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Abstract: Acquired immune deficiency syndrome is an epidemic infectious disease which is caused by the human
immunodeficiency virus (HIV) and that has proliferated across worldwide. It has been a matter of concern for the scientific
community to develop an antiretroviral therapy, which will prompt a rapid decline in viral abundance. With this motivation, this
study proposes the design of a robust super twisting sliding mode controller based on output information for an uncertain HIV
infection model. The control objective is to decrease the concentration of infected CD4+ T cells to a specified level by drug
administration using only the output information of the uncertain HIV infection model which is total CD4+ T cell concentration.
The robust output-feedback controller has been developed in combination with a robust exact differentiator, functioning as an
observer. The reported analysis demonstrates that the approach proposed here is capable of ensuring robust performance
under several operating conditions, measurement and modelling error, parametric uncertainties and external disturbances and
the simulation results prove the proficiency of the controller proposed.

1 Introduction
Human immunodeficiency virus (HIV), which causes acquired
immune deficiency syndrome (AIDS), has become a globalised
health problem for mankind. As indicated by the Global Health
Observatory data reported by World Health Organisation, the
number of HIV infected individuals has crossed more than 70
million and about 35 million individuals have died of AIDS-related
illnesses. All inclusive, 36.7 million individuals were living with it
towards the end of 2016 [1]. According to the latest release, India
HIV Estimation 2015 report, national adult (15–49 years) HIV
pervasiveness in India is evaluated at 0.26% in 2015 [2]. In spite of
noteworthy advances in our scientific comprehension of HIV, its
prevention and treatment techniques and additionally, years of
continuous effort by the global health community, civil society
organisations and leading government, excessively numerous
individuals living with HIV or at the risk of it. At the same time, a
significant portion of affected individuals do not have the
opportunity to access care, treatment, and awareness of prevention,
and there is still no cure. It remains a major challenge to the
scientific community to develop the efficacious treatment with
antiretroviral drugs which can annihilate the virus so that
individuals with HIV can experience healthy life and reduce the
probability of transmitting the infection to others.

HIV is a steady infection which specially targets activated
CD4+ T cells, which are indispensable components of the human
immune system, causing AIDS. A tainted CD4+ T-cell cannot
satisfy its capacity in the immune system, turns into an infection
manufacturing plant, making numerous HIV duplicates. The
immune system of a patient cannot work satisfactorily with a low
level of CD4+ T-cells. In current clinical immunology, an HIV
patient is confirmed to have AIDS when the patient has fewer than
200 CD4+ T-cells per mm3 of blood [3, 4].

HIV treatment can be considered effectual as per
recommendation of U.S. HIV/AIDS treatment guidelines on the
use of antiretroviral agents in HIV infected grown-ups and young
people if it can decrease the viral load by 90% in <2 months and
keep on suppressing it to below 50 copies/ml of plasma in less than
half year [5]. A significant amount of growth has been noticed in
the development of treatment procedure through medications of

HIV infected patients, resulting in the reduction of HIV prevalence
rates.

Antiretroviral therapy (ART) is medication that treats HIV. ART
attempts to disturb the pathogenesis of the virus such that HIV-
related symptoms are arrested and a certain level of immunity is
recovered which leads to the normal life of infected individuals [1].
Thus, ART can be viewed as a control strategy applied to ensure
recovery. As a result, ART makes an effort to reduce HIV load and
it usually leads to quick recuperation to a reasonable level of CD4+
T cell count (>200 cells/mm3) in the peripheral blood [6]. The
available antiretroviral drugs are categorised namely, reverse
transcriptase inhibitors (RTIs) and protease inhibitors (PIs) which
slow down the replication of the virus and prompt a quick decrease
in viral plenitude. The mechanism of RTIs to prevent new HIV
infection is by interrupting the conversion of viral RNA into DNA
inside of T cells. The number of virus particles created by actively-
infected T cells is reduced by PIs [7]. From a system theoretic
point of view, these families of drugs can be thought as
independent control inputs. Highly active ART, the most
predominant treatment methodology, which comprises of the
utilisation of multiple anti-HIV drugs, is effective to suppress the
virus count of infected individuals to a predefined level. The
infected person is recovered slowly and their life is prolonged
because this treatment methodology can maintain the CD4+ T cell
count at an acceptable level [7]. Thus, the biomedical and control
engineering field has gradually enhanced its interest in the
development of suitable control strategies to combat the disease
such as AIDS and many works in this direction have been reported
in the literature.

In the recent past, there have been a significant amount of
works focused on proposing dynamic models of the HIV infection
so that a model-based control strategy can be developed [6–13].
Mathematical modelling has a notable contribution to
understanding HIV pathogenesis along with the design of the
treatment scheme. The HIV infection process has been modelled
mathematically in [6–13] which reflects the complex interactions
among the HIV, aetiological agent for AIDS, CD4+ T cells, and
antiretroviral drugs. The comprehension of how diseases spread
and contaminate individuals plays a pivotal role to reinforce the
mathematical models and to develop new methodologies for
controlling the HIV proliferation and infection [7, 9, 10]. In the
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literature, a wide variation in the models of HIV dynamics with
different levels of complexity/details can be found but a basic
element based on which all the models are built is prey/predator
model. In [7, 9, 10], a third-order non-linear state space model is
found, which characterise the biological phenomenon during the
acute phase of HIV infection. This model consists of three state
variables as the variation of the population of healthy CD4+ T
cells, the infected population of CD4+ T cells, which produce new
virion and the concentration of the HIV particles over time and the
efficacy of the drugs, are considered as two inputs. In this work, we
have considered the third-order non-linear model of HIV dynamics
that captures the time rate of healthy cells, infected CD4+ T cells
and the number of HIV viruses.

The inherent non-linearity involved with the HIV model, the
uncertainty in the parameters and external disturbances present in
the model made it not only a difficult feedback control problem but
also it becomes an interesting and challenging research problem.

In [9], a state feedback control is proposed based on the
linearised model of HIV/AIDS to decrease the viral load. The
paper [14] has addressed the problem of controlling the predator–
prey-like model of HIV based on backstepping technique. To
reduce the viral load to an undetectable level, continuous time
feedback control strategies are used in [10, 15, 16]. In [17], a fuzzy
mathematical model of HIV dynamic is proposed and they studied
a fuzzy optimal control problem minimising both the viral load and
drug costs. The controller based on feedback linearisation is
designed to control the viral load in [10, 18]. However, the
classical feedback linearisation strategies are not robust. The exact
cancellation of non-linearities is not possible to achieve in the
presence of model uncertainties. Hence the above-mentioned
results may not produce desired results when parametric
uncertainties are present in the HIV/AIDS model. In [18], a two-
loop robust controller is proposed to deal with uncertainties in the
parameter of the HIV infection model but they failed to achieve the
robustness with all the parameters of the model. An output
feedback method is designed in [19] for antiretroviral drug therapy
to control the immune response. The non-linear optimal control
framework is utilised to determine the optimal methodology for
administering anti-viral medication therapies to fight HIV infection
in [20, 21]. In [22], model predictive control tools are applied to
the model of HIV/AIDS to determine when a full dose or no
medication is allowed. In [23], they investigated a control systems
analysis on HIV infection dynamics and the intake of drug which is
considered as an impulsive control input to enhance the immune
response. The paper [24] assesses the control of HIV by the
immune response and a dynamical condition for immunity is
formulated from the reachability paradigm of variable structure
control theory. A non-linear PI-type control strategy is designed in
order to minimise the HIV concentration in blood plasma, via
medical drug injection, under the framework of bounded uncertain
input disturbances in [25].

The parametric uncertainties in the HIV/AIDS model are
inevitable because the parameters of the HIV/AIDS model are
highly affected by the patient's infection condition. The
uncertainties affecting the HIV/AIDS model are crucial for the
analysis and control in order to find successful drug administration
therapy. These uncertainties arise from unknown external
disturbances, process parameters, and parasitic/modelled dynamics.
As a result, some of the reported control strategies may not achieve
robust performance in the presence of uncertainties and for a wide
range of operating conditions.

In this proposed work, the control objective is to reduce the
concentration of infected CD4+ T cells to the predefined level in
the presence of parametric uncertainties and external disturbances.
Since the model is highly non-linear and uncertainties are present,
it is difficult to control the viral load to an undetectable level by
using the conventional control strategies. To address this problem,
sliding mode control (SMC), a robust control strategy can be
applied. It has been proven to be an effective control strategy to
reject matched nonlinearities, disturbances, and perturbations [26].
The main technical characterisation of an SMC is to force the
system state trajectories onto some predefined sliding manifolds
(linear sliding surface, integral sliding surface, and terminal sliding

surface) by applying a discontinuous control, such that the desired
performance can be achieved such as stability, tracking ability, and
disturbance rejection capability. From a practical perspective,
discontinuous control could introduce unwanted oscillations,
known as the chattering, that could lead to unwanted effects [27].
Various solutions exist in the literature to alleviate the problem of
unintended oscillations and chattering in SMC but higher order
sliding mode (HOSM) control has been widely used to mitigate the
chattering phenomenon [28]. In order to reduce the detrimental
effect of chattering and to retain advantages of the classical sliding
mode approach such as robustness, simplicity, and finite time
convergence, a class of SMC algorithms, called the second-order
SMC algorithm, has been proposed in recent times [28]. The super
twisting controller (STC), a popular control strategy in the family
of second-order SMC is used to control systems of relative degree
one. The relative degree would be defined with the number of
successive differentiation of output until the control appears in the
output equation. Relative degree r means that the control input first
appears explicitly in the rth total derivative of output. In order to
implement the STC for the relative degree r, we need to know the
(r − 1)th derivative of the sliding variable. To estimate the (r − 1)th
derivative of the sliding variable, the robust exact differentiator is
proposed in [29].

There are several reported works related to human diseases
being controlled by sliding mode techniques. A non-linear robust
adaptive SMC strategy is presented for the influenza epidemics in
the presence of model uncertainties in [30]. A non-linear robust
adaptive Lyapunov-based control strategy was designed in [31] for
the antiviral drug therapy of the hepatitis B virus infection with
different cases of uncertainties. SMC based on the super-twisting
algorithm (STA) stabilises the blood glucose concentration of a
diabetic patient at the desired level [32, 33]. Motivated by the
recent developments, the very first time STA controller and
differentiator is proposed for an HIV infection model with
parametric uncertainties and external disturbances. Thus, the
treatment goal of this study is to reduce the concentration of
infected CD4+ T cells to the desired value in the presence of
parameter uncertainties and external disturbances.

The contributions are summarised as follows:

• An uncertain third-order non-linear model of HIV infection has
been considered here and the uncertainties are considered in all
the model parameters along with the external disturbances.

• The robust control strategy based on STA along with a robust
exact differentiator has been designed for the HIV infection
model based on output information only. The available output of
this model is the total number of CD4+ T cells in blood samples.
From a practical point of view, this proposed control technique
based on output-feedback is effective because other states of the
model are not available for measurement.

This paper is organised as follows: Section 2 describes the
details of the mathematical model of HIV infected individuals
being treated with ART. The control objective and the analytic
background of the proposed control algorithm are described in
Section 3. The design steps and analysis of the STC and
differentiator are formulated in Section 4. Section 5 shows all
supporting simulation results and discussion for proposed work and
some concluding remarks are presented in Section 6.

2 Dynamic model of HIV infection
The non-linear dynamical equation of HIV infected individuals
being treated with ART can be represented as [7]

dx1

dt = s − dx1 − (1 − u)βx1x3 + γ1(t),

dx2

dt = (1 − u)βx1x3 − μ2x2 + γ2(t),

dx3

dt = (1 − u2)κx2 − μ1x3 .

(1)

IET Syst. Biol., 2019, Vol. 13 Iss. 3, pp. 120-128
This is an open access article published by the IET under the Creative Commons Attribution-NoDerivs License
(http://creativecommons.org/licenses/by-nd/3.0/)

121



The state variables are the number of healthy CD4+ T cells in
cells/mm3 (x1), the number of HIV-infected CD4+ T cells
producing new virion in cells/mm3 (x2) and the concentration of
HIV free virion in copies/mL (x3). The healthy CD4+ T cells are
produced by the thymus at a rate s and die at a rate d. The healthy
CD4+ T cells are infected at a rate of β. The infected CD4+ cells
result from the infection of healthy CD4+ cells and die at a rate of
μ2. HIV-infected CD4+ T cells produce new virion at a rate of κ
and are cleared at a rate of μ1. As in [8], for a particular HIV
infected patient, these six biological rates are positive and assumed
to be constant. The nominal values and their corresponding unit of
these parameters are listed in Table 1. The functions u(t) and u2(t)
represent the two major categories of antiretroviral drugs to combat
HIV namely RTIs, and PIs, respectively. They represent the
effectiveness of two types of drugs, i.e. they are unit-less real
numbers between 0 and 1. From the point of view of control
engineering, the action of antiretroviral treatment will be
considered as a control action, which helps to regulate HIV
infection. Antiretroviral treatment is said to be effective when it
reduces and retain the HIV virus count below the threshold of 50
HIV RNA copies/ml. The γ1(t) represents the immune system
fluctuation of the immunal effect of a co-infection [7] and γ2(t) can
be thought as the contribution of the reservoir to actively infected
CD4+ T cells [34]. These additional terms which are added can be
thought as external disturbances to the system. The output
available for measurement of system (1) is assumed to be

y(t) = x1 + x2, (2)

where y(t) is the total number of CD4+ T cells in blood samples
collected from patients, which can be measured by flow cytometry
[24]. 
 

Assumption 1: The single application of an RTI is considered as
the control input which helps to reduce the HIV infection and this
leads to u2 = 0.

With Assumption 1, (1) and (2) can be rewritten in the
following form:

ẋ1

ẋ2

ẋ3

=
s − dx1 − βx1x3

βx1x3 − μ2x2

κx2 − μ1x3

+
βx1x3

−βx1x3

0
u

+
1 0
0 1
0 0

γ1(t)
γ2(t)

,

(3)

y = x1 + x2 . (4)

The equilibrium points of the nominal model (with nominal
parameters of the system and external disturbances
γ1(t) = γ2(t) = 0) are essential in the design of the proposed
controller. With u = 0, means without drug treatment, the nominal
model (3) has the following two equilibrium points with their
numerical values:

s
d , 0, 0 =: Xh = 1621, 0, 0 (5)

and

μ1μ2

βκ , s
μ2

− dμ1

βκ , κs
μ1μ2

− d
β = : Xinf

= 1068, 98.57, 24192 .
(6)

Obviously, Xh and Xinf represent the healthy and infected persons,
respectively. For the nominal system with the parameter values in
Table 1 and without control u = 0 (open loop response) in (3), a
typical disease progression can be simulated with the initial
condition [1621, 0, 1]T, as shown in Fig. 1. The numerical values of
Xinf will be considered as the initial condition in the simulation of
closed loop system response with controllers. 

To calculate the desired equilibrium point xd = x1
d x2

d x3
d T

for the nominal system, under control input u = uss with x2
d = r0 for

a given r0 ∈ ℝ+, ẋ1
d = ẋ2

d = ẋ3
d = 0 and (3) result in

0 = s − dx1
d − βx1

dx3
d + βx1

dx3
duss, (7)

0 = βx1
dx3

d − μ2r0 − βx1
dx3

duss, (8)

Table 1 Nominal values of parameters of HIV model
Parameter Description Typical value and units
t Time days
s source term for healthy CD4+ T cells 295 cells/(mm3 × day)
d death rate of healthy CD4+ T cells 0.182/day
β infectivity rate of free virus particles 3.89 × 10−6 ml/(copy × day)
μ2 death rate of infected CD4+ T cells 1.02/day
κ rate of virus produced per infected CD4+ T cells 5890 copies × mm3/cell × ml × /day)
μ1 death rate of virus 24/day
 

Fig. 1  Open loop simulation of the progression of the HIV disease
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0 = κr0 − μ1x3
d . (9)

Using (7)–(9), the following relation can be derived:

x1
d = s − μ2r0

d , (10)

x3
d = κ

μ1
r0, (11)

uss = 1 − μ1μ2d
βκ(s − μ2r0) . (12)

The control objective is to achieve x1 = x1
d, x2 = x2

d = r0, and
x3 = x3

d in the presence of external disturbances and parametric
uncertainties, which is discussed in the following section.

3 Control objective
This study intends to design a robust controller based on the STA
to reduce the viral load by 90% in 2 months after treatment begins,
and to maintain it below 50 copies/Ml after a half year, as per
recommendation by the U.S. HIV/AIDS treatment guidelines [2].
From (11) and Table 1, x2

d = (μ1/κ)x3
d = 0.204. The treatment

objective of this work is to suppress the concentration of infected
CD4+ T cells to r0(0 < r0 ≤ 0.2) cells/mm3, which is a more
stringent condition compared to the guidelines, using only the
output information, the measurement of total CD4+ T cell
concentrations, in the presence of parameter uncertainties and
external disturbances. The control objective is to maintain x1 = x1

d

and x2 = x2
d = r0 in the presence of external disturbances and

parametric uncertainties. So the output variable can be defined as

σ = (x1 − x1
d) + (x2 − x2

d) . (13)

Now the task is to design a robust finite-time output-feedback
tracking controller u = Ψ(σ, σ̇), which can make σ = σ̇ = 0 in the
presence of uncertainties. The analytical background related to the
design of such a controller is as follows:

Consider a single-input single-output nonlinear system of the
form as

ẋ = f (x) + g(x)u,
σ = σ(x), (14)

where x ∈ ℝn are the state variables; u ∈ ℝ are the manipulated
input variables; σ ∈ ℝ is a smooth scalar output. The output σ is
measured in real-time. Let the vector fields f (x), g(x) be smooth
but uncertain, and σ(x) be unknown smooth functions, defined on
an open set in ℝn. The uncertainties in system parameters restrict
immediate transformation of (14) to any normal form with the help
of standard approaches based on the information of f, g and σ.
 

Definition 1: The number r represents the relative degree of the
output σ of the system (14) with respect to the input u at the point
x0 if the conditions [35, 36]

ℒgℒ f σ(x) = ℒgℒ f
2 σ(x) = ⋯ = ℒgℒ f

r − 2σ(x) = 0,
ℒgℒ f

r − 1σ(x) ≠ 0
(15)

hold in the neighbourhood of the point x0. Here ℒg, ℒ f  denote the
Lie derivatives.

If system (14) possesses a relative degree r, the input–output
dynamics can be represented as

σ(r) = ℒ f
r σ(x) + ℒgℒ f

r − 1σ(x)u . (16)

Let ξ = [σ, σ̇, …, σ(r − 1)]T, then it is always possible [35] to define a
vector η ∈ ℝn − r such that the map

x = Φ(ξ, η) (17)

is a diffeomorphism on ℝn and the η dynamics, which are referred
to as the ‘internal dynamics’/ ‘zero dynamics’ [36], can be
expressed as follows:

η̇ = q(ξ, η) . (18)

The system is said to be fully linearisable if r = n, which indicates
there are no internal dynamics. The design of a robust output-
feedback tracking controller be achieved under the following
assumption:
 

Assumption 2: The reduced (zero) dynamics of the system (18)
is asymptotically stable.
 

Assumption 3: The term ℒ f
r σ(x) and the gain of the controller,

ℒgℒ f
r − 1σ(x), of the input–output dynamics (16) are globally

bounded and Lipschitz.
According to Assumption 2, to design the finite-time output-

feedback tracking controller, the internal dynamics of the HIV
infection system must be stable, which is analysed in the following
section.

3.1 Asymptotic stability of reduced (zero) dynamics of HIV
system

The zero dynamics stability is analysed for the nominal model of
the HIV dynamics. Assuming γ1(t) = γ2(t) = 0 in (3) and comparing
(14) and (3), the following can be written

f (x) =
s − dx1 − βx1x3

βx1x3 − μ2x2

κx2 − μ1x3

and g(x) =
βx1x3

−βx1x3

0
.

Differentiating output (13) with respect to t once, the following can
be written:

σ̇ = ℒ f σ(x) + ℒgσ(x)u, (19)

where ℒ f σ(x) = s − dx1 − μ2x2 and ℒgσ(x) = 0. The control
coefficient is identically zero for the first derivative of the output.
So differentiating (19) once again we get

σ̈ = ℒ f
2 σ(x) + ℒgℒ f σ(x)u, (20)

where ℒ f
2 σ(x) = − d(s − dx1 − βx1x3) − μ2(βx1x3 − μ2x2) and

ℒgℒ f σ(x) = β(μ2 − d)x1x3 ≠ 0 for {x ∈ ℝ3 x1x3 ≠ 0}. According
to definition 1, the relative degree of the system with respect to
output σ(x) is 2 in {x ∈ ℝ3 x1x3 ≠ 0}. Using the relation (20), the
state feedback control law

u = − ℒ f
2 σ(x)

ℒgℒ f σ(x) + v (21)

yields a system

σ̈ = v . (22)

The system order n = 3 and the relative degree of the system is 2,
which is strictly less than the system order. This results in the
existence of internal dynamics and to analyse its evolution, the
system must be represented in the normal form.

In order to find the normal form, we set

ξ1 = ϕ1 = σ(x), (23)
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ξ2 = ϕ2 = ℒ f σ(x) . (24)

Then ϕ3 is selected such that the condition ℒgϕ3 = 0. The one such
choice is η = ϕ3 = x3 − x3

d. Now we can define a transformation

z = Φ(x) =
ξ1

ξ2

η
=

x1 + x2 − x1
d − x2

d

s − dx1 − μ2x2

x3 − x3
d

(25)

whose Jacobian matrix

∂Φ
∂x =

1 1 0
−d −μ2 0
0 0 1

(26)

is non-singular for all x ∈ ℝ3. Using (23)–(25) and (20), system
(14) can be represented in the normal form:

ξ̇1 = ξ2,
ξ̇2 = ℒ f

2 σ(x) + ℒgℒ f σ(x)u,

η̇ = − μ1η + κ(ξ2 + dξ1)
d − μ2

,
(27)

The detailed derivation of (27) is given in Appendix.
In order to ensure σ = σ̇ = 0 for all times, the system must be

confined to the subset

Ω∗ = {x ∈ ℝ3:σ(x) = ℒ f σ(x) = 0} . (28)

In another way, it can be written as

Ω∗ = {x ∈ ℝ3:ξ1 = ξ2 = 0} (29)

and this can be achieved by zeroing the input. For the HIV system,
the zero dynamic is one-dimensional and can be easily obtained by
replacing the constraints ξ1 = ξ2 = 0 (which define the manifold
Ω⋆) in the system equations (27). Imposing these constraints one
can obtain

η̇(t) = − μ1η(t) . (30)

The solution to (30) is η(t) = exp( − μ1t)η(0), which indicates that
the internal dynamics is exponentially stable for any initial
condition η(0).
 

Remark 1: As limt → ∞ η(t) = 0 which ensures x3 = x3
d.

4 Design and analysis of STC and differentiator
The controller based on STA is one of the popular controllers in the
family of higher order sliding mode controller (HOSMC) presented
in [28]. The advantage of this control strategy is that only with the
knowledge of the relative degree of the system and appropriate
bounds for a few expressions, the controller can be designed. So it
can be thought as a black-box oriented control. Thus STA presents
an alternative attractive approach to control the HIV dynamics to
reduce the viral load by 90% in 2 months after treatment starts and
to suppress it to below 50 copies/ml after half year. The system
dynamics is inherently non-linear and with this non-linear control,
the stability and performance can be ensured in the whole
operating range of the system. Its design does not depend on the
model's parameters and external disturbances, which guarantees the
improved robustness with respect to parameter uncertainties and
external disturbances.

So more precisely our control objective is to make σ = 0. This
guarantees x1 = x1

d and x2 = x2
d = r0 in the presence of parameter

uncertainties and external disturbances. The dynamics of σ is given
in (20) which indicates that the relative degree of the output

variable is 2. The STA is a continuous control algorithm for the
system with a relative degree, r = 1 in the presence of bounded
uncertainties. To deal with this situation, the methodology of
designing the controller for this problem involves three steps.

4.1 Step 1: sliding manifold design

To ensure the relative degree 1, the sliding variable is designed as

S = σ̇ + c0σ, (31)

where the coefficient c0 ∈ ℝ+ is chosen such that (31) has the
desired behaviour. With the control based on STA enforces S = 0
in finite time, which ensures that σ will converge to zero
asymptotically This guarantees the desired objective x1 = x1

d and
x2 = x2

d.

4.2 Step 2: design of robust exact differentiator to estimate
the sliding variable

The first derivative of σ is required to implement the control and
which is not available and must be evaluated by means robust exact
differentiator which is robust against the measurement noise and
having the property of finite time convergence. Recently, in [29], it
is proposed that the arbitrary order differentiator based on higher-
order sliding modes is an effective, yet robust, solution. Here the
input/output relative degree is r = 2, only the first derivative of σ
needs to be estimated under the assumption that the first derivative
of σ having a known global Lipschitz constant C2 > 0, and the first-
order differentiator is as follows:

Consider the auxiliary system q̇0(t) = υ, where υ is a control
input. Let ε(t) = q0(t) − σ(t) and let the task be to keep ε(t) = 0 in a
second-order sliding mode. In that case ε(t) = ε̇(t) = 0, which
means that q0(t) = σ(t) and σ̇(t) = υ. The system can be rewritten as

ε̇(t) = − σ̇(t) + υ; σ̈(t) < C2 . (32)

The function σ̇(t) cannot be smooth, but its derivative σ̈(t) exists
almost everywhere due to the Lipschitz property of σ̇(t). The
resulting form of the differentiator is

q̇0(t) = υ = − ρ0 ε(t) 1/2 sign(ε(t)) + q1(t),
q̇1(t) = − ρ1sign(ε(t)),

(33)

where both υ and q1 can be taken as the differentiator outputs and
the tuning conditions are ρ1 > C2, ρ0 > 4C2((ρ1 + C2)/(ρ1 − C2)),
where C2 is a Lipschitz constant of σ̇(t).

4.3 Step 3: controller design

Taking the time derivative of (31) and using (19) and (20) the
sliding dynamics can be written as

Ṡ = σ̈ + c0σ̇

= ℒ f
2 σ(x) + ℒgℒ f σ(x)u + c0ℒ f σ(x)

= ℱ(σ, t) + G(σ, t)u,
(34)

where ℱ(σ, t) = ℒ f
2 σ(x) + c0ℒ f σ(x) and G(σ, t) = ℒgℒ f σ(x). Due

to the heavy uncertainties in system parameters, measurement and
modelling errors and external disturbances, the exact values of the
functions ℱ(σ, t) and G(σ, t) are unknown. With these uncertainties
and u = G−1(σ, t)uT (to express the sliding dynamics in regular
form), where uT is the controller input based on STA, (34) can be
rewritten as

Ṡ = uT + ℱ(σ, t) + ℱ~ (σ, t), (35)
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where function ℱ represents the nominal or undisturbed design
model, and function ℱ~  takes into account measurement, modelling
error, uncertainties in the parameters, and external disturbances.

Now, a two-component control action based on STA is
proposed as uT = ueq + ust, where ueq is the equivalent control for
system (34) and ust is designed using STA.

The expression of ueq is computed from the undisturbed system
(35) (i.e. ℱ~ (σ, t) = 0). It is obtained by solving uT in the algebraic
equation Ṡ = 0, on the sliding surface (i.e. with σ = 0). The
expression for ueq is

ueq = − ℱ(0, t)
= − d(s − dx1

d − βx1
dx3

d)
−μ2(βx1

dx3
d) − μ2x2

d) + c0(s − dx1
d − μ2x2

d) .

Using this formula, (35) can be written as

Ṡ = ueq + ust + ℱ(σ, t) + ℱ~ (σ, t) = ust + G~ (σ, t), (36)

where G~ (σ, t) = ℱ(σ, t) − ℱ(0, t) + ℱ~ (σ, t).
 

Assumption 4: The uncertain term G~ (σ, t) and its time derivative
G~̇ (σ, t) ∈ ℝ are upper bounded by known constants, ρ, ρ̄ ∈ ℝ+ as
G~ (σ, t) ≤ ρ, G~̇ (σ, t) ≤ ρ̄.

Now, the control action expression for the term ust is

ust = − k1⌈S⌋1/2 + φ, (37)

φ̇2 = − k2sign(S), (38)

where k1, k2 ∈ ℝ+ are constants, and ⌈S⌋1/2 = S 1/2 sign(S).
Substituting this control law in an open loop system (36), the

closed loop system can be obtained by

Ṡ = − k1⌈S⌋1/2 + φ + G~ (σ, t),
φ̇ = − k2sign(S) .

(39)

By means of the transformation

z = G~ (σ, t) − k2∫
0

t
sign(S) dτ (40)

system (39) may be rewritten as

Ṡ = − k1⌈S⌋1/2 + z, (41)

ż = − k2sign(S) + G~̇ (σ, t) . (42)

With Assumption 4, the perturbation term is bounded, i.e.
G~̇ (σ, t) ≤ ρ̄. A necessary condition of convergence is k2 > ρ̄, if, in
addition, we select k1 sufficiently large, the controller (37)
guarantees the existence of a second-order sliding mode S = Ṡ = 0
in system (39). In [28, 37], a Lyapunov function is proposed that
permits the design of k1 and k2, which also provides the estimation
of convergence time of sliding variable.
 

Theorem 1: Consider the closed loop systems (41) and (42).
Then the closed loop dynamics is finite time stable if the gains are
selected such that k1 > 0 and k2 > ρ̄ [37].
 

Proof: Choosing the Lyapunov function as V(Θ) = ΘTPΘ, the
trajectories of the closed loop systems (41) and (42) will converge
to the origin in finite time smaller than t [28, 37]

t = 2
ξ V1/2(Θ(0)), (43)

where ΘT = S 1/2 sign(S) z  and ξ = λmin
1/2(P)λmin(Q)/λmax(P) for any

positive and symmetric definite matrices P and Q. The gains k1 and
k2 are enough to bring S ≡ 0 in finite time. This ends the proof. □

5 Simulation results
In order to validate the proposed controller, through simulation it
has been shown that the controller based on STA provides excellent
treatment performance in the presence of parametric uncertainties
and external disturbances. Moreover, a comparative analysis of the
controller based on the STA and controller based on feedback
linearisation is provided.

To investigate the effect of treatment with a controller based on
feedback linearisation is designed as in [18] and simulated with the
initial condition X = [1068 98.57 24192]T. It has been assumed
that a patient is not receiving treatment for 60 days after infection.
If there is no parametric uncertainty in β, it is observed from Fig. 2
that the controller based on feedback linearisation is efficient to
reduce the viral load from 50 days and can maintain a steady state
value up to 200 days. The performance of this controller
deteriorates significantly if there is variation in the only one
parameter like β. From this, it can be concluded that the controller
based on feedback linearisation is not robust against measurement
and modelling error, uncertainties in the parameters, and external
disturbances. 

In contrast, to ensure the robust performance of the proposed
controller, simulation is carried out on ten patients with a wide
range of variations in the six systems parameters s, d, β, μ1, μ2, κ.
The ranges of these parameters are chosen as per clinical
observations [34]. The ranges of model parameters considered in
this work are indicated in Table 2. For simulation purpose, each
parameter is varied randomly about its nominal value within the
specified range. The controller gains are chosen as
k1 = 0.25, k2 = 0.2. The differentiator gains are selected as ρ0 = 12

Fig. 2  Effectiveness of the controller based on feedback linearisation with uncertainty in the parameter β
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and ρ1 = 16. It can be noticed from the simulation results in Fig. 3
for all ten patients viral load is reduced by 90% in 2 months after
treatment starts and it is able to keep below 50 copies/ml after half
year. This is achieved in the presence of model parameter
uncertainties only. To prove the efficacy of the controller based on
STA with respect to various initial conditions, it is shown in Fig. 4
that the treatment goal can be achieved even if there is a random
variation in the initial condition. In this work, the initial conditions
for the three states x = [x10, x20, x30] are generated randomly in the
ranges of 800 ≤ x10 ≤ 1600, 10 ≤ x20 ≤ 80 and 1000 ≤ x30 ≤ 22 as
in [18] and simulated for ten patients. Fig. 5 shows the robust
performance of STA when all six model parameters are varied
randomly and the system model is affected by external
disturbances. The external disturbances are considered in the form

of γi(t) = ai + bisin t for i = 1, 2, where ai and bi are also varied
randomly between 0 and 0.5. 

6 Conclusion
HIV treatment, one of the challenging control problems has been
discussed. An attempt has been made for the treatment of the
disease. To serve this purpose a robust feedback controller based
on output information has been designed to control the drug
delivery. The continuous HOSM controller based on STA is
designed as a feedback controller for the non-linear uncertain HIV
system. This controller stabilises the concentration of free virus to
an undetectable level. The stabilisation and robustness of the entire
system have been achieved in the presence of the external
perturbation such as immune system fluctuation, an additional

Table 2 Range of parameters
Parameter Range
s 34.67 ≤ s ≤ 758.57
d 0.045 ≤ d ≤ 2.1877
β 2 × 10−6 ≤ β ≤ 6 × 10−6

μ2 1 ≤ μ2 ≤ 5.57
μ1 3 ≤ μ1 ≤ 18.8
κ 2.4 × 103 ≤ κ ≤ 9.8 × 103

 

Fig. 3  Performance of the controller based on STA with uncertainty in all the six parameters
 

Fig. 4  Performance of the controller based on STA with different initial conditions and with uncertainty in all the six parameters
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contribution of infected cells from all viral reservoir processes and
model parametric uncertainties. Numerical examples are presented
to show the robust high-accuracy performance of the STC. The
control effort will be helpful to design drug dosages in AIDS
treatment. Also, for future studies, the applicability of the
controller in a practical scenario is to be assessed. The drug
dosages cannot be administered in a continuous fashion for 200
days as in the example considered. So probably a hybrid model
with intermittent continuous drug levels with a period of no drug
action is a better model to study in the future. The results obtained
are to be verified for the in-vitro environment. Finally, testing the
proposed algorithm in-vivo and getting successful results, will be a
milestone.
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8 Appendix
 
8.1 Derivation of normal form

Following is the derivation of (27). Using (25) and (3) with
γ1(t) = γ2(t) = 0, the derivative of ξ1 can be written as

ξ̇1 = ẋ1 + ẋ2 = s − dx1 − μ2x2 = ξ2 .

Using (24) and (20), the derivative of ξ2 can be written as

Fig. 5  Performance of the controller based on STA with uncertainty in all the six parameters and external disturbances
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ξ̇2 = σ̈(x) = ℒf
2σ(x) + ℒgℒfσ(x)u .

Using (25), the derivative of η can be written as

η̇ = ẋ3 = κx2 − μ1x3

= κx2 − μ1x3 + μ1x3
d − μ1x3

d

= − μ1(x3 − x3
d) + κx2 − μ1x3

d

= − μ1η + κx2 − μ1x3
d .

Using the relation (11), the above relation can be rewritten as

η̇ = − μ1η + κ(x2 − x2
d)

= − μ1η + κx2(d − μ2) − κx2
d(d − μ2)

d − μ2

= − μ1η + κs + κx2(d − μ2) − κs + κμ2x2
d − κdx2

d

d − μ2

= − μ1η +
κs + κx2(d − μ2) − κd

s − μ2x2
d

d − κdx2
d

d − μ2

= − μ1η + κs + κx2(d − μ2) − κdx1
d − κdx2

d

d − μ2

= − μ1η + κ(s − dx1 − μ2x2) + κd(x1 − x1
d) + κd(x2 − x2

d)
d − μ2

= − μ1η + κ(ξ2 + dξ1)
d − μ2

.

128 IET Syst. Biol., 2019, Vol. 13 Iss. 3, pp. 120-128
This is an open access article published by the IET under the Creative Commons Attribution-NoDerivs License

(http://creativecommons.org/licenses/by-nd/3.0/)


