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Melanoma is one of the most aggressive and heterogeneous life-threatening cancers.
However, the heterogeneity of melanoma and its impact on clinical outcomes are largely
unknown. In the present study, intra-tumoral heterogeneity of melanoma cell
subpopulations was explored using public single-cell RNA sequencing data. Marker
genes, transcription factor regulatory networks, and gene set enrichment analysis were
further analyzed. Marker genes of each malignant cluster were screened to create a
prognostic risk score, and a nomogram tool was further generated to predict the prognosis
of melanoma patients. It was found that malignant cells were divided into six clusters by
different marker genes and biological characteristics in which the cell cycling subset was
significantly correlated with unfavorable clinical outcomes, and the Wnt signaling pathway-
enriched subset may be correlated with the resistance to immunotherapy. Based on the
malignant marker genes, melanoma patients in TCGA datasets were divided into three
groups which had different survival rates and immune infiltration states. Five malignant cell
markers (PSME2, ARID5A, SERPINE2, GPC3, and S100A11) were selected to generate a
prognostic risk score. The risk score was associated with overall survival independent of
routine clinicopathologic characteristics. The nomogram tool showed good performance
with an area under the curve value of 0.802.
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INTRODUCTION

Malignant skin cutaneous melanoma (SKCM) is a common life-threatening malignancy with high
metastasis and mortality rates (Rastrelli et al., 2014). It accounts for approximately 4% of all skin cancer
cases and is the most fatal subtype of skin cancer (Lin et al., 2021). The incidence of melanoma continues
to increase worldwide, andmore than 57,000 people died frommelanoma in 2020 (Bray et al., 2021; Sung
et al., 2021). Traditional treatments aim to relieve symptoms and reduce tumor burden, without much
help for prolonging survival. Immunotherapy has been a breakthrough approach for metastatic
melanoma, such as anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-
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programmed cell death protein 1 (PD-1) antibodies, which are based
on the activation of the anticancer immune system (Marzagalli et al.,
2019). Despite the improvement in the clinical efficacy of these
immune checkpoint inhibitors (ICIs), 30–40%ofmelanoma patients
do not respond to ICIs, and 20–30% of patients eventually relapse
(Balch et al., 2009). Therefore, the 5-year survival rate for melanoma
is relatively low, only about 15% (Enninga et al., 2017).

The differences in clinical outcomes and sensitivity to the
drugs can be attributed to the heterogeneity of melanoma, which
refers to the different genetic or molecular features in different
melanoma tumors (inter-tumoral heterogeneity) or within the
same tumor (intra-tumoral heterogeneity, ITH) (Simonsen et al.,
2015; Grzywa et al., 2017; Moshe et al., 2020), which may be
associated with tumor properties, such as the formation of the
tumor-promoting microenvironment and the resistance to
immune therapy (McGranahan and Swanton, 2017; Gay et al.,
2021). The rare and unique tumor subtypes might be pivotal in
determining disease biology (Gide et al., 2019). Therefore, a better
understanding of the inter-tumoral heterogeneity and ITH and
their impact on disease progression and therapeutic efficacy is
essential to overcome treatment challenges in melanoma.

Previously, bulk RNA sequencing techniques have been used to
classify molecular subtypes, monitor the treatment response, and
identify new therapeutic targets (Zhao et al., 2020; Gay et al., 2021).
However, they could not provide a high-resolution landscape of
cellular components in the tumor ecosystem. Single-cell RNA
sequencing (scRNA-seq) has become a powerful tool to
characterize distinct functional states at single-cell resolution
and has been used to explore the complexity of the tumor
microenvironment (TME) and the ITH in many types of
tumors (Patel et al., 2014; Tirosh et al., 2016; Puram et al.,
2017). These findings have provided potential biomarkers for
tumor treatment and risk stratification and laid the foundation
for precision therapies. However, few studies have focused on the
characteristics of ITH in melanoma and explored the impact of
different subtypes on the prognosis and response to ICI therapy.

In this study, we utilized public scRNA-seq data to make a
comprehensive analysis of the molecular characteristics, biological
pathways, and transcription factor (TF) regulatory network of
melanoma in an attempt to explore the prognosis and the impact of
ICI therapy on each malignant subset and screen subsets that may
contribute to the poor prognosis and resistance to immune
therapy. In addition, we used the bulk RNA-seq data to
establish a prognostic model to classify different risk groups
and predict the clinical outcomes of melanoma patients, hoping
that our findings could help identify the potential therapeutic
targets and provide a strategy for precision medicine treatment
of melanoma based on tumor heterogeneity, thus improving the
survival of patients with melanoma.

RESULTS

Identification of 12 Cell Clusters in
Melanoma Using scRNA-seq Data
A total of 31 melanoma patients were involved in this study,
including 15 untreated patients, 15 post-immunotherapy-

resistant patients, and one was a post-immunotherapy
responder. After the quality control (QC), we obtained
7,186 high-quality single-cell data, based on which we
performed normalization, unsupervised dimensionality
reduction, and graph-based clustering and finally obtained 12
cell clusters in the UMAP plot (Figure 1A). The cell types were
annotated based on canonical known markers such as CD3D for
T cells, CD79A for B cells, CD14 for monocytes, and DCN for
fibroblasts (Supplementary Figure S1). Tumor cells were
predicted by CopyKAT (Gao et al., 2021), an approach to
identify genome-wide aneuploidy in single cells to separate
tumor cells from normal cells (Gao et al., 2021). In addition
to tumor cells, we identified nine immune cell lineages (CD45+),
including natural killer (NK) cells, CD8+ T cells, CD4+ T cells,
cycling T cells, B cells, plasma cells, monocytes, macrophages, and
plasmacytoid dendritic cells (pDCs) along with two stromal cell
lineages (CD45−), including endothelial cells and fibroblasts
(Figure 1A). All the cell clusters were classified by sample
source and treatment, showing no obvious batch effects in
different groups (Figures 1B,C). The top five markers of each
cluster were visualized in a bubble chart and were consistent with
the typical markers (Figure 1D). PMEL, S100B, SERPINE2, TYR,
and PRAME were highly expressed in tumor cells and could be
the marker genes for melanoma (Figure 1D). Each cluster also
differed in expressed gene counts (Figure 1E), and each lineage
was clustered together, indicating a close lineage correlation
among them (Figure 1F). These cell populations were
distributed unevenly among treatment groups and tumor sites;
however, due to the limited sample size, there was no statistical
significance (Figure 1G).

Inter-Tumoral and Intra-Tumor
Heterogeneity in Melanoma Tumor Cells
To identify cell subclusters of tumors cells, we performed
another round of normalization, unsupervised
dimensionality reduction, and graph-based clustering and
obtained a total of 22 clusters (Figure 2A). To detect
differences between different patients, we classified the cells
by patient origin and found that tumor cells were
heterogeneous between different patients, suggesting a high
degree of inter-tumoral heterogeneity (Figure 2A). Some
patients also showed ITH, for example, Mel194, Mel105,
and Mel78 contained multiple clusters. We then calculated
the differentially expressed genes (DEGs) between patients and
found that DEGs were enriched within pathways that varied
across tumors, showing significant phenotypic diversity
(Figure 2B, Supplementary Table S2). CCL21 and CCL19
were highly expressed in Mel94, which assisted in
immunotherapy of cancers by potentiating immune
response (Salem et al., 2021). KRT8 and KRT18 were highly
expressed in Mel106, and they were extensively used as
diagnostic tumor markers. Several studies have
demonstrated their involvement in cancer cell invasion and
metastasis as well as in treatment responsiveness (Figure 2B)
(Karantza, 2011). Copy number variations (CNVs) are
universal prognostic markers and established the concept of
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natural selection to drive carcinogenesis and acquired
therapeutic resistance (Andor et al., 2016). Melanoma
patients also had different CNVs, further validating the
inter-tumoral heterogeneity in melanoma tumor cells. The
distinct CNVs may determine the survival prognosis and
drug treatment response for melanoma patients
(Supplementary Figure S2).

To identify the common expression programs that varied within
multiple tumors, we then applied nonnegative matrix factorization
(NMF) (Gaujoux and Seoighe, 2010) to reduce dimension and
identified a total of 3,190 metagenes that were preferentially co-
expressed by subpopulations of malignant cells across tumors. Next,
hierarchical clustering was applied to characterize these metagenes
into gene expression signatures, and high concordance was shown in
six signatures, indicating that they reflected common patterns of
intra-tumoral expression heterogeneity (Figure 2C).

Of these signatures, the first signature was associated with cell
cycle genes such as CDK1 and TOP2A. The second signature was
related to the RNA catabolic process, and the third was enriched
in nuclear division. The fourth signature reflected a hypoxia
signature in tumor which may promote melanoma progression
(D’Aguanno et al., 2021). The fifth signature contained genes
associated with antigen presentation, which may help the
response to checkpoint therapy. The last one was involved
with protein processing (Figure 2C, Supplementary Figures
S3A,B). We then estimated the prognostic significance of the
six signatures and found cell cycling and RNA catabolic program
were associated with poor prognosis, while the antigen signature
was correlated with better survival time (Figure 2D). These
signature scores also varied across the tumor cells from
different tumors, suggesting that these signatures could
characterize different tumors (Figure 2E).

FIGURE 1 | Single-cell atlas of the melanoma tissue. (A)UMAP projection of the landscape of melanoma; 12main clusters were identified by transcriptome profiling
across 7,186 cells after quality control, dimensionality reduction, and clustering. Tumor cells were predicted by CopyKAT (B,C). UMAP projection of the clusters colored
by sample source (B) and treatment (C). (D) Dot plot displaying the fractions of expressing cells (dot size) and mean expression level in expressing cells (dot color) of
marker genes (rows) across clusters (E). Boxplot of the number of detected genes in clusters in melanoma (F). Heatmap of the lineage correlations between
melanoma T-cell clusters (CD4+ T, CD8+ T, NK, and T-prolif), B-cell clusters [(B), plasma], and stromal clusters (endothelial cells and fibroblasts) were clustered (G). Bar
plots of the cellular sources for 12 clusters in different sample and treatment groups.
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FIGURE 2 | Inter-tumoral and intra-tumoral heterogeneity in melanoma tumor cells. (A) UMAP plot of 2089 malignant cells colored by clusters (upper) and patients
(lower). (B) Heatmap showing the marker genes (rows) that are differentially expressed across individual tumors (columns), and selected genes are highlighted. The
differentially expressed genes were calculated by the “FindAllmarkers” function in the Seurat package (logFC>0.25). The color of the heatmap represents the logarithmic
scaled expression level of the genes. (C) Heatmap showing the pairwise correlations of metagenes derived from 22 tumors. Clustering identified six coherent
malignant gene expression signatures across the tumors. (D) Kaplan–Meier curves for progression-free survival in the 460 patients in TCGA SKCM cohort according to
high vs. low expression of the signature score evaluated by ssGSEA. The corresponding Cox regression p value is also shown. (E). Violin plot showing the signature
scores for one of the six malignant signatures for malignant cells from the 22 tumors.
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FIGURE 3 | Identification of tumor cell subtypes. (A) UMAP plot showing the six subgroups generated from tumor cells. Cells were further shown in different colors
by patient origin. (B) Differences in the malignant signature scored by ssGSEA between tumor subsets. (C) Bar plots showing the fraction of cell cycle (G1, G2M, S) in
tumor subsets. (D) Violin plots of the expression levels of cell cycle genes, immune checkpoint genes, and the HLA genes in tumor subsets. (E)Differences in the hallmark
gene set scored per cell by GSVA in tumor subsets. (F) Heatmap of the t values of AUC scores of expression regulation by TFs, as estimated using SCENIC for the
cluster. t values from a linear model for the difference between cells from one cluster and cells from all other clusters, corrected for the patient of origin, and all TFs, are
shown. Numbers within brackets indicate the (extended) regulons for respective TFs. (G) TF motif variability analysis in tumor subsets. The dot plot shows the rank-
sorted TFmotifs according to the specific score of TFs. (H)Kaplan–Meier curves for progression-free survival according to high vs. low expression of the cluster signature
score evaluated by ssGSEA. (I) Proportions of tumor subsets in primary and metastatic tumors and non-treatment group and treatment group.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8744295

Kang et al. Transcriptional Heterogeneity in Melanoma

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Subclustering of Melanoma Malignant Cells
Based on Intra-Tumor Transcriptional
Heterogeneity
To identify subtypes of melanoma, we clustered tumor cells using
the common patterns of intra-tumoral transcriptional
heterogeneity from the metagenes. Six subsets were identified
and were colored by the sample source and treatment (Figure 3A,
Supplementary Figure S3C). The marker genes of the six subsets
are shown in Supplementary Figure S3D; Supplementary Table
S3. The identified signatures were preferentially, but not
exclusively, co-expressed by subsets of tumor cells, for
example, cluster 1 has high levels of cell cycling signature,
cluster 3 is enriched for functions such as hypoxia signature,
and cluster 6 has elevated levels of antigen presentation signature
(Figure 3B). An overview of the cell cycle of each cluster showed
cluster 1 has the highest proportion in the G2M/S stage
(Figure 3C).

To further explore the characteristics of tumor subsets, we
compared the expression of cell cycle genes, immune checkpoint
genes, and antigen-presenting genes and found that cluster 1
showed high expression levels in cell growth genes, indicating an
aggressive cluster in melanoma (Figure 3D). Cluster 3 highly
expressed genes associated with immune checkpoints, which may
indicate benefits from immunotherapy. Cluster 2 had an elevated
antigen-presenting capacity and had highly expressed HLA
molecules, which may suggest a favorable prognosis. The
immunotherapy also had effects on gene expression. In most
tumor subsets, we observed the upregulation of proliferation
genes and downregulation of immune checkpoint genes and
HLA molecules (Supplementary Figure S4), possibly due to
the death of tumor cells with low proliferation and high
expression of immune checkpoint genes and HLA genes after
immunotherapy. The remaining tumor cells with high expression
of proliferation genes and low expression of immune checkpoint
genes and HLA molecules may cause resistance to
immunotherapy or promote disease progression.

We next performed gene set variation analysis (GSVA)
(Hänzelmann et al., 2013) to compare their biological
functions (Figure 3E). Cluster 1 was enriched for “cell cycle,”
“DNA repair”, and “mTOR signaling”, which facilitated tumor
initiation, survival, and exacerbation. Cluster 2 was associated
with IFN-γ and IFN-α responses. They might be successfully
attacked by the evading T cells by the high expression of HLA
molecules. Cluster 4 showed a relatively low biological function,
suggesting a quiescent state. Cluster 3 showed high expression
associated with hypoxia and angiogenesis. Hypoxia could induce
metabolic and molecular changes in endothelial cells, thus
increasing the expression of pro-angiogenic molecules and
blood vessel formation (Muz et al., 2015). Cluster 5 showed
elevated levels of Wnt signaling and fatty acid metabolism
activity, which were correlated with melanoma progression
and metastasis as well as response to targeted therapies
(Alkaraki et al., 2021).

We further applied single-cell regulatory network inference
and clustering (SCENIC) (Aibar et al., 2017) to explore the TF

regulatory network in malignant subsets. Heatmap analysis of the
top-ranking activity of TFs revealed different transcriptional
regulation characteristics in malignant subsets (Figure 3F).
For instance, the E2F7, E2F1, and MYBL2 were enriched in
cluster 1, while the STAT1 and STAT2 were enriched in
cluster 2. Cluster 3 has elevated activity of JUNB and CEBPD
regulons, which were inflammation-responsive TFs. TF motif
variability analysis also validated the specific TFs in each cluster
(Figure 3G).

To identify cell subsets associated with distinct clinical
outcomes, we calculated the signature score of each cluster
and compared the survival time between the high- and low-
expression groups. Clusters 1 and 5 were found to be associated
with unfavorable outcomes and short survival time, and clusters 2
and 6 suggested better prognosis and longer survival of
melanoma patients (Figure 3H). We further explored the
effect of immunotherapy on the ratio of tumor subsets
(Figure 3I). In immunotherapy-resistant patients, cluster 3
showed a decreasing trend after immunotherapy, possibly due
to the high expression levels of immune checkpoint genes.
Clusters 1 and 5 showed an upregulating trend after
immunotherapy. The insensitivity of Clusters 1 and 5 to
immunotherapy could be an important cause of
immunotherapy resistance. Concerning the highly proliferative
properties, the existing cluster 1 after ICI treatment may
contribute to melanoma recurrence.

Transcriptomic Signatures of Resistance to
Checkpoint Blockade
To identify the role of each cell cluster in resistance to immune
checkpoint blockade, we analyzed the bulk-RNA data from the
research by Riaz et al. (2017), which contained groups of different
response patients including complete response/partial response
(CR/PR), stable disease (SD), and progressive disease (PD) before
and during immune therapy in melanoma patients. CR/PR and
PD groups represent two opposite outcomes of immunotherapy.
To obtain reliable immunotherapeutic response-related genes, we
calculated DEGs between non-responders (PD) and responders
(CR/PR) in melanoma in pre-therapy and on-therapy groups. In
both pre-therapy and on-therapy groups, non-responders had
low expression of immune cell-associated genes such as CCR7,
CXCL13, MS4A1, CD79A, MZB1, and JCHAIN (Figures 4A,B).
Non-responders highly expressed CDH1, KRT17, KRT14, and
MMP2 in on-therapy groups, while had high expression of
PMEL, TYR, S100A1 and SOX10 in on-therapy groups. The
DEGs were enriched in immune response pathways such as
“lymphocyte activation,” “regulation of the immune system
process,” and “adaptive immune response,” suggesting that the
abundance of infiltrating immune cells was correlated with the
response to ICI treatment (Figures 4C,D).

We then computed the resistance score of each cluster to
evaluate the response to ICI treatment by using the differential
gene expression patterns in pre-therapy and on-therapy groups
(Method). Malignant clusters showed higher resistant scores than
other cell types, and cluster 5 had the highest score in pre-therapy
groups and on-therapy groups (Figure 4E). Furthermore, cluster
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5 was correlated with short survival time and had a high
proportion after ICI treatment (Figures 3H,I), which could be
a drug-resistant tumor cluster. In non-malignant cells, CD8+ T
and B cells had the lowest score, which was a benefit to ICI
treatment. Fibroblast and endothelial cells had high resistant
scores, suggesting stroma cells could confer resistance to
immune-based therapies for melanoma.

Consensus Clustering for Malignant Genes
Correlated With Melanoma Prognosis and
Immune Microenvironment
To further investigate the clinical value of tumor heterogeneity,
TCGA SKCM patients were divided into three different subtypes
using the metagenes with ConsensusClusterPlus (Wilkerson and
Hayes, 2010) (Supplementary Figure S5A). Compared with the
patients from clusters 1 and 2, patients in cluster 3 showed a
significantly worse outcome (Supplementary Figure S5B).
ssGSEA analysis of the tumor microenvironment in three
groups showed that patients in cluster 3 had high tumor
purity and low immune infiltration, corresponding to the
immune desert tumor. Patients in cluster 1 showed high
tumor purity and relatively high immune infiltration, which
may be sensitive to immunotherapy. Patients in cluster 2
showed low tumor purity and relatively high immune

infiltration, which may indicate good prognosis
(Supplementary Figure S5C). The functional enrichment
analysis further confirmed that patients in cluster 3 were
related to tumor progression pathways such as “fatty
metabolism,” “DNA repair,” and “cell cycle” (Supplementary
Figure S5D). They also showed low activity in immune responses
such as IFN-γ, TNF, and inflammation response as well as IL2,
IL6, and TNF signaling. These pathways were upregulated in
cluster 2 patients (Supplementary Figure S5D). Taken together,
the tumor metagenes could effectively distinguish the tumor
characteristics and tumor microenvironment in SKCM
patients and were critical for the stratification of melanoma
patients.

Construction of Risk Signature for
Melanoma Survival
Considering the prognostic value of subset marker genes in patients
with melanoma, we intended to construct a risk score model to
evaluate the prognosis status of melanoma patients more accurately.
First, we performed univariate Cox regression analysis with the top
30 marker genes in each tumor cluster and screened out 41 genes
that were significantly associated with the prognosis of melanoma
patients in TCGA dataset (p < 0.05, Supplementary Table S4), and
the representative genes are shown in Figure 5A (HR <=0.85 or

FIGURE 4 | Transcriptomic signatures of resistance to checkpoint blockade. (A,B). Differential gene expression between non-responders and responders in
melanoma in the pre-therapy group (A) and on-therapy group (B). Volcano plot showing differentially expressed genes in non-responders compared with responders
according to the fold change (x-axis) and log p value (y-axis). The selected highly expressed genes [p value < 0.05 and a log2 (fold change) > 1] in Inf-salivary gland
epithelial cells are labeled in red, and downregulated genes [p value < 0.05 and a log2 (fold change) < -1] are labeled in blue. (C,D). GO enrichment network in non-
responder patients in pre-therapy (C) and on-therapy group (D). Significant differentially expressed genes (p < 0.05, |logFC|>1) were calculated between pSS and HCs.
The color labeled on each gene indicates the log-fold change value. The bubbles connected with the genes were the enriched biological functions. The color labeled on
bubbles suggests the p values. (E). Resistant score to checkpoint blockade in single-cell clusters in pre-therapy and on-therapy groups. The resistant score was
calculated based on the differentially expressed genes between non-responders and responders in melanoma in pre-therapy and on-therapy groups.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8744297

Kang et al. Transcriptional Heterogeneity in Melanoma

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


FIGURE 5 | Development of gene signatures for overall survival prediction in melanoma patients. (A) Univariate Cox regression analysis showing the hazard ratios
(HRs) with 95% confidence intervals (CIs) and p values for metagenes. (B) Kaplan–Meier curves for progression-free survival of the representative genes identified by
univariate Cox regression. (C) Cross-validation for tuning parameter screening in the LASSO regression model. (D) The five genes’ hazard ratios (HRs) and 95%
confidence intervals (CIs) and coefficients screened bymultivariate Cox regression. (E) The distribution of the risk score and survival overview of melanoma patients
in TCGA cohort (left) and validation cohort (right). In each dataset, the risk score distribution, gene expression profiles, and patients’ survival status are displayed. (F,G).
Kaplan–Meier and time-dependent ROC analysis for the risk score in the training cohort (F) and validation cohort (G). (H,I) Univariate Cox (H) and multivariate Cox (I)
regression analyses of clinical parameters and prognostic model for OS.
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HR>= 1.15). The survival state of themost significant genes is shown
in Figure 5B. After that, we performed the lasso Cox regression
analysis to screen the most valuable predictive genes (Figure 5C).
After hypothesis testing, five genes were selected with a p-value of
less than 0.05, and the risk signature was constructed bymultivariate
Cox analysis (Figure 5D). Patients in TCGA SKCM cohort and
GSE65904 (Cirenajwis et al., 2015) cohort were divided into high-
risk and low-risk groups based on risk scores. Compared with those
in the low-risk group, the melanoma patients in the high-risk group
had high expression of S100A11 and CPC3 and low expression of
PSME2, ARID5A, and SERPINE2 and had a shorter survival time
(Figure 5E). The time-dependent receiver operating characteristic
(ROC) curves revealed that the area under curve (AUC) of 1-, 3-,
and 5-year survival in TCGA was 0.68, 0.71, and 0.75, respectively,
vs. 0.67, 0.71, and 0.64 in GSE65904 cohort (Figures 5F,G). Cox
regression analysis was used to further investigate the clinical
prognostic significance of the risk signature in melanoma. The
univariate analysis showed that the risk score, age, and TNM
stage were significantly associated with survival time
(Figure 5H). After adjusting these factors in the multivariate
analysis, we found that the risk signature was still a significant
survival predictor, indicating that the risk signature was independent
and not affected by other factors such as age and gender (Figure 5I).

Construction of Nomogram for Melanoma
Survival
To predict the prognosis of melanoma patients more accurately,
we established a prognostic nomogram to predict the survival
probability at 1, 3, and 5 years based on TCGA training set.

Independent prognostic parameters, including age, TNM stage,
and risk score, were enrolled in the predictionmodel (Figure 6A).
The calibration plots showed good performance between the
nomogram prediction and actual observation in terms of the
1-, 3- and 5-year survival rates in TCGA cohort (Figure 6B). The
nomogram also showed a favorable predictive ability for 5-year
survival rates, with a high AUC value of 0.802 (Figure 6C). These
results suggest that the established nomogram could be a reliable
and clinically applicable method for predicting the prognosis of
melanoma patients.

DISCUSSION

Malignant melanoma is the most aggressive malignant skin
cancer and one of the leading causes of skin cancer-related
mortality worldwide. Although bulk RNA transcriptomic data
have provided valuable insights into the biological processes of
treatment responses, such classic approaches only detect a limited
number of analytes in the assay, which reduces the power to
characterize the diversity of cellular subtypes and molecular
states. In our study, we identified molecular patterns that were
co-expressed in melanoma based on NMF and further divided
them into six subsets in melanoma, which showed different
characteristics concerning the cell cycle, biological functions,
and TF network. We also analyzed the relationship between
different tumor subtypes and prognosis and found that the cell
cycling cluster was associated with poor prognosis. We also
identified that the Wnt signaling-enriched cluster may
contribute to immunotherapy resistance. In addition, based on

FIGURE 6 |Nomogrammodel for predicting the overall survival of melanoma patients. (A)Nomogram for predicting 1-, 3-, and 5-year overall survival for melanoma
patients in TCGA cohort. (B) Calibration curves of nomograms in terms of the agreement between predicted and observed 1, 3, and 5 years of outcomes in TCGA
cohort. (C) Time-dependent ROC curves comparing prognostic accuracy of risk score, TNM stage, and the nomogram model in TCGA SKCM patients.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8744299

Kang et al. Transcriptional Heterogeneity in Melanoma

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


the bulk RNA-seq data, we established a prognostic model to
classify different risk groups and predict the clinical outcomes of
melanoma patients. The results obtained in this study may
deepen the understanding of tumor cell subtypes and their
relationship with prognosis and drug therapy, thus improving
current targeted therapy.

First, we identified tumor cells by inferred large-scale CNVs
from single-cell expression profiles and newly identified PMEL,
S100B, SERPINE2, TYR, and PRAME as marker genes for
melanoma malignant cells. These genes were involved in
tumor formation and development in melanoma. For example,
PMEL is a specific marker for melanoma with low expression in
other tissues. It was crucial for the melanosomal fibril formation
through the transition from stage I to stage II melanosomes and
overexpressed in more than 75% of human melanomas (Zhang
et al., 2021). PMEL has been a target antigen in adoptive T-cell
therapy and has been proven to have safety and effectiveness
(Johnson et al., 2009). S100B is the marker for melanoma
malignant cells and has been shown to interact with p53 in a
negative feedback loop (Lin et al., 2010). S100B protein served as a
well-analyzed biomarker in melanoma and performed well in
detecting early disease progression in high-risk melanoma
patients (Ertekin et al., 2020). SERPINE2 was critical for
melanoma invasion and correlated with tumor progression
(Perego et al., 2018). SERPINE2 could also promote melanoma
metastasis through the glycogen synthesis kinase 3β (GSK-3β)
signaling pathway (Wu, 2016). TYR encodes tyrosinase, which is
responsible for the first step in melanin production. Mutations in
TYR can result in the production of abnormal proteins and
increase melanoma risk (Gudbjartsson et al., 2008). PRAME is
also a tumor-associated antigen and has been a promising
immunohistochemical marker in melanoma (Lezcano et al.,
2018). Therefore, the malignant marker genes identified in our
study may be potential diagnostic markers to distinguish benign
from malignant primary cutaneous melanocytic lesions.

Recent single-cell-based studies of tumor cells have discovered
new cellular subsets, unique transcriptional programs, and more
evidence for “intra-tumoral” and “inter-tumoral” heterogeneity,
all of which impact our understanding of therapeutic response
and resistance (Patel et al., 2014; Wang et al., 2021). Melanoma
patients showed a high degree of ITH in terms of transcriptional
programs and CNVs. There is an urgent need for a more precise
molecular classification and stratification of melanoma. Tirosh
et al. (2016) first uncovered the intra- and interindividual, spatial,
functional, and genomic heterogeneity in melanoma cells and
identified a highly proliferative cell state linked to resistance to
targeted therapies. We also identified the cell cycling subset in
melanoma and supplemented more substantial information. Our
results showed that cluster 1 had high expression of cell
proliferation genes and low expression of checkpoint
molecules and antigen-presenting molecules, suggesting poor
prognosis. In immunotherapy-resistant patients, the increased
proportion of cluster 1 may be an important factor in the relapse
of the disease. Cluster 1 also had unique TF and cellular metabolic
processes. E2F7, E2F1, MYBL2, and SMC3 were identified as the
unique TFs in cluster 1. E2F7 proved to promote cell
proliferation, cell cycle progression, cell metastasis, and

tumorigenicity abilities (Yang et al., 2020). E2F1 played a
major role in the control of the cell cycle under physiological
and pathological conditions and was highly expressed in
melanoma cells. E2F1 was also associated with the resistance
of melanoma cells to BRAF inhibitors, suggesting that targeting
the E2F1 signaling pathway may be therapeutically relevant
(Rouaud et al., 2018).

In addition to the cell cycling cluster, we also identified five
clusters of malignant cells in melanoma. Malignant cell clusters
varied significantly in biological characteristics, implying that
they may respond differently to therapies. For example, cluster 3
had high expression of immune checkpoint molecules and they
were downregulated after ICI treatment. Patients with a high
proportion of cluster 3 may be able to respond to immunotherapy
effectively. cluster 5 was enriched in Wnt signaling, which help
melanocytes bypass senescence and start to proliferate (Gajos-
Michniewicz and Czyz, 2020). Cluster 5 signature also indicated a
poor prognosis. Wnt signaling was also correlated with immune
exclusion in melanoma by reducing the secretion of CCL4, a
chemokine that attracts the immune cells (Spranger et al., 2015;
Weppler et al., 2020) It was also involved in melanoma
progression by regulating cell proliferation and invasion and
promoting resistance to targeted therapies (Xue et al., 2016).
Thus, we observed a high resistance score in cluster 5 and an
increased proportion of cluster 5 after ICI therapy. The
combination of Wnt signaling inhibitors and ICI treatment
could be a potentially effective treatment for non-responders
in melanoma.

The immune microenvironment plays a role in response and
resistance to ICI therapy in melanoma. Our work also identified
the role of immune and stromal clusters in immune therapy. We
found that CD8+ T cells played a major role in antitumor
immunity and had the lowest resistance score. They have been
shown to be predictive biomarkers for response to ICI in
melanoma patients (Subrahmanyam et al., 2018). Furthermore,
T-cell states, including signatures of IFN-γ responses and those of
T-cell activation, exhaustion, and cytotoxicity, have been
reported in several studies (Ayers et al., 2017; Prat et al., 2017;
Riaz et al., 2017). B cells also have a low resistance score and
contribute to antitumor responses. B cells localized in the so-
called tertiary lymphoid structures (TLSs) were reported to be
associated with improved prognosis and immunotherapy by
improving antigen presentation, increasing cytokine-mediated
signaling, and releasing tumor-specific antibodies (Cabrita
et al., 2020). It was found in our study that fibroblasts had
effects on resistance to immune therapy. Cancer-associated
fibroblasts (CAFs) can inhibit both the innate and adaptive
antitumor immune response by secreting numerous
chemokines and cytokines, such as TGF-β, IL-6, IL-8, IL-13,
CXCL12, CXCL14, and VEGFA. Furthermore, CAFs synthesize
the extracellular matrix (ECM) components such as collagen,
fibronectin, and matrix metalloproteinases (MMPs), contributing
to increased ECM stiffness, which in turn reduces the infiltration
of effector T cells (Liu et al., 2019). Thus, CAFs may serve as an
emerging target of anticancer immunotherapy.

It was found that the malignant genes were closely associated
with the immune microenvironment of melanoma. We performed
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consensus clustering based on malignant gene expressions and
divided the training cohort into 3 clusters and found patients in
different clusters had different clinical outcomes and immune
microenvironments. Our survival analysis revealed that patients
in cluster 2 had a favorable survival. In addition, the immune
and stroma scores and immune cell infiltration were higher in
cluster 1. Patients in cluster 3 showed unfavorable survival with less
immune cell infiltration. We further constructed a risk model to
explore and validate the association between metagenes and the
survival state and used PSME2, ARID5A, SERPINE2, CPC3, and
S100A1 to construct a risk signature. PSME2 not only balanced
proteasome function but also correlated with multiple malignancies
and acted as prognostic predictors (Wang et al., 2019). ARID5A was
a dynamic molecule that was translocated to the cytoplasm and
stabilizes a variety of inflammatory mRNA transcripts, including IL-
6, STAT3, OX40, T-bet, and IL-17-induced targets, and contributes
to the inflammatory response (Nyati et al., 2019). ARID5A may
induce immune cell infiltration and benefit prognosis (Nyati et al.,
2019). SERPINE2 promoted melanoma metastasis through the
glycogen synthesis kinase 3β (GSK-3β) signaling pathway in a
mouse model (Wu, 2016). However, we found that SERPINE2
was associated with favorable prognosis. Therefore, its role in
melanoma needs further exploration. S100A11 could promote
proliferation, migration, and invasion of tumor cells in multiple
cancers (Anania et al., 2013). Based on these significant genes, we
constructed a risk model and found it had good performance in
predicting survival statistics in TCGA cohort and validation cohort
with higher AUC values than the model constructed by Huang et al.
(2020) and Ju et al. (2021). In addition, ourmultivariate Cox analysis
showed that the risk score was an independent risk factor for
melanoma patients, which was not affected by other factors such
as age and gender. In addition, we combined the routine clinical
factors associated with OS to construct a nomogram model for
clinical application. The calibration curves for OS at 1-, 3-, and 5-
year OS demonstrated good agreement between prediction and
observation.

In conclusion, based on an integrated analysis of bulk and
single-cell expression data, we comprehensively explored the
transcriptional characteristics of melanoma subsets and
conducted a novel prognostic model to clarify different risk
groups of melanoma patients, which may help in planning
individualized treatment and improving clinical outcomes.

MATERIALS AND METHODS

Data Sources
The scRNA-seq data were obtained from Jerby-Arnon et al.
(2018) containing 31 malignant melanoma patients. Among
them, 15 patients were untreated, 15 patients were post-
immunotherapy-resistant, and one patient was a post-
immunotherapy responder. For the development of the risk
score signature, we analyzed the transcriptome-level gene
expression from TCGA SKCM dataset (https://portal.gdc.
cancer.gov/). For the validation of the identified risk score
outcome signature, we further analyzed a large public gene
expression dataset from GSE65904 (Cabrita et al., 2020).

Immunotherapy data of melanoma were obtained from
GSE91061 (Riaz et al., 2017), containing 23 partial response/
complete response (PR/CR) patients and 48 progressive disease
(PD) patients. Clinical data for included patients could be
obtained in Supplementary Table S1.

Single-Cell RNA Data Analysis
Single-cell gene expression counts were analyzed by the
“Seurat” package (version 3.99) (Stuart et al., 2019). Single
cells with less than 200 unique molecular identifiers (UMIs) or
with more than 20% mitochondrion-derived UMI counts were
considered low-quality cells and removed. For the remaining
high-quality cells, gene expression matrices were normalized
using the “NormalizeData” function and scaled with the
“ScaleData” function to gain linear conversion. Top 2000
variable genes were extracted to perform the principal
component analysis (PCA), and the 30 top significant
principal components were used for cluster analysis. Then
single-cell data from different samples were then integrated,
and the batch effects were removed by using the
“Runharmony” function in the Harmony package
(Korsunsky et al., 2019). Uniform Manifold Approximation
and Projection (UMAP) was used for the visualization of the
clusters. The tumor/normal prediction was performed by
CopyKAT (Gao et al., 2021) by the default parameters. The
predicted aneuploid cells were inferred as tumor cells, and
diploid cells as normal cells. Other cell types were annotated
based on the expression of known markers such as T cells
(CD3D, CD4, and CD8), NK cells (NKG7 and FGFBP2),
myeloid cells (CD14, CD68, and CD1A), B/plasma cells
(CD79A, MS4A1, and MZB1), fibroblasts (DCN and ISLR),
endothelial cells (VWF and PECAM1), and pDCs (CLEC4C
and LILRA4). The “FindAllMarkers” function was used to
calculate the markers of each cell cluster, with a threshold of
log2FC > 0.25 and min.pct>0.25.

Correlation Analysis Between Clusters
To explore the correlation of clusters, we calculated the Spearman
correlation coefficient between two clusters by using the “corr.
Test” function in the “Psych” package according to the expression
levels of top 30 marker genes. The correlation coefficients
between cell subsets are shown in the heatmap.

Cell Cycle Analysis
Knowing that the cell cycle plays an important role in tumor
progression, we used the “CellCycleScoring” function in
Seurat to calculate the cell cycle score of each cell. The cell
cycle phase marker genes for humans to perform phase
scoring were based on Tirosh et al. (2016). Then we
categorized them into different stages according to the
phase scoring. The results are expressed in the bar plot to
show the proportion of the cell cycle in different clusters or
subgroups.

Copy Number Variation Analysis
We used “inferCNV” (https://github.com/broadinstitute/
inferCNV/wiki) to estimate copy number variations by the
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expression levels of genes within each chromosome region.
The UMI count matrix was extracted from Seurat to prepare
the input file. High-quality cells with at least 5 genes in each
chromosome were calculated for DNA copy numbers.
Endothelial cells, fibroblasts, and myeloid cells were also
calculated as a CNV control. To normalize the CNV
profiles, we then subtracted the average expression profiles
of the normal sample from the entire CNV dataset. Cells with
deletions and amplification of entire chromosomes were
visualized in a heatmap.

NMF Identification of Intra-Tumoral
Transcriptional Heterogeneity
NMF was used to identify variably expressed metagenes across
melanoma patients using the “NMF” R package (version 0.20.6)
(Gaujoux and Seoighe, 2010). They were then compared by
hierarchical clustering, using one minus the Pearson
correlation coefficient over all gene scores as a distance metric.
Six clusters of signatures were identified manually. For each
signature, we further performed Gene Ontology (GO) and
KEGG analysis using the “clusterprofiler” package and
calculated the mean loadings for each of the top 30 genes.
Genes with the highest loading were defined as the marker
genes for the signature.

Signature Score Calculation
The expression of a gene signature in each patient was
evaluated by using a single-sample gene set enrichment
analysis (GSVA) (Hänzelmann et al., 2013). To assess the
prognostic values of the gene signatures, patients in TCGA
SKCM cohorts were allocated into high- and low-expression
groups according to the median value of the GSVA score for
each signature gene set. Kaplan–Meier survival curves were
plotted to show differences in survival time with the R
“Survival” package.

TF Analysis
In order to further study the interaction mechanism between
cell subpopulations, we used the SCENIC (Aibar et al., 2017) to
calculate the TF regulatory network between related cell
subpopulations. Briefly, SCENIC included three steps: First,
we conducted GRNboost to identify co-expression modules
between TFs and the potential target genes; second, cisTarget
was used for each co-expression module to infer direct target
genes based on the significantly enriched motif of the
corresponding TF is; and third, we conducted AUCell to
calculate cellular regulon enrichment scores through the
AUC. The specific TF was calculated in accordance with
Suo et al. (2018). Regulon specificity score (RSS) was
calculated by the “calcRSS” function in the SCENIC. The
RSS is calculated for each cell cluster separately, and the top
five regulons are shown.

DEGs and GO Analysis
DEGs between non-responders and responders in pre-therapy
and on-therapy groups were identified using the “Limma”

package. The significantly upregulated and downregulated
genes (p < 0.05, |logFC|>1) were subjected to GO analysis
using the clusterProfiler 4.0. (Wu et al., 2021). The GO
network plots were built using the “cnetplot” function in the
“enrichplot” R package.

Resistance Score Calculation
DEGs between non-responders and responders were included
as the input gene set. Then we utilized the “AddModuleScore”
function in Seurat to calculate the scores of the upregulated
genes and the downregulated genes. The resistance score was
calculated by scores of upregulated genes minus the
downregulated genes.

Consensus Clustering
We applied the “ConsensusClusterPlus” R package to
categorize melanoma patients in TCGA dataset into
different groups (Wilkerson and Hayes, 2010). We
selected 90% item resampling (pItem), 100% gene
resampling (pFeature), and a maximum evaluated k of 9
and 100 re-samplings (reps) with agglomerative hierarchical
clustering upon Euclidean correlation distances to partition
patients.

Function Analysis of Subgroups and
Immune Infiltration Analysis Based on
ssGSEA
GSVA was performed to evaluate pathway enrichment for
different clusters with the R package “GSVA.” To
investigate the immune infiltration signature of
melanoma, ssGSEA was performed to assess the level of
immune infiltration based on the expression levels of
immune cell-specific marker genes. We also performed a
functional analysis of the clusters based on the hallmark
gene set from the MsigDB dataset (https://www.gsea-
msigdb.org).

Construction and Evaluation of the
Prognostic Risk Score Model for Melanoma
We first performed univariate Cox regression analysis on
TCGA SKCM training cohort and identified the association
between the expression levels of the genes and survival time
with the survival package. Significant genes (p < 0.05)
identified by univariate Cox regression were further selected
by lasso Cox regression and multivariate Cox regression. The 5
optimal genes were used to construct a prognostic risk score
model by using the following formula: risk score =
∑Coefi·Expi. According to the median value of their
prognostic risk scores, patients were subgrouped into a
high-risk group and a low-risk group. The Kaplan–Meier
survival curve was used to assess the differences in OS
between the two groups. Melanoma patients with the R
package “survival” and time-dependent ROC curve data
were used to evaluate the prognostic performance of the
constructed risk model.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 87442912

Kang et al. Transcriptional Heterogeneity in Melanoma

https://www.gsea-msigdb.org
https://www.gsea-msigdb.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Statistical Analysis
Statistical analyses were mainly performed using R (version 4.0.4)
and GraphPad Prism (version 8.0.1). Kaplan–Meier and log-rank
analyses were used to evaluate the survival differences between
different groups of patients. Student’s t-test and one-way
ANOVA were used to estimate the differences between two
groups and more than two groups. The correlation analysis
was calculated using the “Spearman” method. Two-sided p <
0.05 was regarded as statistically significant.
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Supplementary Figure S2 | Heatmap of large-scale CNVs of tumor subsets from
melanoma patients. The heatmap shows the normalized CNV levels; the red color
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variation.

Supplementary Figure S3 |GO and KEGG analysis of malignant signatures. (A,B)
Bar plot shows the enriched GO term and KEGG pathways in six malignant
signatures according to the gene counts (x axis) and p values (color). (C) UMAP
plots of tumor subsets split by treatment. (D) Dot plot displaying the fractions of
expressing cells (dot size) andmean expression level in expressing cells (dot color) of
marker genes (rows) across clusters.

Supplementary Figure S4 | Boxplots showing the expression levels of cell cycle
genes, immune checkpoint genes and antigen presentation genes between no-
treatment and immunotherapy groups.

Supplementary Figure S5 | Subgroups of melanoma patients in TCGA SKCM. (A)
Consensus clustering matrix showing the melanoma patients in TCGA SKCM were
clustered into 3 subgroups by ConsensusClusterPlus based on metagenes. (B)
Kaplan–Meier curves for progression-free survival according to patient clusters
evaluated by ConsensusClusterPlus. (C) Heatmap of immune infiltration scores
of TCGA-SKCM among subgroups. (D) Heatmap of the biological function scored
by ssGSEA among subgroups.
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