., 2006). Reinitiation requires that the 40S ribosomal subunit
remain on the mRNA after terminating synthesis of the 50-proximal ORF.
Efficiency of reinitiation decreases with increasing length of the IGR
between the 50-proximal and the next ORF.

Among eukaryotic viruses, polycistronic mRNAs have been the most
thoroughly examined in viruses of the family Caulimoviridae, in particu-
lar in the double-strand DNA virus Cauliflower mosaic virus (CaMV).
The large 35S mRNA of CaMV and related viruses contains up to seven
ORFs (Fig. 5), and for some of them recurrent translation depends on
reinitiation activated by the transactivator (TAV). The TAV protein is
encoded by ORF VI contained in the pregenomic (or polycistronic) 35S
mRNA; it is expressed by the 19S sgRNA in which it is the only ORF
(Pooggin et al., 2001). In dicistronic constructs harboring the CaMV ORF
VII followed by ORF I (or by ORFs II, III, IV, V, or an artificial ORF) fused
to the chloramphenicol acetyltransferase (CAT) gene, very low levels of
CAT activity were obtained in plant protoplasts; however, when the
TAV-mediated reinitiation
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product of ORF VI was included, considerably higher levels of CAT
activity were observed (Bonneville et al., 1989; Fütterer and Hohn, 1991).
The second ORF of the dicistronic construct is synthesized by reinitiation
and not by an IRES, since a stem structure positioned at various sites
upstream of this ORF hinders its translation (Fütterer and Hohn, 1991).
TAV-stimulated initiation of the second ORF does not depend on the
distance separating the two ORFs, since the distance can be abolished as
in a quadruplet AUGA, or the ORFs can be separated by as many as 700
nts, and even limited overlap between the ORFs is possible. TAV directly
binds to the eIF3g subunit of eIF3 and associates with the L18 and L24
proteins of the 60S ribosomal subunit (Leh et al., 2000; Park et al., 2001).
These interactions result in TAV–eIF3 complex association with the trans-
locating ribosome during translation, favoring reinitiation of downstream
ORFs. On the other hand, eIF4B can compete with TAV for binding to
eIF3g, since the binding sites of these two proteins on eIF3g overlap.
Overexpression of eIF4B inhibits TAV-mediated reinitiation of a second
ORF, probably by inhibiting TAV–eIF3g-40S complex formation (Park
et al., 2004).

The members of the Calicivirus family contain a (þ) sense single-
stranded RNA carrying a VPg. The sgRNAs of these viruses that also
contain a VPg represent widely studied examples of reinitiation by mam-
malian ribosomes after translation of a long ORF. The Rabbit hemorrhagic
disease virus genomic RNA codes for a large polyprotein ORF1 that is
subsequently processed producing the viral nonstructural proteins and
the 30 terminally located major CP VP60, as well as a small 30 terminally
located ORF2 in another reading frame. The 30-terminal part of ORF1
overlaps the 50 region of ORF2. Expression of ORF2 yields the minor CP
VP10 and is produced from a sgRNA that also contains the region of
ORF1 expressing VP60. Thus, the sgRNA codes for the major VP60
encoded by the 30-terminal part of ORF1, and for the minor VP10 pro-
duced by ORF2. The two ORFs overlap by AUGUCUGA such that the
termination codon (UGA) of ORF1 lies downstream of the initiation
codon (AUG) of ORF2. Synthesis of VP10 occurs from the genomic as
well as from the sgRNA and involves an unusual translation termination/
reinitiation process. Indeed, synthesis of VP10 depends strictly on the
presence of the termination codon ending ORF1 preceded by a sequence
element of about 80 nts (Meyers, 2003). The sequence element contains
two motifs that are essential for expression of ORF2, one of which is
conserved among caliciviruses and is complementary to a sequence in
the 18S ribosomal RNA. In FCV, sgORF1 and sgORF2 overlap by 4 nts
(AUGA) and translation in a reticulocyte lysate of the FCV sgRNAs
showed that ORF1/ORF2 termination/reinitiation does not require the
eIF4F complex and that the 30-terminal RNA sequence of ORF1 binds to
the 40S ribosomal subunit and to IF3 (Luttermann and Meyers, 2007;
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Meyers, 2007; Pöyry et al., 2007). Thus, the termination/reinitiation
process requires sequence elements that could prevent dissociation of
postterminating ribosomes via RNA–RNA, RNA–protein, and/or
protein–protein interactions.
3. Shunting
A ribosome shunting mechanism has been proposed to explain how
initiation of translation occurs in viral polycistronic mRNAs that have a
long leader sequence with generally several sORFs, a long low-energy
hairpin structure and a probable packaging signal within the 50 UTR
(reviewed in Ryabova et al., 2006). This is the case of CaMV (Fig. 5). The
ribosomes having entered at the level of the cap structure on the 35S
mRNA would scan a few nts, then skip from a ‘‘take-off site’’ over part
of the leader sequence containing a structural element and sORFs, to
reach a ‘‘landing site,’’ and finally scan to the downstream ORF. It has
been suggested that formation of a leader hairpin between the two sites
would bring these sites in close proximity, favoring shunting. It is gener-
ally assumed that shunting is more easily achieved if the upstream ORF is
short, such that the initiation factors that allowed initiation of translation
of the sORF may have at least partly remained on the ribosome during
translation (reviewed in Jackson, 2005). In addition to the size of the sORF,
the time required for scanning seems also to be important (Pöyry et al.,
2004), the eIF4F initiation complex remaining on the ribosome for a few
seconds without interruption of sORF translation. The leader sequence of
the CaMV 35S mRNA is replete with sORFs. Of these, the 50-proximal
sORF, sORF A, is indispensable for ribosome shunting and infectivity; its
aa sequence is generally not important but it must be translated and
should be between 2 and 10 codons long for efficient shunting. Another
important cis-acting element for shunting includes the distance between
the termination codon of sORF A and the base of the leader hairpin
(reviewed in Ryabova et al., 2006). Finally, it has been reported that TAV
promotes expression of ORF VII (Pooggin et al., 2001).

Shunting may explain translation of polycistronic mRNAs in other
viruses, generally by examining the effect on translation of inserting a
strong hairpin structure near the 50 end or in the middle region of the
leader sequence, or by inserting AUG codons within the leader, as done
for CaMV. Shunting occurs in the case of the 200 nt-long leader, the
tripartite leader, in the Adenovirus late mRNAs from the major late
promoter. This highly conserved leader contains a 25–44 nt-long unstruc-
tured 50 region, followed by highly structured hairpins devoid of sORFs.
Shunting has been reported to be enhanced by complementarity between
the tripartite leader and the 30 hairpin of the 18S ribosomal RNA (Xi et al.,
2004; Yueh and Schneider, 2000).
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In the polycistronic P/C mRNA of Sendai virus (Fig. 2B), proteins P
and C are presumably initiated by leaky scanning, whereas proteins Y1
and Y2 most possibly arise by shunting. This was suggested because
changing the ACG codon of C0 to AUG dramatically reduced the synthe-
sis of the P and C proteins, but had virtually no effect on the synthesis of
Y1 and Y2 (Latorre et al., 1998). Yet to date, no specific sites have been
detected in the mRNA to account for shunting.
G. Modification of cell factors involved in initiation

Shutoff of host protein synthesis is the process in which cell protein
synthesis is inhibited during viral infection due to the use by the virus
of the host metabolism (reviewed in Gale et al., 2000; Randall and
Goodbourn, 2008). Host shutoff reflects the competition between viral
and host mRNAs for the translation machinery, and results in selective
translation of viral mRNAs over endogenous host mRNAs. Early transla-
tional switch is accompanied by disaggregation of polysomes containing
capped cellular mRNAs, followed by reformation of polysomes contain-
ing exclusively viral mRNAs (reviewed in Lloyd, 2006).

It is at first sight rather surprising that in plants, no infection by a plant
virus has so far been conclusively demonstrated to hinder host translation
in planta so as to favor synthesis of viral proteins. Host translational
shutoff by plant viruses has been reported only in in vitro translation
studies of the potyviruses TuMV and TEV (Cotton et al., 2006; Khan
et al., 2008; Miyoshi et al., 2006). The authors reported different causes
for the inhibition of cellular mRNA translation. On one hand inhibition
would be the result of competition between cellular-capped mRNAs and
VPg for eIFiso4E, the binding affinity of VPg for eIFiso4E being
stronger that of the capped mRNA (Khan et al., 2008; Miyoshi et al.,
2006). On the other hand, inhibition of cell mRNA translation by TuMV
would not be mediated by the interaction of VPg-Pro (precursor of VPg)
with eIFiso4E but by VP-Pro-induced degradation of RNAs (Cotton et al.,
2006).

It has been established for several plants that variation in eIF4E and
eIFiso4E is involved in natural recessive resistance against potyviruses
(reviewed in Kang et al., 2005; Robaglia and Caranta, 2006). Resistance
and complementation assays provide evidence for coevolution between
pepper eIF4E and potyviral VPg (Charron et al., 2008). Some recessive
plant virus resistance genes code for eIF4E with the aa substitution
Gly107Arg, and this substitution was shown to abolish the ability of
eIF4E to bind TEV VPg and the cap, providing resistance against TEV
infection (Yeam et al., 2007). Recently, a functional map of lettuce eIF4E
was obtained, and the results using mutated eIF4E suggest that the
function of eIF4E in the potyvirus cycle might be distinct from its



Virus Versus Host Cell Translation 129
physiological function of binding the cap structure at the 50 ends of
mRNAs to initiate translation; thus eIF4E may be required for virus
RNA replication or other processes of the virus cycle (German-Retana
et al., 2008).
1. Phosphorylation of eIF2a
The function of eIF2 in protein synthesis is the formation of the TC and its
delivery to the 40S ribosomal subunit. eIF2 is a complex composed of the
three subunits a, b, and g (Fig. 6). Phosphorylation of eIF2a inhibits the
exchange of GDP for GTP catalyzed by the exchange factor eIF2B, and
leads to the sequestration of eIF2B in a complex with eIF2 resulting in
general inhibition of protein synthesis (Sudhakar et al., 2000; reviewed in
Hinnebusch, 2005). The amount of eIF2B in cells is limiting as compared
to eIF2. Thus, even small changes in the phosphorylation status of eIF2a
have a drastic effect on translation due to eIF2B sequestration
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(Balachandran and Barber, 2004; Krishnamoorthy et al., 2001; Sudhakar
et al., 2000; Yang and Hinnebusch, 1996). For several mRNAs the eIF2
complex is replaced by a single polypeptide designated eIF2A that directs
codon-dependent and GTP-independent Met-tRNAiMet binding to the
40S ribosomal subunit and may act by favoring expression of specific
proteins (Adams et al., 1975; Merrick and Anderson, 1975; Zoll et al., 2002).

Four cellular eIF2a kinases are known to phosphorylate the eIF2a
subunit at residue Ser51. Three of the kinases—the protein kinase RNA
(PKR), the PKR-like endoplasmic reticulum kinase (PERK), and the gen-
eral control nonderepressible-2 (GCN2) kinase—play a prominent role in
virus-infected cells (Fig. 6). PKR binds to and is activated by double-
strand RNAs that are generated during replication and transcription of
viral genomes. Accumulation of unfolded proteins in the endoplasmic
reticulum during viral infection induces a signaling cascade from the
cytoplasmic kinase domain of PERK, leading to induction of eIF2a phos-
phorylation. Finally, GCN2 kinase is reported to be activated upon Sind-
bis virus (SINV, family Togaviridae) infection (Berlanga et al., 2006).

Many viruses evolved diverse strategies to prevent PKR or PERK
activation in infected cells; these strategies have been discussed in detail
in recent reviews (Dever et al., 2007; Garcia et al., 2007; Mohr, 2006; Mohr
et al., 2007). However, there are several examples in which viruses use
eIF2a phosphorylation to switch off cell translation and direct the cell
machinery to synthesize their own proteins (Fig. 6). A classical illustration
of how eIF2modification fosters translation of viral mRNAs is initiation of
translation on the CrPV IRES. The IRES contained in the IGR promotes
initiation of protein synthesis without the assistance of any initiation
factors, including eIF2 (reviewed in Doudna and Sarnow, 2007; Pisarev
et al., 2005). Moreover, CrPV stimulates eIF2a phosphorylation; this inac-
tivates host mRNA translation by decreasing the amount of preinitiation
43S ribosomal complexes formed and facilitates translation initiation on
the CrPV IRES. Indeed, lowering the amounts of TC and 43S ribosomal
complexes increases the efficiency of initiation on the CrPV IRES (Pestova
et al., 2004; Thompson et al., 2001). HCV encodes proteins known to inacti-
vate PKR (or PKRþ PERK) function(s) (Garcia et al., 2007). However, HCV
IRES-driven translation initiation can also bemaintained in the presence of
activated PKR and reduced TCs (Robert et al., 2006). A new pathway of
eIF2- and eIF5-independent initiation of translation on the HCV IRES has
been proposed recently in which assembly of the 80S complex requires
only two initiation factors, eIF5B and eIF3 (Terenin et al., 2008).

Infection by viruses of the genus Alphavirus (family Togaviridae) such
as SINV or Semliki forest virus (SFV) activates PKR, which results in
almost complete phosphorylation of eIF2a at late times postinfection.
Translation of the viral sg 26S mRNA takes place efficiently during this
time, whereas translation of genomic mRNA is impaired by eIF2a
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phosphorylation (Molina et al., 2007; Ventoso et al., 2006). It was shown
that a hairpin loop structure within the 26S mRNA-coding region, located
downstream of the AUG initiation codon, promotes eIF2-independent
translation with the help of eIF2A (Ventoso et al., 2006). However, the
fact that translation of the 26S mRNA must be coupled to transcription to
be efficient in infected cells suggests that additional viral or cellular
factors are involved in translation initiation on the 26S mRNA (Sanz
et al., 2007).

Early in the infection process rotaviruses take over the host translation
machinery, and this is achieved via interaction of the viral NSP3 with
eIF4G and phosphorylation of eIF2a (Figs. 4C and 6; Montero et al., 2008;
Piron et al., 1998). These two mechanisms may explain the severe shutoff
of cell protein synthesis observed during rotavirus infection, although it is
not clear how capped viral mRNAs are efficiently translated in such
eIF2a-sequestered conditions.

Murine hepatitis virus (MHV) as well as Severe acute respiratory
syndrome coronavirus (SARS-CoV), both of the family Coronaviridae,
induce host translational shutoff. This is achieved via different mechan-
isms: degradation of cell mRNAs includingmRNAs encoding translation-
related factors (Leong et al., 2005; Raaben et al., 2007), increase in eIF2a
phosphorylation presumably via PERK, and formation of stress granules
and processing bodies that are thus sites of mRNA stalling and degrada-
tion, respectively (Chan et al., 2006; Raaben et al., 2007; Versteeg et al.,
2006). Expression of the SARS-CoV NSP1 is involved in degradation of
several host mRNAs and in host translation shutoff (Kamitani et al., 2006).
Surprisingly, despite eIF2a phosphorylation the SARS-CoV proteins are
still efficiently synthesized even though coronaviral mRNAs are structur-
ally equivalent to host mRNAs (Hilton et al., 1986; Siddell et al., 1981).

It is interesting to observe that despite considerable work performed in
recent years, phosphorylation of eIF2a still represents one of the most
intriguing problems in translational control during viral infection, since it
is still not clear why the phosphorylation of eIF2 affects cellular protein
synthesis without impairing translation initiation of many viral RNAs.

2. Modification of eIF4E and 4E-BP
eIF4E is believed to be the least abundant of all initiation factors and,
therefore, to be aperfect target for regulationof protein synthesis. It interacts
with the cap structure of mRNAs, with the scaffold protein eIF4G and with
repressor proteins known as eIF4E-binding proteins (4E-BPs). eIF4E under-
goes regulatedphosphorylationonSer209mediatedby theeIF4G-associated
MAPK signal-integrating kinases, Mnk1 and Mnk2 (Fig. 7) (Pyronnet et al.,
1999; Raught and Gingras, 2007). Uninfected cells growing exponentially
typically possess roughly equal amounts of phosphorylated and nonpho-
sphorylated forms of eIF4E (Feigenblum and Schneider, 1993) and the ratio
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shifts toward the phosphorylated form of eIF4E following treatment of the
cells with growth factors, hormones, andmitogens (Flynn and Proud, 1995;
Joshi et al., 1995;Makkinje et al., 1995). However, the functional role of eIF4E
phosphorylation remains elusive. Indeed, there is no direct link between
eIF4E phosphorylation and the enhanced translation observed as a result of
these stimuli, since recent studies showed that phosphorylation of eIF4E
decreases theaffinityof eIF4Efor cappedmRNA.Thus, theworkinghypoth-
esis is that the nonphosphorylated form of eIF4E within the eIF4F complex
(eIF4E, eIF4G, and eIF4A) binds to the cap structure on themRNA, and that
eIF4Ephosphorylation accompanies initiation complex transition to elonga-
tion (reviewed in Scheper and Proud, 2002). In addition, phosphorylation
could dissociate eIF4E from the cap and enable the eIF4F complex to move
along the 50 UTR and unwind the secondary structure.

4E-BP constitutes a family of translation repressors that prevent eIF4F
assembly and act as negative growth regulators (Raught andGingras, 2007).
4E-BPs are phosphoproteins, 4E-BP1 being the best studied of the three 4E-
BPs known in mammals. It undergoes phosphorylation at multiple sites
leading to its dissociation from eIF4E, leaving eIF4E free to bind eIF4G and
to form the eIF4F complex (Fig. 7) (Lin et al., 1994; Pause et al., 1994). The
mechanism proposed is that eIF4E possesses an eIF4G-binding site which
overlaps with 4E-BPmotifs; thus, 4E-BP and eIF4G binding to eIF4E would
be mutually exclusive (Haghighat et al., 1995; Marcotrigiano et al., 1999).
a. Dephosphorylation of eIF4E and of 4E-BP1 Adenovirus (family Adeno-
viridae), Vesicular stomatitis virus (VSV; family Rhabdoviridae), and
Influenza virus infections lead to accumulation of nonphosphorylated
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eIF4E and subsequent inhibition of host protein synthesis. Adenovirus
mediates the quantitative dephosphorylation of eIF4E (up to 95% of the
total eIF4E) leading to suppression of cellular protein synthesis (Fig. 7)
(Feigenblum and Schneider, 1993). The Adenovirus late protein desig-
nated 100K is synthesized at high levels at the onset of the late phase of
infection (Bablanian and Russell, 1974; Oosterom-Dragon and Ginsberg,
1980). It interacts with the C-terminus of eIF4G (Cuesta et al., 2000) and
with the tripartite leader sequence of viral late mRNAs (Xi et al., 2004).
Binding of the 100K protein to eIF4G evicts Mnk1 from the eIF4F complex,
thus impairing eIF4E phosphorylation in the initiation complex and inhi-
biting translation of host mRNAs (Cuesta et al., 2000). On the other hand,
adenoviral late mRNAs are translated efficiently via ribosome shunting
(Xi et al., 2004, 2005). VSV infection causes dephosphorylation of eIF4E
and 4E-BP1 thus hampering host protein synthesis (Fig. 7). The resulting
changes in eIF4F do not inhibit translation of viral mRNAs, although the
detailed mechanism of how VSV mRNAs that are capped and possess
poly(A) tails overcome the obstacle created has not been elucidated
(Connor and Lyles, 2002). Influenza virus infection results in partial
(up to 70%) dephosphorylation of eIF4E and concomitant loss of eIF4F
activity (Fig. 7). Thus, Influenza virus mRNAs that are capped via cap-
snatching and polyadenylated (Herz et al., 1981; Krug et al., 1979; Luo
et al., 1991) are translated efficiently under conditions of partial inactiva-
tion of eIF4F (Feigenblum and Schneider, 1993) when host protein syn-
thesis is blocked (Katze and Krug, 1990). Several studies have shown that
the NS1 viral protein selectively promotes translation of viral mRNAs by
increasing their rate of initiation (de la Luna et al., 1995; Enami et al., 1994;
Katze et al., 1986; Park and Katze, 1995) and interacts with PABP and
eIF4GI (one of the two isoforms of eIF4G in animals) in viral mRNA
translation initiation complexes (Aragón et al., 2000; Burgui et al., 2003).
Moreover, a recent report has provided evidence that the Influenza virus
RdRp substitutes for eIF4E in viral mRNA translation and binds to the
translation preinitiation complex (Burgui et al., 2007). One can speculate
that the combination of dephosphorylation of eIF4E, hyperphosphoryla-
tion of eIF4G, and binding of RdRp to the preinitiation complex and of
NS1 to eIF4GI creates an eIF4F factor more specific for Influenza virus
mRNA translation.

4E-BP1 is dephosphorylated following infection with Poliovirus or
EMCV (Fig. 7). This is a well-established example of viral switch from
cap-dependent to IRES-mediated initiation of translation in picornavirus-
infected cells (Gingras et al., 1996; Svitkin et al., 2005). Simian virus 40
(SV40; family Polyomaviridae) is a recent example of a virus that causes
significant decrease in phosphorylation of 4E-BP1 late in lytic infection.
This process is specifically mediated by the SV40 small t antigen. As in the
case of Poliovirus and EMCV, dephosphorylation of 4E-BP1 and its
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subsequent binding to eIF4E displaces eIF4E from the eIF4F complex. This
mechanism functions as a switch in translation initiation mechanisms
favoring IRES-mediated translation (Yu et al., 2005). Indeed, recent
studies have shown that the SV40 late 19S mRNA possesses an IRES
(Yu and Alwine, 2006).

b. Phosphorylation of eIF4E and 4E-BP1 Members of the Herpesviridae
family of the Alphaherpesvirinae subfamily, such as Herpes Simplex
Virus 1 (HSV-1), and of the Betaherpesvirinae subfamily, such as
Human cytomegalovirus (HCMV), can stimulate the assembly of eIF4F
complexes in primary human cells; this is partly achieved by phosphory-
lation of eIF4E and 4E-BP1 early in the productive viral growth cycle
(Fig. 7) (Kudchodkar et al., 2006; Walsh and Mohr, 2004; Walsh et al.,
2005). At the same time HSV-1 infection dramatically impairs host protein
synthesis (Elgadi et al., 1999; Everly et al., 2002; Sciabica et al., 2003)
whereas with HCMV the effect on host protein synthesis is weak (Stinski,
1977). Interestingly, the ratio of eIF4F over 4E-BP1 increases in cells infected
with either HSV-1 or HCMV, promoting assembly of eIF4F complexes. For
HSV-1 this is achieved exclusively through proteasome-mediated degrada-
tion of 4E-BP1 (Walsh and Mohr, 2004), whereas for HCMV, replication
induces an increase in the overall abundance of the eIF4F components eIF4E
and eIF4G, and also of PABP relative to the translational repressor 4E-BP1
(Walsh et al., 2005). However, liberation of eIF4E from 4E-BP1 in the case of
HSV-1 is insufficient to accelerate eIF4E incorporation into the eIF4F com-
plex. A recent study showed that the HSV-1 ICP6 gene product binds to
eIF4G promoting association of eIF4E with the N-terminus of eIF4G and
facilitating eIF4E phosphorylation. This suggests a chaperone role for ICP6
in eIF4F assembly (Walsh and Mohr, 2006).

4E-BP1 is hyperphosphorylated (Fig. 7) following infection by Epstein–
Barr Virus (EBV; family Herpesviridae, subfamily Gammaherpesvirinae)
(Moody et al., 2005) or Human papillomavirus (HPV; family Papilloma-
viridae) (Moody et al., 2005; Munger et al., 2004; Oh et al., 2006).

3. Modification of eIF4G
a. Cleavage of eIF4G The large modular protein eIF4G serves as a dock-
ing site for initiator factors and other proteins involved in initiation of
RNA translation. Due to the central role of eIF4G in translation initiation,
many viruses belonging to the families Picornaviridae, Retroviridae, and
Caliciviridae have evolved mechanisms to modify the function of eIF4G
so as to prevent cell protein synthesis. These viruses induce cleavage of
eIF4G, separating the N-terminal eIF4E-binding domain from the
C-terminal eIF4A- and eIF3-binding domains (Fig. 8). As a consequence,
the capacity of eIF4G to connect capped mRNAs to the 40S ribosome is
abolished by the virus, inducing host translation shutoff.
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Host shutoff during infection by picornaviruses such as Poliovirus,
HRV and human Coxsackie virus B (CVB)-3 and CVB-4 results in part
from cleavage of eIF4GI by the viral 2A protease (2Apro) at aa 681/682
(Baxter et al., 2006; Lamphear et al., 1993; Sommergruber et al., 1994; Sousa
et al., 2006). The Poliovirus and HRV 2Apro also cleave eIF4GII (at aa 699/
670) but more slowly than cleavage of eIF4GI (Gradi et al., 1998; Svitkin
et al., 1999). FMDV has evolved an alternate papain-like protease, L-pro in
place of 2Apro to cleave both isoforms of eIF4G (Gradi et al., 2004); it
cleaves eIF4GI 7 aa upstream of 2Apro (Fig. 8), and eIF4GII 1 aa down-
stream of the 2Apro cleavage site (reviewed in Lloyd, 2006). Poliovirus
infection also activates two cell proteases that cleave eIF4GI close to the
2Apro cleavage site (Zamora et al., 2002). The 3Cpro of FMDV and the
2Apro and 3Cpro of CVB-3 also cleave eIF4GI (Fig. 8) (Chau et al., 2007;
Strong and Belsham, 2004). Degradation of eIF4GI has been observed in
CD4þ cells infected with Human immunodeficiency virus 1 (HIV-1;
family Retroviridae) (Ventoso et al., 2001). The HIV-1 protease efficiently
cleaves eIF4GI at multiple sites, but not eIF4GII (Ohlmann et al., 2002).
Proteases of HIV-2 and of members of the family Retroviridae (Human T-
lymphotropic virus 1 (HTLV-1), Simian immunodeficiency virus, and
Mouse mammary tumor virus (MMTV)) also cleave eIF4GI (Alvarez
et al., 2003; reviewed in Lloyd, 2006). Finally, infection of cells with FCV
leads to cleavage of eIF4GI and eIF4GII and host translation shutoff
(Willcocks et al., 2004); the identity of the protease responsible for cleav-
age of eIF4G is unknown, but it could be a cellular protease activated by
the infection.
b. Phosphorylation of eIF4G eIF4G is 10-fold more phosphorylated in
Influenza virus-infected than in noninfected cells and phosphorylated
eIF4G still interacts with eIF4A and eIF4E. Cleavage of eIF4G by the



136 Anastassia V. Komarova et al.
Poliovirus 2Apro inhibits translation of the Influenza virus mRNAs
(Feigenblum and Schneider, 1993; Garfinkel and Katze, 1992). Phosphor-
ylation of eIF4G in HCMV-infected cells is one of the mechanisms that
enhances eIF4F activity during the viral replication cycle (Kudchodkar
et al., 2004; Walsh et al., 2005). eIF4G phosphorylation is induced through-
out infection with SV40 (Yu et al., 2005).
4. Cleavage of PABP
Certain viruses cleave the C-terminal domain of PABP thereby destroy-
ing its interactions with eIF4B, eRF3, or Paip1 (Fig. 4A). PABP is
targeted for cleavage by the 2Apro and 3Cpro of Poliovirus and
CVB-3 (Joachims et al., 1999; Kerekatte et al., 1999; Kuyumcu-Martinez
et al., 2002, 2004b), by L-pro of FMDV (Rodrı́guez Pulido et al., 2007),
and by 3Cpro of HAV (Zhang et al., 2007). PABP is proteolytically
processed by the calicivirus 3C-like protease (Kuyumcu-Martinez
et al., 2004a), and HIV-1 and HIV-2 proteases are also able to cleave
PABP in the absence of other viral proteins (Alvarez et al., 2006). The
contribution of PABP cleavage versus eIF4G cleavage in shutoff of host
or viral protein synthesis has not been compared directly. Poliovirus
cleavage of PABP appears to be promoted by the interaction of PABP
with translation initiation factors, ribosomes or poly(A)-containing
RNAs (Kuyumcu-Martinez et al., 2002; Rivera and Lloyd, 2008). Proces-
sing of PABP could either occur through one of the components that
provides shutoff of host translation or could favor the switch from
translation to replication of viral genomes as for example PABP
cleavage by 3Cpro in Poliovirus- and HAV-infected cells (Bonderoff
et al., 2008; Zhang et al., 2007).
5. Substitution of PABP
Severe inhibition of host mRNA translation due to competition
between the viral protein NSP3 and PABP for eIF4G was shown in
cells infected with rotaviruses. The viral NSP3 protein binds to the
conserved motif UGACC located at the 30 end of the viral mRNA,
and circularizes the mRNA via interaction with eIF4G (Fig. 4C). Since
NSP3 has a higher affinity for eIF4G than does PABP, it replaces PABP
and disrupts host mRNA circularization (Michel et al., 2000; Vende
et al., 2000). NSP3–eIF4G interaction results in reduced efficiency of
host mRNA translation. NSP3-mediated circularization has been
reported to enhance Rotavirus mRNA translation (Vende et al., 2000)
and to be dispensable for translation of the viral mRNAs (Montero
et al., 2006). X-ray structure and biophysical studies have shown that
NSP3 forms an asymmetric homodimer around the conserved motif at
the 30 end of Rotavirus mRNAs (Deo et al., 2002).
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6. Cleavage of PBCP2
During the mid-to-late phase of Poliovirus infection, PCBP2 is cleaved by
the viral proteases 3C and 3CD (Fig. 4B); the cleaved protein is no longer
able to bind to the IRES and initiate translation, but it binds to the
50-terminal cloverleaf structure or simultaneously to the cloverleaf struc-
ture and to the adjacent C-rich spacer circularizing the viral genome for
replication. Hence, the formation of two different closed loop structures
could favor the switch from translation to replication of the Poliovirus
genome (Gamarnik and Andino, 1998; Herold and Andino, 2001; Perera
et al., 2007; Toyoda et al., 2007).
IV. ELONGATION OF TRANSLATION

A. Frameshift

This is the mechanism whereby during the course of peptide chain elon-
gation, certain ribosomes shift from the original ORF (0 frame) on the
mRNA by one nt, either in the 50 direction (� 1 frame) or in the 30 direction
(þ 1 frame), and continue protein synthesis in the new frame. This results
in the synthesis of two proteins, the ‘‘stopped’’ and ‘‘transframe’’ pro-
teins; they are identical from the N-terminus to the frameshift site but
differ thereafter, and the stopped protein is always the more abundant of
the two proteins (reviewed in Farabaugh, 2000). The occurrence of � 1
frameshift is more frequent and has been more extensively studied than
þ 1 frameshift.� 1 Frameshift is common among (þ) strand RNA viruses;
it has been found in most retroviruses, in coronaviruses, L-A viruses of
yeast and in several plant viruses belonging to diverse groups (Table III).
Frameshift is observed during translation of RNA genomes exhibiting
overlapping gene arrangements. It usually allows the expression of the
viral replicase, the transframe protein in most cases harboring the poly-
merase or the reverse transcriptase. It has recently been reported (Chung
et al., 2008) that TuMV, in addition to synthesizing a large polyprotein that
undergoes cleavage, also harbors a frameshift protein embedded in the P3
region of the polyprotein: frameshift leads to the expression of a protein
designated P3-PIPO. PIPO is essential for infectivity of the virus, although
its precise role has not been established.

Three RNA signals are important in � 1 frameshifting, a slippery
heptanucleotide sequence where frameshift occurs, a downstream hair-
pin that in many instances can additionally form a pseudoknot, and a
spacer element between the slippery sequence and the hairpin structure;
the length of the spacer varies between 4 and 9 nts, depending on the viral
genome. The viral sequences appear to be optimized for a suitable level of
stopped and transframe proteins required for viral replication rather than
for maximum frameshift (Kim et al., 2001).



TABLE III Viruses of eukaryotes shown or postulated to regulate elongation of

translation by frameshifting

Family/genus RNA

Type

of FS Proteins References

Plant virusesa

Carlavirus

PVM 1 � 1 CP/12K Gramstat et al. (1994)

Sobemovirus

BWYV 1 � 1 66K/67K Veidt et al. (1988, 1992)

CoMV 1 � 1 64K/56K Mäkinen et al. (1995)

Closteroviridae

Closterovirus

BYV 1 þ 1 295K/48K Agranovsky et al. (1994)

CCSV 1 þ 1 ORF1a/b ten Dam et al. (1990)

CTV 1 þ 1 349K/57K Karasev et al. (1995)

Crinivirus

LIYV 1 þ 1 217K/55K Klaassen et al. (1995)

Luteoviridae

Enamovirus
PEMV 1 � 1 84K/67K Demler and de

Zoeten (1991)

2 � 1 33K/65K Demler et al. (1993)

Luteovirus

BYDV-PAV 1 � 1 39K/60K Di et al. (1993)

Polerovirus

PLRV 1 � 1 70K/67K Prüfer et al. (1992)

Tombusviridae

Dianthovirus

CRSV 1 � 1 27K/54K Kujawa et al. (1993) and

Ryabov et al. (1994)

RCNMV 1 � 1 27K/57K Kim and Lommel

(1994) and Xiong et al.

(1993)

SCNMV 1 � 1 27K/57K Ge et al. (1993)

Animal viruses

Pseudoviridaeb

Pseudovirus

SceTy1V 1 þ 1 Gag/Pol Belcourt and

Farabaugh (1990) and
Clare et al. (1988)

(continued)
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TABLE III (continued )

Family/genus RNA

Type

of FS Proteins References

Metaviridaeb

Metavirus

SceTy3V 1 þ 1 Gag/Pol Hansen et al. (1992)

Errantivirus

DmeGypV 1 � 1 Gag/Pol Bucheton (1995)
Retroviridaeb

Alpharetrovirus

ASLV 1 � 1 Pro/Pol Arad et al. (1995)

Betaretrovirus

MMTV 1 � 1 Gag/Pro/

Pol

Jacks et al. (1987)

Deltaretrovirus

HTLV-1 1 � 1 Gag/Pro/
Pol

Nam et al. (1993)

Lentivirus

HIV-1 1 � 1 Gag/Pro Parkin et al. (1992)

Totiviridaec

Totivirus

ScV-L-A 1 � 1 Gag/Pol Dinman et al. (1991)

Leishmaniavirus

LRV1-1 1 þ 1 CP/RdRp Stuart et al. (1992)
Astroviridaea

Astrovirus

HAstV 1 � 1 ORF1a/

ORF1b

Lewis and Matsui

(1996)

Coronaviridaea

Coronavirus

IBV 1 � 1 Pol1a/

Pol1b

Brierley et al. (1987,

1989)
SARS-CoV Plant and Dinman

(2006)

Torovirus

EqTV 1 � 1 ORF1a/

ORF1b

Lai and Cavanagh

(1997)

Arteriviridaea

Arterivirus

EAV 1 � 1 ORF1a/
ORF1b

den Boon et al. (1991)
and Napthine et al.

(2003)

(continued)
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TABLE III (continued )

Family/genus RNA

Type

of FS Proteins References

Unassigned

virusa

APV 1 � 1 ORF1/

ORF2

van der Wilk et al.

(1997)

Measles virus 1 � 1 P/R Liston and Briedis
(1995)

BLV Rice et al. (1985)

For each virus the genome segments that undergo frameshifting (FS), the type of FS, and the ‘‘stopped’’ and
‘‘transframe’’ proteins involved are indicated.
a (þ) Sense single-stranded RNA viruses.
b Reverse-transcribing RNA viruses.
c dsRNA viruses.
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B. Modification of elongation factors

eEF-1 is composed of eEF1A (formerly called eEF-1a) the transporter of
aa-tRNAs to the A site on the ribosomes during elongation in conjunction
with GTP hydrolysis, and a trimeric complex known as eEF1B (formerly
called eEF-1bgd) responsible for the regeneration of GTP from GDP on
eEF-1A (Slobin and Moller, 1978). eEF-2 promotes translocation of the aa-
or peptidyl-tRNA from the A to the P site on the ribosome in a GTP-
dependent reaction.

Given the fact that strong evidence for deviations from the norm
during elongation of protein synthesis does not seem to exist, it is not
surprising that the cases of modification of elongation factors caused by
viral infection appear to be virtually nonexistent. Indeed, such modifica-
tions would most likely equally affect cellular and viral protein synthesis.
Nevertheless, a case of elongation factor modification has been documen-
ted during infection by viruses of the Herpesviridae family.

The mammalian eEF-1d subunit of eEF1B is phosphorylated in vitro in
the same position by the cell kinase cdc2, and hyperphosphorylated by a
viral kinase conserved in all the subfamilies of the Herpesviridae family,
such as the HSV-1 UL13 kinase, the EBV BGLF4 kinase, and the HCMV
UL97 kinase (Kato et al., 2001; Kawaguchi et al., 1999, 2003). How phos-
phorylation of eEF-1d by the viral kinases affects translation elongation
remains obscure.
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V. TERMINATION OF TRANSLATION

Termination of translation occurs when the ribosome encounters one of
the three termination codons that defines the 30 boundary of the ORF on
the mRNA: UAG, UGA, or UAA. It involves termination codon recogni-
tion at the ribosomal A site, peptidyl-tRNA hydrolysis, and release of
ribosomes from the mRNA. The participation of two proteins, the eukary-
otic release factors eRF1 and eRF3, in termination codon recognition has
been demonstrated (Drugeon et al., 1997; Janzen et al., 2002; Karamysheva
et al., 2003). The three termination codons are decoded by eRF1 that
catalyzes ester bond hydrolysis in peptidyl-tRNA at the ribosomal pepti-
dyl-transferase center. eRF1 functions cooperatively with the GTPase
eRF3 whose activity is ribosome and eRF1 dependent (Kononenko et al.,
2008; Pisareva et al., 2006). Final events leading to complete disassembly
of the posttermination 80S ribosome require eIF1, eIF1A, and eIF3
(Pisarev et al., 2007). Efficiency of termination appears to be determined
by competition between eRF binding to the ribosome and alternative
translational events that allow ribosomes to continue decoding. The
processes that can circumvent termination codons include: ribosomal
frameshift, readthrough or suppression of termination by natural cellular
tRNAs, and binding of release factors.
A. Readthrough

In readthrough, a cellular aa-tRNA, called a natural suppressor, decodes
the termination codon and translation continues in the same frame up to
the next in-frame termination codon. Readthrough is commonly encoun-
tered in plant single-stranded RNA viruses and in some animal viruses.
Table IV presents the families, genera, and viruses whose genomes have
been shown or postulated to resort to readthrough. Readthrough usually
allows the synthesis of the RdRp, the reverse transcriptase or of a
CP-fusion protein, depending on the virus. The CP-fusion protein is
present in the virus particles and is needed for encapsidation and/or for
vector transmission.

Readthrough of termination codons requires the positioning of a sup-
pressor aa-tRNA in the ribosomal A site where it competes with eRF1 for
the termination codon. Two proteins are produced in the presence of a
suppressor aa-tRNA that recognizes the termination codon at the 30 end of
an ORF: the expected ‘‘stopped’’ protein that terminates at the termina-
tion codon of the ORF, and the longer ‘‘readthrough’’ protein that extends
to the next in-frame termination codon. The two proteins are identical
over the total length of the stopped protein. Synthesis of the stopped
protein is always more abundant than that of the readthrough protein.



TABLE IV Viruses shown or postulated to regulate termination of translation by

readthrough

Family/genus RNA

Termination

codon Proteins References

Plant virusesa

Benyvirus

BNYVV 2 UAG CP/75K Niesbach-Klosgen

et al. (1990) and

Schmitt et al.

(1992)

Furovirus
SBWMV 1 UGA 150K/209K Shirako and Wilson

(1993)

2 UGA CP/84K Yamamiya and

Shirako (2000)

Peclovirus

PCV 1 UGA 103K/191K Herzog et al. (1994)

Pomovirus

BVQ 1 UAA 149K/207K Koenig et al. (1998)
2 UAG CP/54K Koenig et al. (1998)

BSBV 1 UAA 145K/204K Koenig and Loss

(1997)

2 UAG CP/104K Koenig et al. (1997)

Tobamovirus

TMV 1 UAG 126K/183K Ishikawa et al. (1986),

Pelham (1978),

and Skuzeski et al.
(1991)

Tobravirus

PEBV 1 UGA 141K/201K MacFarlane et al.

(1989)

TRV 1 UGA 134K/194K Hamilton et al. (1987)

Tombusviridae

Avenavirus

OCSV 1 UAG 23K/84K Boonham et al. (1995)
Carmovirus

CarMV 1 UAG,UAG 27K/86K/

98K

Guilley et al. (1985)

CCFV 1 UAG 28K/87K Skotnicki et al. (1993)

MNSV 1 UAG 29K/89K Riviere and Rochon

(1990)

UAG 7K/14K Riviere and Rochon

(1990)

(continued)
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TABLE IV (continued )

Family/genus RNA

Termination

codon Proteins References

TCV 1 UAG 28K/88K White et al. (1995)

Machlomovirus

MCMV 1 UAG 50K/111K Nutter et al. (1989)

UGA 9K/33K Nutter et al. (1989)

Necrovirus
TNV 1 UAG 23K/82K Meulewaeter et al.

(1990)

Tombusvirus

AMCV 1 UAG 33K/92K Tavazza et al. (1994)

CNV 1 UAG 33K/92K Rochon and

Tremaine (1989)

CyRSV 1 UAG 33K/92K Grieco et al. (1989)

TBSV 1 UAG 33K/92K Hearne et al. (1990)
Luteoviridae

Enamovirus

PEMV 1 UGA CP/55K Demler and de

Zoeten (1991)

SbDV 1 UAG CP/80K Rathjen et al. (1994)

Luteovirus

BYDV-PAV 1 UAG CP/72K Dinesh-Kumar et al.

(1992), Filichkin
et al. (1994), Miller

et al. (1988), and

Wang et al. (1995)

Polerovirus

BWYV 1 UAG CP/74K Brault et al., 1995 and

Veidt et al., 1988,

1992

PLRV 1 UAG CP/80K Bahner et al. (1990)
and Rohde et al.

(1994)

Animal viruses

Retroviridaeb

Gammaretrovirus

MLV 1 UAG Gag/Pol Etzerodt et al. (1984)

and Herr (1984)

Epsilonretrovirus

WDSV 1 UAG Gag/Pro Holzschu et al. (1995)

(continued)

Virus Versus Host Cell Translation 143



TABLE IV (continued )

Family/genus RNA

Termination

codon Proteins References

Togaviridaea

Alphavirus

SINV 1 UGA P123/nsP4 Strauss and Strauss

(1994)

For each virus, the RNA segment whose protein undergoes readthrough, the nature of the suppressible
termination codon, and the designation of the stopped (indicated as CP or by its size if not the CP) and
readthrough proteins (indicated by the total size of the resulting protein) are indicated. Other members of the
Alphavirus genus (O’nyong-nyong virus and SFV) have CGA (Arg); one SINV strain has UGU (Cys); in all
cases, the importance of a C residue 30 of UGA, CGA, or UGU has been emphasized.
a (þ) Sense single-stranded RNA viruses.
b Reverse-transcribing RNA viruses.
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A well-known example of readthrough occurs in the TMV (þ) single-
stranded RNA genome. The 50-proximal ORF codes for the 126K protein
that contains a putative methyltransferase and a helicase domain. Read-
through of its UAG termination codon leads to the synthesis of the 183K
readthrough product that harbors the highly conserved GDD (Gly-Asp-
Asp) motif, responsible for replicase activity (reviewed in Beier and
Grimm, 2001; Maia et al., 1996).

Many members of the genus Alphavirus harbor a suppressible UGA
codon separating the regions coding for the NSP3 and NSP4 proteins.
The NSP4 protein shares homologous aa sequences with the RdRp of
Poliovirus and plant RNA viruses.

In addition to the termination codon, other cis elements on the mRNA
are required for efficient readthrough. These elements are either the
sequence surrounding the termination codon preferentially on the 30 side
and/or a hairpin or pseudoknot structure also located downstream of the
suppressible termination codon. In the case of TMVRNA, the nature of the
two codons following the suppressible UAG codon affects the level of
readthrough (Valle et al., 1992). The requirements in BYDV are very differ-
ent: two elements are mandatory for readthrough of the UAG codon
in vitro and in vivo: a proximal and a distal element located, respectively,
6–15 nts and about 700 nts downstream of the suppressible UAG codon
(Brown et al., 1996). The distal element is conserved among luteoviruses
and in Pea enation mosaic enamovirus (PEMV, family Luteoviridae),
suggesting that it might also participate in readthrough in these viruses.

Readthrough was clearly demonstrated in mouse cells infected with
Murine leukemia virus (MLV; family Retroviridae). Here, most ribosomes
terminate synthesis at the UAG codon to produce the Gag protein, but
when termination is suppressed, a glutamine residue from Gln-tRNAGln

is incorporated at the level of the UAG codon and elongation continues to
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form the Gag–Pol product. This latter protein is then cleaved to yield Gag,
a protease (whose corresponding gene segment harbors the suppressed
UAG codon) and the reverse transcriptase (Yoshinaka et al., 1985).
In retroviruses, suppression of termination is controlled by structures
within the RNA itself: it requires a few specific nts immediately down-
stream of the termination codon, followed by a spacer region of a few nts
and a hairpin that in some cases forms a pseudoknot. In MLV, suppres-
sion of the gag UAG codon depends on specific downstream sequences
and on a pseudoknot structure (reviewed in Gale et al., 2000).
B. Suppressor tRNAs

Misreading of termination codons is achieved by a variety of naturally
occurring suppressor tRNAs that normally recognize a cognate codon,
but at times recognize one of the termination codons by ‘‘improper’’ base
pairing (reviewed in Beier and Grimm, 2001).

1. Suppressors of UAG/UAA codons
The first natural UAG suppressor tRNA identified was the cytoplasmic
tRNATyr bearing a GCA anticodon purified from tobacco leaves and Dro-
sophilamelanogaster (Beier et al., 1984; Bienz andKubli, 1981). Pseudouiridine
(C) can form a classical base pair with adenosine. TheCmodification at the
second anticodon position is necessary to read the UAG codon; it enhances
the unconventional G:G interaction at the first anticodon position.Mutating
the suppressible TMV UAG codon to UAA leads to virion formation in
plants, implying that a tRNA recognizing the UAA codon is present in the
host. It was shown that the UAA codon, if placed in the TMV context, was
also recognized in vitro by the suppressor tobacco tRNATyr. A secondUAG/
UAAsuppressor is the cytoplasmic tRNAGlnwithCUGorUmUG (Um is 20-
O-methyluridine) anticodons. tRNAGln is present in almost all prokaryotes
and eukaryotes. Interaction of the two tRNAGln isoacceptors with UAG or
UAA requires an unconventional G:U base pair at the third anticodon
position. Probably an unmodified A in the tRNA immediately 30 of the
anticodon facilitates noncanonical base pairing. Other UAG suppressors
are the cytoplasmic tRNALeu with a CAA or a CAG anticodon. Here,
recognition of the UAG codon requires an unusual A:A pair in the second
position of both theCAAand theCAGanticodons and also aG:Upair in the
third position of the CAG anticodon.

2. Suppressors of UGA codons
Two UGA suppressors, a chloroplast and a cytoplasmic tRNATrp with the
anticodon CmCA (Cm is 20-O-methylcytidine) were isolated from tobacco
plants and shown to suppress the Tobacco rattle virus (TRV; genus,
Tobravirus) RNA1 UGA codon. Several reports indicate that a tRNATrp
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with UGA suppressor activity is also present in vertebrates (Cordell et al.,
1980; Geller and Rich, 1980). Recognition of the UGA codon by tRNATrp

requires an unusual Cm:A pair in the first position of the CmCA antico-
don. A tRNACys with a GCA anticodon was isolated from tobacco plants
and shown to suppress the UGA in TRV RNA1. Misreading of UGA by
tRNACys involves a G:A pair at the first GCA anticodon position. The two
tRNAArg with an U*CG (U* is 5-methoxy-carbonylmethyluridine) or ICG
anticodon stimulate UGA readthrough in the context of TRV RNA1.
Interaction of tRNAArg with the UGA codon requires a G:U base pair at
the third U*CG anticodon position.
C. Binding of release factors

The reverse transcriptase of MLV interacts with eRF1. This interaction
displaces eRF3 from the release factor complex and increases synthesis of
the readthrough protein. This function of the reverse transcriptase is
required for appropriate levels of the readthrough and stopped proteins
(Orlova et al., 2003; reviewed in Goff, 2004).

Interaction between the nascent peptidyl-tRNA during translation of
the 22-codon upstream ORF2 (uORF2) and eRF1 of HCMV inhibits
expression of the downstream UL4 gene. The peptide product of uORF2
inhibits its own translation termination by forming a stable peptidyl-
prolyl-tRNA-ribosome complex that prevents peptide release and stalls
the elongating ribosome at the uORF2 termination codon (Janzen et al.,
2002).
VI. CONCLUSIONS

The study of the regulation of gene expression has known various phases
over the decades, ever since some of its major players, such as messenger
RNAs and ribosomes had been identified. It first led to examining the
initiation, elongation, and termination steps of protein biosynthesis using
bacterial extracts and artificial RNAs or bacteriophage RNA genomes as
mRNAs, and defining the proteins involved in each step. Thereafter, the
availability of cell mRNAs greatly facilitated the study of protein biosyn-
thesis in extracts of eukaryotic cells. This revealed the vast number of
protein factors involved in particular at the initiation step of protein
synthesis, and the mechanism of action of these factors. In recent years,
the sequencing of an ever increasing number of viral RNA genomes
shown to function as mRNAs has brought a wealth of new information
regarding the fundamental role played by the modulation of the structure
of mRNAs in regulating gene expression. It has, for instance, led to
numerous studies that consider circularization of mRNAs an important
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step in promoting protein synthesis. In addition, it has also highlighted
the variety of strategies developed by viruses to perturb host protein
synthesis so as to favor synthesis of viral proteins. Such evasion of host
protein synthesis is now leading to a variety of fascinating studies
showing that this involves a complex yet balanced interplay between
the host cell translation machinery, the viral mRNA, and the viral proteins
resulting from expression of the viral genome. Further experiments will
undoubtedly unveil other new venues in this intriguing and multifaceted
aspect of cell development.
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