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Abstract

The clinical connectome fingerprint (CCF) was recently introduced as a way to assess

brain dynamics. It is an approach able to recognize individuals, based on the brain

network. It showed its applicability providing network features used to predict the

cognitive decline in preclinical Alzheimer's disease. In this article, we explore the per-

formance of CCF in 47 Parkinson's disease (PD) patients and 47 healthy controls,

under the hypothesis that patients would show reduced identifiability as compared

to controls, and that such reduction could be used to predict motor impairment. We

used source-reconstructed magnetoencephalography signals to build two functional

connectomes for 47 patients with PD and 47 healthy controls. Then, exploiting the

two connectomes per individual, we investigated the identifiability characteristics of

each subject in each group. We observed reduced identifiability in patients compared

to healthy individuals in the beta band. Furthermore, we found that the reduction in

identifiability was proportional to the motor impairment, assessed through the Uni-

fied Parkinson's Disease Rating Scale, and, interestingly, able to predict it (at the sub-

ject level), through a cross-validated regression model. Along with previous evidence,

this article shows that CCF captures disrupted dynamics in neurodegenerative dis-

eases and is particularly effective in predicting motor clinical impairment in PD.
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1 | INTRODUCTION

Parkinson's disease (PD), the second most common neurodegenera-

tive disease (Balestrino & Schapira, 2020), is clinically characterized by

the presence of a broad spectrum of both motor and nonmotor symp-

toms (and signs). However, motor impairment remains prominent in

the clinical picture (Gökçal et al., 2017). The variability of symptoms

across patients, and the presence of a wide spectrum of nonmotor

symptoms in each patient, suggest that the pathophysiological mecha-

nisms affecting the brain are not restricted to a limited area but,

rather, spread well beyond (Stoffers et al., 2008). Indeed, predicting

clinical impairment has proven elusive so far, perhaps since the correct

unfolding of the interactions among brain areas has to be taken into

account. Consequently, there is a wide interest in identifying signs of

suboptimal large-scale organization of the brain activity in order to

improve diagnosis and clinical management.

Despite brain activity alteration being a robust finding in PD, the

description of the alteration regarding the large-scale brain activity is

yet to be unanimous. Recently, it was shown that large-scale brain

dynamics becomes stereotyped in PD patients, lacking flexibility pro-

portionally to hypersynchronization (Sorrentino et al., 2021), which, in

turn, is a recurring finding in PD (Chen et al., 2007; Hammond

et al., 2007; Little & Brown, 2014). However, several studies also

reported a reduction in connectivity related to several different brain

areas (Hacker et al., 2012; Helmich et al., 2010; Rucco et al., 2021;

Tessitore et al., 2012). In summary, altered brain activity is a main

finding in PD, and it is often related to the beta band. We expect that

such an alteration may compromise the identification of the individ-

uals based on their connectomes, and that this characteristic may be

proportional to the clinical condition of the specific patient. Based on

this reasoning, the clinical connectome fingerprint (CCF) has been

recently developed to analyze reduced identifiability in patients

affected by amnestic mild cognitive impairment. In particular, CCF

was able to predict the individual cognitive impairment, assessed

through Mini-Mental State Examination (Sorrentino et al., 2021). In a

similar study, which involved individuals affected by amyotrophic lat-

eral sclerosis, the same approach was able to find a relationship

between the CCF and the disease progression of the patients

(Romano et al., 2022).

In this work, we hypothesized that the CCF would be a sensible

candidate to extract patient-specific brain features, in order to pre-

dict clinical impairment in PD. To test this hypothesis, we used

source-reconstructed magnetoencephalography (MEG) signals. We

performed two separate recordings for each subject of both healthy

and PD groups. After filtering the source-reconstructed data in the

canonical frequency bands, we used the phase linearity measure-

ment (PLM) (Baselice et al., 2019) to estimate the synchronization

between regions, obtaining frequency-specific connectomes. Then,

we estimated the identifiability rate of each group, based on the

Pearson's correlations between connectomes. As PD commonly

exhibits altered synchronization in the beta band, this was the fre-

quency where we mainly expected reduced identifiability. The het-

erogeneity of the patients' connectomes was analyzed through a

multilinear regression model in order to understand whether it was

related to specific factors (e.g., age, clinical subtypes, pharmacologi-

cal treatment). Furthermore, we compared the similarity between

each patients' connectome with the healthy group's connectomes,

thereby obtaining a “clinical fingerprinting” score (Iclinical) for each

patient. Since more stereotyped brain dynamics has been linked to

the clinical impairment in PD, we then used the Iclinical scores to

predict motor clinical impairment, as assessed using the Unified PD

Rating Scale part III (UPDRS-III). To this end, we built a multilinear

regression model to compare the predicted and the observed

UPDRS-III scores (Goetz et al., 2007).

2 | METHODS

2.1 | Participants

We recruited 47 patients (30 males, 17 females) affected by PD, with

a mean age of 65 years (±9.7), and a mean education of 11.3 years

(±4.2). The diagnosis of PD was fulfilled in accordance with the

United Kingdom Parkinson's Disease Brain Bank criteria (Gelb

et al., 1999). Inclusion criteria were: (a) PD onset after the age of

40 years, to exclude early onset Parkinsonism and (b) modified Hoehn

and Yahr (H&Y) (Hoehn & Yahr, 1998) stage ≤ 2.5. Exclusion criteria

were: (a) dementia associated with PD according to consensus criteria

and (b) any other neurological disorder or clinically relevant medical

condition. Disease severity was assessed through a motor examina-

tion in “off-state,” using both the UPDRS-III (Goetz et al., 2007), and

the H&Y stages. Forty-seven healthy subjects (HS) were recruited as

well, matched for gender (30 males, 17 females), age (61.8 ± 10 years),

and education (12.9 ± 4.6 years). All the recruited individuals were

right-handed. The study was performed in accordance with the Decla-

ration of Helsinki, and all the participants signed an informed consent.

The local Ethic Committee of University of Naples “L. Vanvitelli”
approved the study.

2.2 | MEG acquisition

All the participants underwent an MEG scan, composed of 154 magne-

tometers, and 9 reference sensors, placed in a magnetically shielded

room (AtB Biomag UG, Ulm, Germany). Before each acquisition, we

used Fastrak (Polhemus) to record head reference points like in Lipar-

oti et al. (2021). This allowed us to locate the position of the head dur-

ing the acquisition. Participants were recorded during resting state

with eyes closed. PD patients were recorded while in “off-state,” after
a 14-h washout period. Two recordings, 3.5 min long, were separated

by a short break roughly 2 min long. This amount of time is a tradeoff

which allows to record enough signal and prevent drowsiness of the

subject (Fraschini et al., 2016; Gross et al., 2013). Electrocardiographic

(ECG) and electro-oculographic (EOG) signals were acquired in order

to remove physiological artifact (Gross et al., 2013). Signals were sam-

pled at 1024 Hz after anti-aliasing filtering.
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2.3 | Magnetic resonance imaging

Eighty participants underwent magnetic resonance imaging (MRI). A

1.5-T SIGNA Explorer scanner equipped with an eight-channel parallel

head coil (GE Healthcare, Milwaukee, WI, USA) was used. Specifically,

three-dimensional T1-weighted images (gradient-echo sequence

inversion recovery prepared fast spoiled gradient recalled-echo, time

repetition = 8.216 ms, TI = 450 ms, TE = 3.08 ms, flip angle = 12,

voxel size = 1 � 1 � 1.2 mm3; matrix = 256 � 256) were recorded.

From the total of 94 subjects recruited, 7 patients and 7 healthy indi-

viduals refused/were unable to undergo MRI, and a standard template

was used for source reconstruction.

2.4 | Preprocessing

Preprocessing and source-reconstruction was performed similarly as

in Sorrentino et al. (2021). In short, a fourth-order Butterworth IIR

band-pass filter was implemented, using the Fieldtrip toolbox in

MATLAB (Oostenveld et al., 2011), in order to filter the data in the

0.5–48 Hz range. Then, through the principal component analysis

(De Cheveigné & Simon, 2007), we orthogonalized the signals with

respect to the reference signals. Then, an experienced rater identified

and removed noisy signals and segments after visual inspection.

Finally, supervised independent component analysis (Barbati

et al., 2004) was performed to identify the ECG and, if present, the

EOG components present in the MEG signals.

2.5 | Source reconstruction

We co-registered the MEG data with the native MRI of each subject.

Then, we obtained the time series of 116 regions of interest (ROIs),

based on the AAL atlas (Gong et al., 2009), using the volume conduc-

tion model proposed by Nolte (Nolte, 2003), and applying the linearly

constrained minimum variance (Van Veen et al., 1997) beamformer

algorithm included in the Fieldtrip toolbox (Oostenveld et al., 2011).

The resulting time series were band-pass filtered in each canonical

frequency band (i.e., delta [0.5–4 Hz], theta [4–8 Hz], alpha [8–

13 Hz], beta [13–30 Hz], and gamma [30–48 Hz]). Only 90 ROIs were

selected for further analysis, since we excluded ROIs related to the

cerebellum because of low reliability.

2.6 | Synchrony estimation

Synchronization was estimated through the PLM, measuring the

phase difference in time between brain regions (Sorrentino

et al., 2019). In short, the PLM is based on the spectrum of the inter-

ferometric signal between pairs of brain regions, and it is unaffected

by volume conduction. Its values range from 0 (no synchronization) to

1 (synchronization). Computing the PLM between each couple of

regions we obtained, per each frequency-band, two functional

connectomes (FCs) (one per recording segment), that we named test

and retest.

2.7 | Fingerprint analysis

To evaluate the fingerprinting in our population, we employed an

approach based on FCs, as originally proposed in Sorrentino et al.

(2021). First, we aimed to create an identifiability matrix

(IM) (Amico & Goñi, 2018) (Figure 1). The IM features the participants

on rows and columns, while the entries are the Pearson's correlation

coefficient between the test and retest FCs of each participant. The

IM contains information on self-similarity (I-self, the main diagonal

elements), which represent the test and retest connectomes compari-

son of the same participant, and similarity of each subject with the

others (I-others, off diagonal elements), that represent the similarity

between different individuals. Computing the difference between the

mean I-self and the mean I-others, we can obtain the differential Iden-

tifiability (I-diff) (Amico & Goñi, 2018; Sorrentino et al., 2021). This

score offers an estimation of the fingerprint level of a specific data

set. Furthermore, we calculated the success rate (SR) value, to deter-

mine the percentage of identifiability of the subjects within a group. It

was computed observing the percentage of times that each subject

displayed an I-self value higher than the I-others values tested on the

corresponding row and column. Finally, crossing the test–retest FCs

of the healthy individuals and of the patients, it is possible to obtain

the Iclinical score (“clinical identifiability,” or “clinical fingerprint”). This
score represents the similarity of a patient with respect to the healthy

subjects. For further details, please refer to Sorrentino et al. (2021).

The heterogeneity of the patients' FCs (represented by the I-

others), was further investigated to understand whether it could be

related to demographic or clinical characteristics. In particular, a multi-

linear regression model for the prediction of individual I-others was

built, using the following variables as predictors: age, education, gen-

der, disease duration (in months) clinical subtypes (tremor dominant

[TD]; postural instability gait difficulty [PIGD]) (van Rooden

et al., 2011), depression level (Beck Depression Inventory [BDI]) (Beck

et al., 1996), cognition (Montreal Cognitive Assessment [MoCA])

(Nasreddine et al., 2005), levodopa equivalent daily dose (LEDD)

(Julien et al., 2021), and UPDRS-III score. We validated our model

using the k-fold cross-validation with k = 5 (Varoquaux et al., 2017).

This approach consists in randomly splitting the sample in five groups

that were used alternatively as training group or test group. This

allowed to increase the generalizability of the model and reduced the

risk of overfitting. The variance inflation factor (VIF) was calculated to

check for multicollinearity (Belsley et al., 2005). All the values were z-

scored to make the beta coefficients comparable.

2.8 | Regions of interest for fingerprint

Borrowing from previous work on identifiability (Amico &

Goñi, 2018), we used the intraclass correlation coefficient (ICC)
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(Koch, 2004) to quantify the edgewise reliability of individual connec-

tomes. Edges display high ICC values if they keep similar values of

synchronization across the test–retest sessions. Hence, edges that are

steady might contribute more to the overall identifiability. Then, we

performed the fingerprint analysis sequentially adding edges accord-

ing to their ICC values. We added 100 edges at each iteration, and

computed the SR values at each iteration. To check that the selected

edges were in fact the most relevant ones in terms of identification,

we built a null model for each group (HS and PD), selecting 100 times

at each iteration a set of randomly chosen edges, and then performing

the fingerprint analysis on those, building a null-distribution of SR

values.

2.9 | Edges of interest for clinical predictions

Furthermore, we tested the hypothesis that the Iclinical score based

on a subset of edges could predict the clinical condition of the

patients. Hence, we built a multilinear regression model to predict the

UPDRS-III scores from the Iclinical values (Shen et al., 2017). We

added multiple covariates to the model, in order to account for the

effect of age, education, gender, disease duration, clinical subtypes,

BDI, MoCA, and LEDD. Multicollinearity was assessed through VIF

(Belsley et al., 2005). The values of each variable were z-scored to

make the beta coefficients comparable. We validated our model using

the k-fold cross-validation with k = 5 (Varoquaux et al., 2017). Fur-

thermore, each iteration of k-fold was repeated 100 times and the

result was averaged in order to reduce the variability given by the ran-

dom split procedure. To check if a subset of edges were mostly

responsible for the prediction of the UPDRS-III we computed the

model multiple times, adding 100 edges at each iteration, according to

their ICC value (in descending order), and calculating the correspond-

ing Iclinical. Furthermore, at each iteration, 100 surrogate models

were computed, each based on the Iclinical computed on a random

selection of edges. At each iteration, the Spearman's correlation coef-

ficient between predicted and actual UPDRS values was calculated

and considered as a prediction score.

2.10 | Statistics

Statistical analysis was carried out in MATLAB 2020a. I-self, I-others,

and I-diff values were compared between the two groups. The com-

parisons were performed through permutation testing, by randomly

F IGURE 1 Processing of the functional connectomes and their application for fingerprint analysis. (a) Visual representation of the data
analysis pipeline. Through a magnetoencephalography (MEG) system composed of 154 sensors, we recorded the magnetic field emitted by neural
activity. Noisy MEG signals were cleaned and artifacts were removed. Source reconstruction (beamforming) was achieved according to the
Automated Anatomical Labeling atlas. Connectivity estimation was performed through phase linearity measurement (PLM) algorithm.
(b) Fingerprint analysis scheme. Different identifiability matrices were built in order to investigate the functional connectomes (FCs) identifiability
in healthy subjects (HS) and patients with Parkinson's disease (PD). Correlating test–retest individuals' FCs we obtained the blue and the red
boxes, that represents the identifiability characteristics of HS and PD, respectively. Cross correlating test and retest FCs of subjects of different
groups we obtained hybrid identifiability matrices. From these matrices, we were able to calculate the similarity of each patient's FC with respect
to the ones belonging to the healthy group (Iclinical score).
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rearranging the labels of the two groups 10,000 times (Sareen

et al., 2021). The absolute value of the difference was computed at

each iteration, obtaining a distribution of the randomly determined

differences (Nichols & Holmes, 2002). This distribution was compared

to the observed differences to retrieve a statistical significance. The

possible relationships between variables were investigated using Pear-

son's correlation. Results were corrected by false discovery rate (FDR)

correction (Benjamini & Hochberg, 1995). Significance level was set at

p-value <.05 after correction.

3 | RESULTS

We analyzed the fingerprinting of FCs (Figure 1a) in a cohort of

94 subjects, which included 47 HSs and 47 patients with PD. To this

end, we used the FCs of each group to build an IM like in Sorrentino

et al. (2021) (Figure 1b). Identifiability parameters (i.e., I-self, I-others,

and I-diff) were compared between the two groups, while the clinical

identifiability (Iclinical) was used to investigate the relationship

between identifiability and clinical impairment in PD.

3.1 | Connectome fingerprint

Identifiability parameters between PD patients and healthy subjects

showed significant differences in the beta band (Figure 2). Specifically,

HS displayed higher I-diff (HS = 0.33 ± 0.21; PD = 0.24 ± 0.22;

pFDR = .034), I-self (HS = 0.42 ± 0.23; PD = 0.3 ± 0.23;

pFDR = 0.017), and I-others (HS = 0.09 ± 0.04; PD = 0.06 ± 0.02;

pFDR < .001) scores compared to PD patients. As a whole, patients

showed lower differential identifiability (i.e., I-diff). Moreover, it is

noteworthy that healthy individuals displayed high self-similarity

despite being more similar among themselves with respect to

patients.

3.2 | Edge-based identifiability

Assessing the contribution of individual FC's edges in determining the

level of fingerprinting (Sorrentino et al., 2021), we observed two dif-

ferent behaviors in HS and PD groups (Figure 3). First, in healthy indi-

viduals, many edges have high values of ICC, hence contributing to

the identification, while in the patients group the edges have generally

lower values, and a few, scattered edges contribute to the identifiabil-

ity. All in all, this analysis indicates a more stable edges' connectivity

in healthy subjects, across the test–retest sessions.

Moreover, we calculated the average SR value of each group,

by investigating the percentage of identifiability of each subject

within its own group. Hence, we analyzed the distribution of SR

values in the fingerprint analysis performed adding 100 edges per

iteration, from the most to the least stable ones, according to the

ICC matrices of each group. Figure 4 shows that the HS group dis-

plays a complete SR (100%), with a result that slowly decreases

when adding more edges. Conversely, the PD group's SRs did not

F IGURE 2 Brain identification in
healthy and Parkinson's disease (PD).
(a) Identifiability matrices of healthy

subjects (HS) and patients with PD. The
main diagonal is representative of the
self-identifiability (I-self), while off-
diagonal elements are representative of
the similarity among different individuals
(I-others). The difference between those
values is described as differential
identification (I-diff) and gives an
estimation of the fingerprinting level of a
group. These matrices are based on the
functional connectomes computed in
beta band. Note that the more the main
diagonal is visible, the more the subjects
turn out to be identifiable. Success rate
(SR) is reported too, as a percentage of
the number of times an individual is
recognizable with respect to other
individuals within the same group.
(b) Statistical comparison between
fingerprint parameters calculated on the
identifiability matrices of HS and PD. HS
shows higher identifiability with respect
to PD. Significance p-value: *p < .05,
**p < .01, ***p < .001
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reach the same values of the HS group, and the values never

reached a stable level, and with a faster decrease. As a reliability

test to our approach, we performed a surrogate analysis, this time

adding edges in random order, obtaining a null distribution of SR

values that were to be expected given a random selection of edges

(Figure 4, left panel). As evident, the SR was always above chance

level, thereby showing that the selected edges carry relevant

information to identify subjects. Furthermore, we observed the SR

values distribution of the PD group, when ordering the regions

according to the ICC matrix of the HS (Figure 4, right panel). In this

case, the patients' SR values dropped compared to the distribution

performed according to the ICC matrix of the patients themselves,

and was nearly invariably within the null distribution, hence con-

firming that edge specificity is lost in PD.

F IGURE 3 Edge contribution
to connectome fingerprint.
Intraclass correlation (ICC) for the
beta band connectivity, assessing
the brain regions contribution to
identifiability. Higher ICC values
of an edge means major
contribution of that edge to the
identifiability. The same results

are shown as brain renders
displaying the nodal strength of
most reliable edges (above the
75 percentile of the distribution;
colorbar borders represent the
5 and 95 percentiles).

F IGURE 4 Identifiability based on the edge contribution. Success rate (SR) distribution in identifying individuals when performing fingerprint
analysis including 100 edges at a time. SR distributions of healthy subjects (HS, blue line) and Parkinson's disease patients (PD, red line), were
obtained adding the edges from the most contributing to the least contributing to identifiability, relying on the intraclass correlation (ICC) values.
Actual distributions were compared to their respective null distribution (light blue for HS, and light red for PD) obtained repeating the same
analysis 100 times, including the edges in a random order. The left panel shows the analysis performed using the ICC matrices belonging to each
group. The right panel shows the analysis performed considering the ICC matrix of the healthy individuals for both HS and PD group.
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3.3 | Clinical features of fingerprinting

Considering the heterogeneity expressed by PD patients, we set out

to investigate whether there were demographic or clinical elements

related to this feature. The multilinear model built for I-others pre-

dicted 31% of its variance, with significant contribution of LEDD

(p = .0356, β = .36) and UPDRS-III (p = .0224, β = �.38). Prediction

performance and residuals distribution with the k-fold validation are

shown in Figure 5b,c, respectively. None of the remaining variables

significantly contributed to the prediction.

Finally, in order to verify the clinical value of this approach, we

tried to predict the UPDRS-III scores, relying on the Iclinical values in

the beta band. Based on the hypothesis that clinical prediction may

mostly reliant on subset of edges like in Sorrentino et al. (2021), we

built edge-based multilinear models including the Iclinical calculated

with a growing subset of edges (from 100 to full FC, adding 100 more

at each iteration) as predictor. Age, education, gender, and disease

duration were added as predictors as well, while the UPDRS-III was

set as response variable. The highest similarity between actual and

predicted UPDRS-III scores was observed at 500 edges (Spearman

ρ = 0.59). Indeed, the model explained 44% of the variance of the

UPDRS-III (R2 = .44) (Figure 6b). Both the Iclinical (p = .001,

β = �.48) and the disease duration (p = .0108, β = .4) significantly

contributed to the predictions. Individual predictions and the distribu-

tion of the residuals obtained through the k-fold validation method

(Varoquaux et al., 2017) are shown in Figure 6c,d, respectively. No sig-

nificant contribution of the remaining predictors was observed.

Furthermore, we specifically observed the relationship between

the clinical fingerprint in the beta band and the motor condition of

our patients. The correlation test between the Iclinical at 500 edges

peak and the UPDRS-III scores highlighted a significant negative

correlation between the two parameters (r = �.48, p < .001), as

shown in Figure 7.

Finally, the main analyses were repeated using the AAL3 atlas

(Rolls et al., 2020), as to test the reliability of our findings. Fingerprint

features comparisons (I-diff, I-self, I-others), the multilinear regression

model prediction of UPDRS-III through the Iclinical in the beta band

and disease duration, and the significant correlation between the Icli-

nical in the beta band and UPDRS-III, were all confirmed and dis-

played in detail in supplementary materials.

4 | DISCUSSION

In this study, we set out to investigate whether the changes induced

by PD in the large-scale brain connectivity could reflect into reduced

connectome-based identifiability of patients. We tested this hypothe-

sis within the recently developed framework of the clinical connec-

tome fingerprinting (Amico & Goñi, 2018), comparing the

identifiability of patients with PD and matched controls. We therefore

extracted a clinical fingerprinting score for each patient (Sorrentino

et al., 2021), and exploited it to predict motor impairment in each

patient, working under the hypothesis that lower identifiability would

be linked to dysregulated functional connectivity.

The fingerprinting analysis was conducted by comparing the con-

nectomes in the test/retest sessions of the participants, in each group

(i.e., PD and HS) separately. The connectomes were calculated using

the PLM to measure synchronization (Baselice et al., 2019) in each of

the canonic frequency bands. Significant results were exclusively

found in the beta band. As mentioned above, the beta band is consis-

tently reported as altered in PD (Hammond et al., 2007). Our results

showed that the PD patients displayed lower differential identifiability

F IGURE 5 Clinical variables contribution to patients' heterogeneity. (a) The panel displays the variance explained by the additive model
including nine variables (age, education, gender, disease duration, clinical subtype, depression level [BDI], cognitive assessment [MoCA], levodopa
equivalent daily dose [LEDD], and Unified Parkinson's Disease Rating Scale part III [UPDRS-III]). Significant predictors in bold; positive/negative
coefficients indicated with β+/β�. (b) The panel shows the correspondence between the actual I-others values and the ones predicted by the
model with k-fold cross validation (k = 5). (c) The panel displays the distribution of the standardized residuals with k-fold cross validation (k = 5).
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compared to the healthy individuals (Figure 2). Hence, the healthy

connectomes are more recognizable and subject-specific. In detail, the

patients showed both lower I-self and I-others scores. On the one

hand, the lower I-self indicates lower similarity between the two con-

nectomes belonging to one subject. On the other hand, the reduced I-

others represents greater heterogeneity among the connectomes of

the PD group. However, the I-self showed greater reduction as com-

pared to the I-others. We speculated that this feature might be caused

by the loss of the subject-specific fine-tuning of large-scale dynamics,

which reflects itself primarily on the loss of similarity of a subject with

him/herself, rather than of a subject with the other subjects. In PD,

dopamine depletion is able to alter the brain network organization

and its dynamics, and this approach may be able to catch one of the

features of the unstable brain activity occurring in patients' connec-

tomes (Olde Dubbelink et al., 2014; Shine et al., 2019; Sorrentino

et al., 2021). Indeed, the reduced similarity of subsequent MEG

F IGURE 6 Motor impairment prediction based on “clinical fingerprint.” The analysis aims to predict the motor impairment of the patients
assessed through Unified Parkinson's Disease Rating Scale part III (UPDRS-III), relying on the clinical identifiability (Iclinical) score. (a) Edges are
added iteratively (100 per time up to whole-brain) based on the Parkinson's disease (PD) patients' intraclass correlation (ICC) values, from the
most to the least contributing to identifiability (x axis). Hence, the prediction performance (k-fold cross validation with k = 5) of each multilinear
model based on the Iclinical is evaluated as the Spearman correlation coefficient (Spearman's ρ, on y axis) between actual and predicted UPDRS-III
values (blue line). For comparison, we built a null model obtained by repeating the same analysis 100 times, but selecting the edges randomly (the
red line represents the mean prediction of the null model; the shaded red area represents the standard deviation of the null model predictions).
The following panels show the results of multilinear model with the highest performance, that is, when the Iclinical is calculated considering the
500 most reliable edges for PD patients identification (ICC score). (b) The panel shows the variance explained by the additive model including nine
variables (age, education, gender, disease duration, clinical subtype, depression level [BDI], cognitive assessment [MoCA], levodopa equivalent
daily dose [LEDD], and Iclinical in beta band). Significant predictors in bold; positive/negative coefficients indicated with β+/β�. (c) The panel
shows the correspondence between the actual UPDRS-III values and the ones predicted by the model. (d) The panel displays the distribution of
the standardized residuals.
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recordings may be a consequence of the dysregulated brain activity

occurring in the beta band in PD (Little & Brown, 2014).

Furthermore, the edge-specific reliability of the connectomes

dropped drastically in PD patients, and reflected itself in much

lower nodal stability (Figure 3). It is crucial to note that ICC matri-

ces show the reliability of the communication between brain

regions, but not the magnitude of the connectivity itself. Hence, we

retrieve information that is complementary to the one related to

connectivity. In summary, our results suggest that several brain

regions contribute to the identifiability in the healthy controls,

while only a few do so in PD. In particular, it can be observed that

the motor regions provide a major contribution to the identifiability

of healthy individuals, but not to that of PD patients. Once again,

the abnormal activity patterns clustered in the motor regions,

which are particularly affected in PD patients (Figure 3), may lead

to the reduced contribution to the identifiability. To date, the qual-

ity of the alterations (in the sense of hypo/hyperactivation) related

to the regions involved in the PD motor patterns is still debated

(Herz et al., 2021). With regard to the motor cortex, several studies

reported controversial results when comparing PD patients and

healthy controls. Indeed, using functional MRI, Buhmann et al.

(2003), and Grafton (2004) showed hypoactivation, while Haslinger

et al. (2001), and Sabatini et al. (2000) reported hyperactivation.

However, our approach did not focus on the connectivity itself;

rather, we estimated how stable it is across multiple recordings of

subjects belonging to the same group. Nevertheless, even in this

case, beta band activity in PD connectomes revealed alterations, in

terms of stability and identifiability.

Then, we observed the behavior of identifiability as a function of

the number of edges utilized to perform it. In both groups, the iden-

tifiability was higher when only taking into account a subset of edges,

and not the complete FC. Furthermore, following the inclusion of a

minimum number of edges, the healthy individuals reached a com-

plete and stable subject recognition, while the patients lacked to do

so. A possible explanation would be that the full connectome contains

more redundant information, that is, patterns that are not subject-

specific but, rather, shared by multiple subjects (Figure 4). Indeed, sev-

eral studies focused on the analysis of patterns of intersubject vari-

ability, reporting the presence of a global common organization in

conjunction with subject-specific patterns (Gratton et al., 2018;

Laumann et al., 2015; Mueller et al., 2013). Hence, considering that

there is a concordance across subjects over the edges that contribute

to the identification, one might further speculate that subject-specific

information is contained preferentially in specific functional patterns.

Furthermore, the altered activity in the beta band might contribute to

the lack of identifiability in the PD group (Little & Brown, 2014). In

other words, impairment of the fine-tuned regulation of the large-

scale activity of the brain might make the system unable to keep its

(presumably) optimal trajectory. This would in turn result in higher

variability and, thus, reduced individual identifiability. Indeed, this

result is in accordance with our previous interpretation of the ICC

matrices (Figure 3).

In order to provide a functional interpretation to our results, we

examined the contribution of the LEDD and the UPDRS-III to the het-

erogeneity of the patients' FCs (Figure 5). The positive coefficient of

LEDD means that the higher the LEDD, the higher the similarity of a

patient to the other patients. This result suggests that higher levodopa

dosage induces a levodopa-dependent reorganization of the brain net-

work that, as a consequence, makes the patients more similar among

themselves (perhaps shifting them all toward the presumably optimal

healthy condition). However, since our patients were recorded after a

levodopa washout (14–15 h), this would mean that the network reor-

ganization (or part of it) remains even after the washout. With regard

to the UPDRS-III, we observed a negative coefficient for the predic-

tion. This means that the higher the clinical impairment, the lower the

similarity with other patients. As a consequence, the brain network of

patients with high impairment presents unique patterns with respect

to the ones of low-impairment, that in turn are more similar among

themselves (alike the healthy controls). First, we notice, at a minimum,

a fairly stringent internal coherence across these results, which are in

line with the idea that patients with greater impairment develop

higher heterogeneity. Furthermore, the model suggests that levodopa

promotes the establishment of a common pattern in PD patients. The

remaining predictors were not predictive. However, although these

variables seem to have no effect in predicting changes in the FC, it is

of note that recent approaches to personalized medicine in PD advise

to take into consideration several different elements (e.g., lifestyle,

clinical subtypes, genotypes, etc.) when tailoring a therapy (Marras

et al., 2020; Titova & Chaudhuri, 2017). Our results warrant further

F IGURE 7 Relationship between motor impairment and clinical
identifiability. Pearson's correlation between motor impairment
assessed through Unified Parkinson's Disease Rating Scale part III

(UPDRS-III) and clinical identifiability expressed by Iclinical score in
beta band. The Iclinical was computed including the 500 most reliable
edges according to the intraclass correlation (ICC) scores. The
negative significant coefficient indicates better motor condition (low
UPDRS-III values) when patients connectivity is more similar to the
healthy individuals (high Iclinical), and vice versa.
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investigation including OFF and ON conditions, in order to evaluate

the fingerprint differences in both states, and the possible contribu-

tion of all variables.

Subsequently, we wondered if the altered fingerprint of PD sub-

jects could be related to the clinical picture of the disease. Similarly to

a previous study (Sorrentino et al., 2021), we used the Iclinical score in

beta band to predict the motor impairment typical of PD, as assessed

using the UPDRS-III. In particular, we observed that 500 edges was

the number of edges that maximized the prediction (Figure 6). We

found that our model could explain nearly 44% of the variance of the

UPDRS-III scores across individuals. Even when accounting for nui-

sance variables such as age, level of instruction, disease duration,

LEDD, and so forth, the Iclinical significantly improved the perfor-

mance of the model. Besides the Iclinical, disease duration also con-

tributed to the predictions. Given the negative beta-coefficient of the

Iclinical, we can conclude that the more the identifiability of a PD

patient's connectome is similar to that of the HS group, the milder its

motor impairment. Noteworthy, these results were validated with a k-

fold cross-validation that reduced the risk of overfitting.

It should be noticed that the edges that were relevant for the clin-

ical identification were also the ones responsible for the prediction of

the UPDRS-III. In both edge-based analyses (i.e., identification and

clinical motor score prediction), the edges were ordered in the same

way and in both cases the best performance was obtained considering

only a few hundreds of edges. Hence, there is substantial overlap

between the edges that allow identification and those that allow the

clinical prediction. This points toward the clinical validity of this

approach, showing that the selected edges were related to a func-

tional outcome. This result once more supports the idea that the loss

of stability that leads to lower identifiability might be related to mech-

anisms that are pathophysiologically relevant in PD. In fact, several

studies showed a correlation between brain connectivity features in

the beta band and motor impairment (Neumann et al., 2017;

Tinkhauser et al., 2017). Furthermore, we also demonstrated the

inverse linear relationship occurring between the Iclinical in the beta

band and the UPDRS-III scores (Figure 6). Our results are in line with

these findings and demonstrate that in PD, the connectome-based

identifiability conveys the severity of the disease. Since the UPDRS-III

is one of the most reliable and used motor scales in the clinical set-

tings (Balestrino et al., 2019; Holden et al., 2018), we believe that a

scalar score, based on the whole connectome conveying subject-

specific features of the brain functional connectivity may be of help in

the management of the disease.

However, some limitations of this work have to be highlighted.

To date, the potential of this approach in diagnostics has not been

tested, albeit its ability to correlate with phenomenological character-

istics of specific diseases shows promise for future studies. In fact,

further studies in different populations and conditions (e.g., OFF–ON

states) are warranted in order to evaluate the usefulness of this

approach in the diagnostic process.

In conclusion, we applied the fingerprint approach to PD, showing

that the subject-specific brain network recognition is linked to the

clinical condition. First, we highlighted the lower identifiability of the

patients with respect to the healthy individuals. Furthermore, we

showed that the degree of the connectome-based identifiability of

the patients (with respect to the healthy population) is related to their

clinical motor condition. Importantly, all the results were observed

within the beta band, which is known to be highly involved in PD. We

hope that the individualized information provided by this approach

may inspire further studies specifically addressed to improve the diag-

nostic process.
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