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Abstract: Additive manufacturing (AM) or 3D printing is a digital manufacturing process and offers
virtually limitless opportunities to develop structures/objects by tailoring material composition,
processing conditions, and geometry technically at every point in an object. In this review, we present
three different early adopted, however, widely used, polymer-based 3D printing processes; fused
deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA) to create
polymeric parts. The main aim of this review is to offer a comparative overview by correlating poly-
mer material-process-properties for three different 3D printing techniques. Moreover, the advanced
material-process requirements towards 4D printing via these print methods taking an example of
magneto-active polymers is covered. Overall, this review highlights different aspects of these printing
methods and serves as a guide to select a suitable print material and 3D print technique for the
targeted polymeric material-based applications and also discusses the implementation practices
towards 4D printing of polymer-based systems with a current state-of-the-art approach.

Keywords: 3D printing; 4D printing; fused deposition modelling; selective laser sintering;
stereolithography; polymers

1. Introduction

3D printing or additive manufacturing (AM) is a digital manufacturing process,
in which the materials are added layer by layer to create 3D objects directly from the
computer-aided design (CAD) models [1–8]. 3D printing has gained significant popularity
in the last two decades due to a number of appealing advantages such as the limitless
design freedom and capability to produce low cost and multifunctional objects with highly
delicate/complex structures in a short period of time [9]. For example, 3D printing of
concrete materials possesses the potential to reduce construction waste by 30–60%, labour
cost by 50–80%, and construction time by 50–70% [10,11]. Therefore, 3D printing has
become a suitable manufacturing technique in both rapid prototyping as well as in various
engineering fields such as mechanical engineering, civil engineering, aerospace, electronics,
biomedical, etc. [5,6,9,12–19].

A variety of AM methods are available to 3D print a wide range of materials in-
cluding metals [20–23], polymers [24–29], polymer composites [30–33], ceramics [34–39],
and cement [40–43]. The ASTM (ISO/ASTM 52900:2015) has classified the range of AM
processes into seven general categories. This classification is made on the basis of the
fundamental principle of operation, and it includes material jetting, binder jetting, vat
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photopolymerization, powder bed fusion, material extrusion, direct energy deposition, and
sheet lamination [5]. Furthermore, according to the type of base material used, AM can be
grouped into three different categories i.e., solid-based, powder-based, and liquid-based
(Figure 1). The solid-based AM is further classified into laminated object manufacturing
(LOM), fused deposition modelling (FDM), wire and arc additive manufacturing (WAAM),
and electron beam free form fabrication (EBF3). Powder-based additive manufacturing can
be classified into selective laser sintering (SLS), electron beam melting (EBM), selective laser
melting (SLM), and laser metal deposition (LMD). The liquid-based methods mostly include
material jetting (MJ) and vat-based printing such as stereolithography (SLA) and digital
light processing (DLP). We refer to these excellent review articles to get a comprehensive in-
sight into the above-mentioned AM techniques, LOM [44–46], FDM [47–52], WAAM [53,54],
EBF3 [55], SLS [56,57], EBM [58,59], SLM [39,59,60], LMD [61,62], SLA [63–65], DLP [66–68],
and MJ [69–71].
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Figure 1. Classification of AM techniques based on the type of base materials used and the scope of the current review as
highlighted (FDM, SLS, and SLA). The 3D printing image is taken from [72].

A polymer is a substance or material consisting of very large molecules, or macro-
molecules, composed of many repeating subunits [73]. Polymers are one of the prominent
materials in a number of different applications due to their wide range of mechanical,
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thermal, electrical, fire-resistant, and biocompatible properties. According to the Web of
Science (accessed on 2 August 2021), more than 60% of AM studies are focused on polymer
printing. The polymers can be 3D printed with all three (i.e., solid-based, powder-based,
and liquid-based) AM techniques [74]. FDM is the most conventional and widely used
solid-based 3D printing technique to create polymer parts. On the other hand, SLS is a
prominent AM technique to produce polymer parts using polymeric powders as a base
material, while a vat-based technique, SLA, is another widely used early adopted AM
technique to create polymer parts by processing the polymeric liquid as a base material.
The details of these print methods are discussed in Section 2.

Although there are a number of review articles available in the literature focusing
on various aspects of polymer printing based on FDM [47–52,75–77], SLS [1,78–81], and
SLA [82–85], to the best of the authors’ knowledge, a comprehensive study focusing on
correlating the material-process-properties for these techniques is not available for both
conventional 3D printing and emerging 4D printing techniques. In this article, we aim to
provide the correlation of material-process-properties for these three most conventional
yet widely adopted polymer-based 3D printing techniques; fused deposition modelling
(FDM), selective laser sintering (SLS), and stereolithography (SLA). Furthermore, we also
briefly cover how these methods are adopted towards the 4D printing (3D printing of smart
materials) of polymer-based materials giving an example of 4D printing of magnetic field
responsive polymers.

2. Printing Process

The fundamental process of 3D printing is the formation of parts by printing successive
layers of materials that are formed on top of each other. The workflow of the 3D printing
process is illustrated in Figure 2. Firstly, the CAD model of the object to be developed is
created, then the standard tessellation language (.stl) file of the CAD is generated. The
STL file creation process mainly converts the continuous geometry in the CAD file into
small triangles [86]. The .stl file is then exported in a model slicing software which creates
a tool path for the 3D printer. Here, the 3D model is translated to 2D slices that contain the
information of cross-sections [87]. The 3D printer then starts the material processing and
layering process. The final product is then taken out of the printer. There are a number of
different factors in the printing process that determine the overall quality of the printed
parts. For example, the .stl file can influence the overall quality of the printed objects. The
finer the size of the triangles in .stl file, the better the printed object/part shape fidelity. The
part orientation during the printing process is responsible for the mechanical properties
while the environmental factors such as temperature and humidity also play the role on
the overall quality of the final product [88].

Fused deposition modelling (FDM) also known as fused filament fabrication (FFF) is a
process of depositing thermoplastic filaments layer by layer on a build platform [30,49,89–95].
The polymer filament is heated to a semi-solid state and deposited on the print bed or
heated platform. The nozzle follows the path as of the final object in the given layer. For
the next consequent layer, the platform moves one step lower, or the nozzle moves one step
upward, and the material is extruded and again the nozzle follows the path of the object in
the given layer. To generate the path that the nozzle follows, a slicer slices the model layer
by layer and produces a G-code (computer numerical control programming language),
which is followed by the nozzle in each layer. The height that the nozzle travels after each
layer is the layer thickness of the model. The nozzle temperature, bed temperature, and
layer height are the responsible parameters for the fractional behaviour of the 3D printed
parts [96].
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Figure 2. The workflow of the 3D printing process.

Print parameters can be grouped as machine parameters and process parameters for
each printing technique (Figure 3).
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The machine parameters for FDM printing are bed calibration and nozzle diameter
while the process parameters are nozzle temperature, bed temperature, extrusion width,
and raster angle [52,97], see Figure 3 (left) for the schematic illustration. The bed calibration
is one of the most important considerations. FDM is a contact print method as the nozzle
is used to directly deposit the material layer by layer, therefore, the distance between the
nozzle and bed should be at a standard distance and constant throughout the bed. An
improper bed calibration leads to the uneven distance between the nozzle and the bed at
two (or more) different points on the print platform/bed, which causes warpage and also
leads to the printer hitting the bed and the prints. The diameter of the 3D printing nozzle
can be changed/replaced which however impacts the part quality and production time.
The use of a nozzle with a large hole diameter accelerates the part production time [98].
It has also been reported that increasing the nozzle diameter increases the part quality
and mechanical properties in FDM 3D printing [99]. The other important parameter is the
ambient temperature which causes part warpage. For example, PLA part warpage of about
50%, 30%, and 10% at 10 ◦C, 15 ◦C, and 20 ◦C (ambient print environment temperature)
respectively, is reported [100]. The process parameters affecting part properties in FDM
are raster angle, extrusion width, extrusion rate, bed temperature, nozzle temperature,
and nozzle speed. The raster angle is the angle between the direction of the nozzle and
the x-axis (or y-axis, depending on notation) of the printing platform [101]. The extrusion
rate is the rate at which the filament is extruded from the nozzle onto the build platform.
Bed temperature refers to the temperature of the build platform. The bed temperature is
required to maintain the adhesion between the build platform and the print part and avoid
warpage [102]. Nozzle temperature is the temperature at which the material is melted
and extruded from the nozzle. It has a high influence on the mechanical properties and
microstructure of the 3D printed parts [99]. For instance, the increase in relative density
(from 89.9% to 92.8% for PEEK) with the increase in nozzle temperature from 370 ◦C to
390 ◦C is reported [103]. Nozzle speed is the speed at which the nozzle moves while
depositing/printing the filament melt from the nozzle onto the build platform. It greatly
influences the dimensional precision of the printed parts although print time is reduced.
For example, the increase in wall thickness of ring-shaped design from 2.00 mm to 2.17 mm
with the increase in nozzle speed from 30 mm/s to 90 mm/s is reported [104].

Selective laser sintering (SLS), a variant of powder bed fusion and widely used AM
technique, is a process used to produce objects from powdered materials using one or
more lasers to selectively fuse the particles at the surface, layer upon layer, in an enclosed
chamber [57,105–108]. The powders can be fused together with different particle binding
mechanisms namely solid-state sintering, chemically induced binding, liquid phase sinter-
ing (partial melting), and full melting [109]. The working schematic of SLS is described in
Figure 3 (right), also see Figure 4 for SLS process parameters. The printing system consists
of a laser supply source, scanning system, roller, powder supply platform, and a sintering
platform. Usually, the powders are fused by molecular diffusion under the influence of a
high-power laser. After the first layer of powders is fused the sintering platform moves
a step downwards and the next layer of powders are fused [110]. The process continues
until the top layer of the final product is fused. The movement of the laser is determined
again by the G-code generated from the slicer like in FDM. After the sintering process is
completed, the un-sintered powder is removed, and the part is extracted from the platform.

The energy density (Equation (1)), in SLS, is the most vital parameter that is responsible
for the overall process and part property. It is the amount of energy stored in a given
system or region of space per unit volume.

ED =
P

v.h
× d

h
(1)

where ED is energy density, P is the laser power, d is laser beam diameter, v is scan velocity,
and h is the hatch spacing. The hatch spacing, laser scanning speed, laser power, and
preheat temperature are therefore determining process parameters responsible for the part
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properties of SLS printed objects [105,111,112], see Figure 4. Laser power is the input power
set as the ratio of the total permissible power as per the requirement of a given material and
layer thickness [113]. Laser scanning speed is the rate at which the laser beam is moved
along the hatching or contour lines. It influences the maximum energy at a point of material
and the total time required to complete a product [114]. Hatch spacing is also known as
scan spacing is the distance between two consecutive laser beams. Preheating temperature
is another important parameter that affects the part property in SLS. A powder that is
not preheated requires a higher-power laser beam source to melt. Furthermore, higher
preheating also reduces the temperature gradient between the sintered and un-sintered
parts—contributing to the elimination of thermal stress and avoiding distortion [115].
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Stereolithography apparatus (SLA), a vat-based and the early adopted AM tech-
nique, works on the process of 3D printing by using photopolymerization in which
the photocurable resin is solidified through photopolymerization initiated by absorb-
ing light [82,84,116–119]. Photopolymerization refers to a technique that uses rays of light
to propagate a chain polymerization process which results in the photo-crosslinking of
the pre-existing macromolecules [116]. The crosslinker is another component/material
that links one polymer chain to another by the covalent or an ionic bond. The photopoly-
merization results in the solidification of a pattern inside the resin layer in order to hold
the subsequent layers. A photoinitiator or photoinitiator system is required to convert
photolytic energy into the reactive species (radical or cation) which can drive the chain
growth via radical or cationic mechanism [116]. The measurement of attenuation of light
by a chemical species at a given wavelength is given by the molar attenuation coefficient.
The molar attenuation coefficient is a measurement of how strongly a chemical species
attenuates light at a given wavelength. Typically, photoinitiators with molar attenuation
coefficients at a short wavelength (UV < 400 nm) are used to initiate the photochemical
reaction [120]. Using a computer-controlled laser beam, a pattern is illuminated on the
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surface of a resin. The area in the resin where the light beam strikes solidify. This principle
is used repeatedly layer by layer to solidify the resin and form each layer of a product in
SLA 3D printing. The thickness of the layer is controlled by the energy of the light source
and exposure time [64].

The major process parameters that influence the quality of SLA printed parts are fill-
cure depth, layer thickness, and post-curing, see Figure 3 (middle) for the illustration of the
process parameters. The cure depth depends on the energy of the light being exposed to the
resin. The energy is controlled by the laser power and the time the resin is being exposed to
the light. The curing depth (Cd) should be high enough to avoid excessive fabrication time.
However, the curing depth must be low enough to avoid over polymerization resulting in
the over-cured part with poor resolution. Curing depth is given by an equation based on
the Beer–Lambert equation (Equation (2)):

Cd = Dp log
E
Ec

(2)

where Dp is the penetration depth (m), E is the light exposure (J m−2), and Ec is the critical
light exposure (J m−2) [121]. The wavelength of the laser light being used is another
important consideration. The wavelength of the UV light reported in the literature is in the
range of 300 nm to 400 nm [63]. Usually, in SLA, objects/parts need to be post-cured after
printing. Post-curing is performed to enhance the mechanical properties of the printed
objects/parts. For example, a post-curing time up to 60–90 min for SLA 3D printed dental
parts such as crown and bridge materials is reported [122].

The printing parameters required for FDM, SLS, and SLA 3D printing are collectively
summarized in Figure 3. The initial printing parameters such as quality of the .stl file,
part orientation, and environmental factors are common printing process parameters in
all three techniques. However, due to the variation in the structure formation technique,
the printing process and a number of process parameters differ in each of these methods.
The printing techniques can be chosen according to the requirement of the simplicity of
printing, mechanical properties, printing time and layer resolution. For instance, SLA has
the capability of printing high-resolution parts of up to 10 µm [33], while the minimum
layer resolution of the SLS printed part is 20 µm [123] and the FDM only has the capability
of printing high-resolution parts of up to 40 µm [124]. The value for the print resolution
should be considered as a comparative guide only because the exponential growth of the
3D printing industry is continuously offering optimized versions of the 3D printers. The
print resolution of some common commercially available 3D printers is listed in Table 1.
Based on the data provided by the manufacturer, the print resolution up to 25 µm [125],
50 µm [126], 1 µm [127] for FDM, SLS, and SLA, respectively, is also claimed. On the other
hand, in terms of the process simplicity in printing, the FDM is the most suitable because
the process is as simple as heating the filament polymer to a semi-solid state and depositing
it directly on the print bed. SLS is a comparatively complicated process among others,
it requires the movement of two systems: roller and laser light. A list of commercially
available FDM, SLS, and SLA 3D printers along with their material and print specifications
is summarized in Table 1. This table provides an overview for selecting the desired 3D
printer on the basis of the required print volume, material, and print process. From Table 1,
it is also evident that the FDM provides a wide range of materials for 3D printing while
SLA provides a high print resolution. Further discussion based on the material and print
part properties is presented in Sections 3 and 4.
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Table 1. A directory of commercially available industrial-grade FDM, SLS, and SLA 3D printers and their specifications,
information is collected from the supplier’s website. The green highlight indicates the print material best suitable for the
given printer according to the supplier. For SLA, the materials are categorized based on their type/specific properties as
claimed by the supplier.

AM
Technology Name Dimension of

Printer (mm)

Print
Volume

(cm3)

Layer
Thickness

(mm)
Available Material/Type Ref.

FDM

Stratasys F900 914 × 609 × 914 508,756.16 0.127–0.5 PLA ABS PEEK Nylon ULTEM [128]

Essentium HSE
280i HT 695 × 495 × 600 206,415 0.1–0.55 PLA ABS PEEK Nylon ULTEM [129]

CreatBot
PEEK-300 300 × 300 × 400 36,000 0.04–0.4 PLA ABS PEEK Nylon ULTEM [130]

Anisoprint
ProM IS 500 600 × 420 × 300 75,600 0.06 PLA ABS PEEK Nylon ULTEM [131]

3DGence F420 380 × 380 × 420 60,648 0.05 PLA ABS PEEK Nylon ULTEM [132]

Roboze Argo
500 500 × 500 × 500 125,000 0.025–0.2 PLA ABS PEEK Nylon ULTEM [125]

WASP 4070
Tech 400 × 400 × 700 112,000 0.1 PLA ABS PEEK Nylon ULTEM [133]

Cincinnati
MAAM 1050 × 1015 × 1015 1,081,736.25 0.2 PLA ABS PEEK Nylon ULTEM [134]

Tractus 3D
T850P 280 × 280 × 400 31,360 0.01–0.8 PLA ABS PEEK Nylon ULTEM [135]

AON-M2+ 450 × 450 × 640 129,600 0.05–0.5 PLA ABS PEEK Nylon ULTEM [136]

Kumovis R1 180 × 180 × 150 4860 0.1–0.4 PLA ABS PEEK Nylon ULTEM [137]

Ultimaker S5 330 × 340 × 300 33,660 0.02–0.25 PLA ABS PEEK Nylon ULTEM

SLS

Sintratec Kit 100 × 100 × 100 1000 0.05–0.15 PA 12 PA 11 TPU TPE PP [138]

Red Rock 3D 180 × 180 × 180 5832 0.1 PA 12 PA 11 TPU TPE PP [139]

Sinterit Lisa Pro 110 × 160 × 245 4312 0.05 PA 12 PA 11 TPU TPE PP [140]

Formlabs Fuse 1 165 × 165 × 300 8167.5 0.1 PA 12 PA 11 TPU TPE PP [141]

Sintratec S2 �160 × 400 8038.4 0.1 PA 12 PA 11 TPU TPE PP [142]

Sharebot
SnowWhite 2 100 × 100 × 100 1000 0.05 PA 12 PA 11 TPU TPE PP [143]

Wematter
Gravity 300 × 300 × 300 27,000 0.1 PA 12 PA 11 TPU TPE PP [144]

XYZ printing
MfgPro230 xS 230 × 230 × 230 12,167 0.08–0.2 PA 12 PA 11 TPU TPE PP [145]

Nexa3D
QLS350 350 × 350 × 400 49,000 0.05–0.2 PA 12 PA 11 TPU TPE PP [146]

Shining 3D
EP-P3850 380 × 380 × 500 72,200 0.08–0.3 PA 12 PA 11 TPU TPE PP [147]

Prodways
Promaker

P1000
300 × 300 × 360 32,400 0.06–0.12 PA 12 PA 11 TPU TPE PP [148]

EOS Formiga P
110 Velocis 200 × 250 × 330 16,500 0.06–0.12 PA 12 PA 11 TPU TPE PP [149]

3D Systems
ProX SLS 6100 381 × 330 × 460 57,835.8 0.08–0.15 PA 12 PA 11 TPU TPE PP [150]

Farsoon eForm 250 × 250 × 320 20,000 0.06–0.3 PA 12 PA 11 TPU TPE PP [151]

SLA

Nyomo’s
Minny 44 × 28 × 70 86.24 0.01 Standard

resin Castable Bio
compatible Flexible Clear [152]

Asiga’s Pico 2 51 × 32 × 76 124.032 0.001 Standard
resin Castable Bio

compatible Flexible Clear [127]

XYZprinting’s
Nobel 1.0 A 128 × 128 × 200 3276.8 0.025–0.1 Standard

resin Castable Bio
compatible Flexible Clear [153]

Formlabs Form
2 145 × 145 × 175 3679.375 0.025–0.2 Standard

resin Castable Bio
compatible Flexible Clear [154]

Photocentric’s
Liquid Crystal 121 × 68 × 160 1316.48 0.05 Standard

resin Castable Bio
compatible Flexible Clear [155]

Nexa3D’s the
NXV 220 × 120 × 380 10,032 0.03 Standard

resin Castable Bio
compatible Flexible Clear [126]

DWS’s XPRO S 300 × 300 × 300 27,000 0.01 Standard
resin Castable Bio

compatible Flexible Clear [156]

UnionTech’s
RSPro 800 800 × 800 × 550 352,000 0.07–0.25 Standard

resin Castable Bio
compatible Flexible Clear [157]

3D Systems’
ProX 950 1500 × 750 × 550 618,750 0.01 Standard

resin Castable Bio
compatible Flexible Clear [158]
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3. Print Materials

The common print materials available for FDM, SLS, and SLA 3D printing are given
in Table 2. The material for FDM and SLS are thermoplastic polymers. Due to the process
requirements, for FDM, the material is in filament form, while for SLS, it is in powder
form. The thermoplastic polymers can be classified into amorphous and semi-crystalline
thermoplastic. Amorphous thermoplastic polymers have a glass transition temperature (Tg)
above which they soften and transform into a glassy state. They do not have a fixed melting
temperature, while semi-crystalline polymers have a fixed glass transition temperature (Tg)
and melting temperature (Tm). The melt viscosity of the semi-crystalline thermoplastics
decreases with the increase in temperature above the melting temperature (Tm)—allowing
flowability [159]. Apart from the pure polymers, the use of several modified FDM filaments
has also been reported for various applications such as printed electronics by incorporating
different materials such as carbon-black, graphene, and copper [160], carbon nanotube
incorporated filaments for textile [161], carbon nanotubes incorporated capacitive and
piezoresistive actuators [162], etc. A few approaches of the modification of materials for
FDM/SLS printing by giving an example of magnetic materials is discussed in Section 5.

Table 2. A general classification of available materials (commercial and laboratory-grade) for FDM, SLS, and SLA printing.

AM Technique Material

FDM Thermoplastic filament

Semi-crystalline

PEEK

PVDF

PP

PLA

TPU

TPE

PPS

PCL

PLGA

PEVA

PA6

PA12

POM

PET

Amorphous

PEI

PAI

PPSU

PC

PVA

HIPS

PEKK

ASA

ABS

PMMA

PS
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Table 2. Cont.

AM Technique Material

SLS Thermoplastic powder

Semi-crystalline

PA12

PA11

PA6

PET

PLA

PCL

TPU

POM

PEEK

PEK

PEKK

Amorphous

PC

PMMA

PS

PI

PSU

PES

PVA

SLA Resins

Polyester

PPF

PLA

PCL

PCL/PEG/Chitosan

Polycarbonate

PTMC

PTMC/Gelatin

Trimethylolpropane
Carbonate

Polyether

PEG

PEG/Chitosan

PEO/PEG

Poly tetrahydrofuran ether

The materials used in SLA are photosensitive thermoset polymers. Thermoset is
also known as a thermosetting polymer and is a polymer that is obtained by irreversibly
polymerizing/curing a soft solid or viscous liquid prepolymer (resin). The curing, also
sometimes known as solidification or vulcanization or polymerization, is achieved via
photopolymerization in the presence of UV light. An SLA resin usually contains several
components including monomer/oligomer, diluent, chain transfer agent, and photoinitia-
tor [84,163]. Monomers/oligomers are reactive prepolymers that are primarily responsible
for the part properties after undergoing a polymerization reaction. Diluents are low-
molecular weight, low-viscosity compounds used to modify the viscosity of a resin or
enhance the solubility of a resin. A chain transfer agent is essential to modify the crosslink-
ing agent while photoinitiator is necessary to trigger the photopolymerization. The widely
used resins are polyester or polycarbonate or polyether-based polymers in SLA or the
vat-based printings [24,84,163].
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3.1. Material Requirements

The material requirement majorly depends on the process of 3D printing. Figure 5
provides a pictorial summary of the material requirements for successful printability for all
three print methods. Rheological properties are a common requirement of print materials
in all three processes. It mostly includes the viscosity of the print material (polymer melt or
resin). The thermal properties of the material include heat capacity, coefficient of thermal
expansion, crystallinity, and conductivity of heat of the print materials. The thermal
properties are an important consideration in FDM and SLS. On the other hand, in SLS and
SLA, as both of these processes deals with absorption of energy through laser light, optical
properties including reflection, absorption, transmission, and scattering are of utmost
importance. In FDM, the mechanical properties of the filament including its elastic modulus
and strain at yield is also considered. In SLS, extrinsic properties such as powder shape
and powder surface are a considerable requirement. For SLA, chemical properties such as
active centre stability, molecular weight, functional group, and degree of functionality of
the resin play a key role. The details of material requirements and their significance are
discussed in the following sections. Here, we first discuss individual process requirements
of FDM, SLS, and SLA respectively and followed by the common requirements.
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Figure 5. A pictographic summary of the various properties of print materials demanded for successful printability via
FDM, SLS, and SLA 3D printing.
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3.1.1. Mechanical Properties

In FDM, the mechanical properties of thermoplastic filament are one of the major ma-
terial properties to be understood. The column strength of the solid filament is significant
for thermoplastic polymers [164]. In the printing process, the solid filament serves as a
piston under compression; therefore, the column strength should be sufficient enough to
avoid buckling between the driving pulley and the melt chamber [52,165]. The critical load
for buckling is given by the formula derived from Euler’s buckling as given in Equation (3).

Pcr =
π2Ed2

16L2 (3)

where E is the elastic modulus, d is the diameter, and L is the length of the solid filament
between the driving pulley and the melt chamber [165]. The filaments should however be
flexible enough to allow their spooling and despoiling during printing and thus maximum
strain at yield is recommended to be about 5% [166,167].

3.1.2. Extrinsic Properties

In SLS, particle shape, size, and distribution have a considerable influence on the
overall flow behaviour and powder density. It is therefore an important consideration in
SLS as it influences the thin, dense, and smooth layer of powders—influencing the quality
of the produced part. The SLS powder particle distribution is reported to be between 20 µm
and 80 µm [79], some particles have a higher size but mostly a d50 of around 60 µm [168].
The particle shape is required to be ideally spherical. Schmidt et al. [169] used the tensile
strength to determine the powder flowability and concluded that the increase in powder
flowability resulted in the decrease of tensile strength for the spherical particles.

3.1.3. Chemical Properties

In SLA, the chemical properties of the resin are substantial material properties to
be understood as the process comprises the photopolymerization completely driven by
chemical reaction to convert the liquid into a solid object in the presence of UV light.
Herein, curing kinetics is the most important consideration [170]. The curing kinetics is
influenced by the degree of functionality, steric effect, and the stability of radical or cationic
active centres, for more detail please refer to [171]. A moderate curing rate is required to
enable the faster part fabrication and at the same time provide sufficient time for interlayer
adhesion. A significant difference in static and dynamic properties has been reported for
the curing time of 5 min in comparison to that of 25 and 30 min [172]. The curing degree
increases with an increase in light intensity. For instance, the increase in curing degree
from 3.1% to 87.7% with the increase in light intensity from 5 mW/cm2 to 40 mW/cm2

is reported [173]. The same study [173] also presents the influence of exposure time on
the curing degree. The curing degree significantly increases from 26.85% to 70.98% for the
same increase in light intensity. On the other hand, the curing degree only increases from
70.98% to 81.74% with the increase in exposure time from 3 s to 12 s.

3.1.4. Thermal Properties

The thermal properties of the print material are highly influential material properties
and need to be understood in-depth for successful printing via the SLS and FDM techniques.

In SLS, the requirement of the laser energy intensity also depends on the temperature
of the powder. The polymer powders are heated to a temperature close to the melting
temperature for semi-crystalline powders and up to glass transition temperature for amor-
phous powders to lower the required laser energy and reduce the temperature gradient
which also decreases the non-uniform shrinkage in the printed parts [174,175]. The preheat-
ing temperature should be close to melting temperature but should not be greater than the
onset melting temperature to avoid premature melting of the powders. For general polymer
materials, a preheating temperature 5–10 ◦C lower than the glass transition temperature is
suggested [115]. Thus, the processing temperature must be precisely controlled between
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onset melting and onset crystallization temperature, and this metastable thermodynamic
region is called the sintering window (Figure 6a) [176]. The sintering window can be
characterized using a differential scanning calorimeter at a fixed heating and cooling rate,
for example, 10 ◦C/min [168]. The sintering window, however, depends on the polymer
being used. A wider sintering window is usually preferred in SLS. Figure 6b shows the
thermo-analytical results (DSC measurement) of a commercial injection moulding PA12
grade in comparison with a commercial PA12 for SLS processing [168,177]. The stretch in
the sintering window of SLS powders (red curves) can clearly be marked [168].
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Figure 6. (a) Illustration of a dynamic DSC curve of a polymer. (b) Comparison of a commercial injection moulding PA12
grade and commercial PA12 for SLS processing, adapted from [168].

In FDM, the filaments are heated at a temperature a few degrees above the melting
temperature at the nozzle. Reduced viscosity with increased temperature facilitates the
polymer melt extrusion. The thermal properties of thermoplastic filament, moreover, influ-
ence the part shrinkage after the polymer melt deposition. The thermal properties include
a coefficient of thermal expansion, heat capacity, heat conductivity and crystallinity of the
polymer, please refer to these articles for more detail [178,179]. Similar to SLS, here, the
thermal gradient leads to uneven shrinkage of printed parts [166]. For FDM, usually, the
amorphous polymer filaments are favoured in comparison to semi-crystalline. The amor-
phous thermoplastics possess a low coefficient of thermal expansion—as a result, lower
shrinkage, warpage, and distortion of the printed parts [180]. Another important consider-
ation for FDM filaments is the printing temperature. This becomes an even more important
consideration specifically for customized filaments with sensitive ingredients [181]. Usu-
ally, the printing temperature has to be above the melting point and should be always
lower than the thermal degradation temperature of the print material. Thermogravimetric
analysis (TGA) is used to characterize the filament material thermal stability by monitoring
the weight change that occurs as the sample is heated at a constant rate.

See Tables 3 and 4 for a summary of the thermal properties of a few common thermo-
plastic filaments for FDM, and powders for SLS.

3.1.5. Optical Properties

Optical properties are a key requirement of print material for its successful use in SLS
and SLA 3D printing as materials absorb light in both processes.

The absorption of the energy from the laser source by the material is dependent on
its optical properties. In SLS, a process involving the melting of polymer powders in
presence of laser-generating heat energy, the polymer should be able to effectively absorb
energy from the laser at a given wavelength. However, only a fraction of the energy is
absorbed due to the laser reflection and refraction at the particle surface and transmission
through the particles [182]. Most of the commercial SLS printers use CO2 lasers. This is
because the polymer powders contain a C–H bond which absorbs the energy at the laser
wavelength of 10.6 µm [183]. The thermoplastic powders after being exposed to the CO2
laser is transformed from an entropy elastic state to a viscous state [182]. To avoid warpage
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and shrinkage the laser power is desired to be on the lower side. With other printing
parameters constant, the increase of laser power from 20 W to 35 W results in an increase
in shrinkage from 2.34% to 2.60% and warping from 0.16 mm to 0.21 mm [34].

In SLA, the optical properties of the resin such as transmission, absorption, reflection,
and scattering influence the curing depth. Detailed studies reporting the influence of these
optical parameters on the cure depth (Equation (2)) are still lacking in the literature. It is
recommended that the penetration depth is defined as the depth where laser irradiation
is reduced by 1/e [24,184]. The absorption of light also highly depends on the concentra-
tion of the photoinitiator and the molar extinction coefficient of resin at the given light
wavelength [185].

3.1.6. Rheological Properties

The rheological properties of resin highly influence the SLA process and the melt
rheology of powders to be used play an essential role in SLS.

The resins used in SLA must possess a melting temperature below the room tem-
perature. The viscosity should ideally be around 1 Pas but it can range from 0.1 Pas for
low-molecular-weight polymers to 10 Pas for high molecular weight polymers [186]. The
lower viscosity allows the resin to be in a liquid state at the processing temperature enabling
chain mobility. For the resins with higher viscosity, the resins can be processed at higher
temperatures but this is limited only to formulations that are insensitive to heat [187].

In SLS, a powder with lower surface tension (γ) and lower zero viscosity (η0) is
desired. It is because powder with lower surface tension has higher coalescence which can
be sintered into parts of higher density and strength. The requirement of lower η0 is the
reason behind the difficulty in sintering amorphous powders as the result leads to brittle
and amorphous parts because of η0. In amorphous powder, the η0 is higher even above
the glass transition temperature and thus a proper coalescence does not take place [79].

The investigation of the rheological properties of FDM filaments is well described
in [188], in which applicability of the Filament Flow Index (FFI) is reported for a number
of different filaments for FDM and suggested that the FFI technique can be considered to
promptly characterize print filament. Elsewhere, to avoid buckling, the ratio of elastic mod-
ulus and viscosity of the FDM filament melts less than 3 × 105 s−1 is recommended [166].

Table 3. Melting temperature and glass transition temperature of a few common thermoplastic filaments for FDM.

Material Tm (◦C) Tg (◦C) Printing
Temperature (◦C)

Temperature of
Degradation (◦C) Ref.

Thermoplastic
Filament

ABS - 105 230–250 380–430 [189,190]

PLA 150 - 200–235 300–400 [190,191]

PET 255 75 160–210 350–480 [190,191]

PP 165 −10 230–260 300–500 [191,192]

PA6 215 46 419.8 220–270 [189,193]

Table 4. Melting temperature, onset melting temperature, crystallization temperature, and sintering window of a few
common thermoplastic powders for SLS.

Material Tm Tm, Onset Tc, Onset Sintering
Window Ref.

Thermoplastic
powder

PA12 185.6 178.0 158.6 19.4 [108]

PA11 202.9 189.2 168.3 20.9 [194]

TPU 144.4 122.2 123.9 1.7 [194]

PC 167.1 157.0 121.9 35.1 [195]

PP 182.3 177.1 151.3 19.5 [196]
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4. Properties of Printed Parts

The tensile and flexural mechanical properties of the FDM, SLS, and SLA printed parts
are discussed.

For commercially available print materials, the mechanical properties of the 3D printed
parts are generally provided in the datasheet by most manufacturers. A pictographic
overview of the mechanical properties based on the data provided by the manufacturer
is given in Figure 7. In each 3D printing process, a range of variations in mechanical
properties with different print materials can be noticed. This overview can be used to
quickly screen the material and printing processes on the basis of the requirement of
tensile and flexural properties. Modulus and ultimate strength are two key mechanical
properties to be understood either in tensile or flexural loading. The data provided in
the datasheet, however, might be based on a certain external condition favourable for
generating optimum properties, therefore, these data should not be considered as a final
property of the printed part for bespoke print conditions. Furthermore, it should be noted
that selecting a print method and materials are also related to other properties such as
fatigue properties, microstructure, stability, etc. [197–201]. In the following, the mechanical
properties (tensile and flexural) of various print materials and printing processes reported
by bespoke studies considering various print conditions are discussed. A summary of
mechanical properties reported by a few bespoke studies is presented in Table 5 (tensile
properties) and Table 6 (flexural properties). Anisotropy in mechanical properties is
observed in all FDM, SLA, and SLS printed parts. This is primarily due to the fundamental
process of the part production method in 3D printing (i.e., layer by layer addition of
material). Typically, the mechanical properties of the 3D printed parts printed with sample
build orientation parallel and perpendicular to the bed or print platform are found to be
different, which signifies the anisotropy. Therefore, a part/object should be printed at an
optimal orientation to achieve the best mechanical characteristics to meet the demand of
the targeted application.
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Figure 7. A graphical overview of the mechanical properties of 3D printed parts for a few commer-
cially available materials, data are taken from the respective datasheet available on the supplier’s
website. Tensile (green coloured) and flexural (red coloured) properties are plotted, the upper graph
is strength, and the lower graph is the modulus of corresponding properties of FDM and SLS and
SLA printed parts.

The variations in tensile and flexural strength with the change in build orientation
and layer thickness in FDM, SLS, and SLA are discussed in the following section.
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Please note that, apart from tensile test and flexural tests, nanoindentation is another
prominent test for investigating mechanical properties such as modulus, hardness, and
elasticity [202–204]. The biggest advantage of the nanoindentation test for the 3D printed
part, compared to conventional tests, is that this test method can be used to study the
localized anisotropy at various locations on the printed surface with minimum destruction
limited to the surface of the material.

4.1. Tensile Properties

Tensile properties are used to study the behaviour of a material under the action of
tensile loads. The tensile properties of a few standard materials available for FDM, SLA,
and SLS 3D printing are given in Table 5. From the table, it can be concluded that the tensile
properties of the polymers highly depend on the material, build orientation, and layer
thickness. In FDM, the tensile properties of PLA and ABS have been most prominently
studied while the properties of high-performance polymers like PEEK are also available.
In SLS, the most widely used polymer powder is PA12 and its mechanical properties are
widely studied. On the other hand, in SLA, the material depends on the manufacturer
and the application for which it has to be used. The printing parameters such as laser
power and bed temperature are varied based on the material being used while materials are
printed with various layer thicknesses to alter the printing time which also alters the part
strength. In most of the studies, the ISO 527 and ASTM D638 test standards have been used
to determine the behaviour of the 3D printed parts under the influence of tensile loading.

The tensile properties of FDM 3D printed parts have been well studied [205–207].
Printing can be performed at various orientations as illustrated in Figure 8 and the mechan-
ical properties, therefore, are influenced by the print orientations. One common finding is
that the tensile strength/modulus, when the load is applied in the longitudinal direction, is
higher than applying load along the build direction; this is simply due to weak interlayer
bonding of the printed parts [208]. Another factor contributing to the tensile strength of the
FDM printed part is the raster angle. For instance, the ultimate strength, for PLA, obtained
for a raster angle of 45◦ is higher compared to the raster angles of 0◦ and 90◦ [209]. For
materials such as PEEK and ABS, the tensile strength of the printed material for raster
angles of 0◦ and 90◦ was comparable to one another while the raster angle of 45◦ yielded
a considerably lower amount of tensile strength [210–212]. The amount of material that
has been deposited on each layer also affects the mechanical properties of FDM printed
parts. The tensile strength increases linearly with the layer thickness when specimens are
printed in the z-direction [213]. A study by Chacón et al. [213] can be consulted to get a
comprehensive summary of the effect of process parameters on mechanical properties of
FDM printed PLA and their optimal selection.

There is also a large disparity of mechanical properties for SLS 3D printed parts
due to the dependence of various parameters on local process conditions [112]. This
leads to properties such as modulus/stiffness and strength being highest along the print
direction [214]. The parts built with orientations parallel to the direction of the laser
exhibit the highest strength and modulus values while the samples built in the z-axis
orientation possess the lowest strength and modulus. For example, the difference of
9.4% in strength and 7% in flexural modulus for these different build orientations is
reported [215]. Furthermore, the specimens with the 60◦ raster angle exhibited the highest
tensile strength when compared to the sample printed in 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and
90◦ orientations [216], unlike in FDM in which a 45◦ orientation showed the highest
strength [209].

The tensile properties of a commercial photocurable resin (commercially available/
manufacturer’s grade) have also been widely studied [217,218]. The tensile strength of
various build orientations which include flat, and edge are widely reported [217,219,220].
In SLA, flat is similar to x and the edge is similar to y as in FDM printing. Furthermore,
each build orientation had sub-orientations of 0◦, 45◦, and 90◦, as in other print methods.
Specimens with edge build orientation display higher tensile strength compared to the
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specimens with flat build orientation. In sub-build orientation, 45◦ orientations have
slightly better properties than the 0◦ and 90◦ sub-build orientations in both cases [221].
Build orientation has much less impact on tensile strength when compared to layer thick-
ness [216]. Tensile strength increases when the layer thickness increases while the flexural
strength decreases [216]. The increase in tensile strength as layer thickness increases is due
to better connection by polymerization of the new layer with the prior layer [74].
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4.2. Flexural Properties

Flexural properties are used to determine the behaviour of a material under the action
of bending loads. The flexural properties of 3D printed parts have not been studied as
widely as the tensile properties. However, there are many studies that have given the
flexural properties of some popular polymers of each 3D printing process. Table 6 is the
compilation of flexural properties of various polymers fabricated using FDM, SLS, and SLA.
The 3-point bending test is used in all of these studies. ASTM D790 is the most commonly
used standard test method for the 3-point bending test. Like the tensile properties, the
print parameters such as raster angle, part orientation, and layer thickness have a direct
impact on the flexural properties of the 3D printed specimen.

In FDM, variation in mechanical properties with varying orientation and layer thick-
ness can be distinctly observed. Layer thickness has the most significant effect on flexural
strength. The increase in layer thickness is found to have an increment in flexural strength.
For instance, a study focused on flexural strength of the specimen at different layer thick-
nesses ranging from 0.1 mm to 0.5 mm, reported a maximum flexural strength (59.6 MPa)
at 0.5 mm layer thickness and minimum flexural strength (43.6 MPa) at 0.1 mm [222].
The raster angle also has significance on the flexural property [211]. Again, like in tensile
loading, the PLA parts with a 90◦ raster angle showed the least resistance while the 45◦

orientation showed the highest resistance [209].
In SLS, the flexural strength is again influenced by bed temperature, laser watt power,

scan speed, and scan spacing. For instance, the increase in flexural strength with an
increase in laser power from 28 W to 36 W and a decrease in flexural strength with an
increase in scan speed from 2500 to 4500 mm/s is reported [223]. In the case of the scan
spacing, an initial decrease with an increase in scan spacing from 0.25 to 0.35 mm, then
a marginal increase from 0.35 to 0.45 mm is reported [223]. Print orientation also has a
notable influence on the flexural strength of SLS printed parts. For example, a maximum
flexural strength at 0◦ (59.23 MPa) followed by at 45◦ (46.25 MPa) and minimum at 90◦

(19.89 MPa) is reported [224].
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Table 5. A summary of the tensile properties of a few common print materials for all three, FDM, SLS, and SLA, printing techniques. Information such as print setting, test standard
method, print orientation, tensile modulus, tensile strength, and elongation at break are provided.

Polymer Supplier Print Setting Test Standard Print
Orientation

Tensile
Modulus (MPa)

Tensile
Strength (MPa) Elongation (%) Ref.

Thermoplastic Filament

PLA 3D Systems 100% infill
Layer thickness 0.2 mm ASTM D638

XYZ 1538 38.7 -

[212]YXZ 1246 31.1 -

XYZ 1350 33.6 -

ABS Qimei Stock, China 100% infill ASTM D638 XYZ 1200 37 - [210]

PEEK Arevo Labs 100% infill
Bed temperature 230 ◦C ASTM D638 XYZ 2871 71.36 5.01 [211]

PC Stratasys, USA 100% infill ASTM D638 XYZ 2410 54.6 4.22 [225]

PP
100% infill

Nozzle temperature 165 ◦C DIN 53504-S3a

XYZ 0◦ 1230 34.3 -

[226]XYZ 45◦ 1000 32.0 -

XYZ 90◦ 1050 33.0 -

ThermoplasticPowder

PA-12

Sinterit Laser thickness 0.175 mm ISO 527

ZXY 0◦ 864 ± 72 42.5 ± 3.1 13.1 ± 2.3

[227]

ZXY 30◦ 690 ± 143 28.1 ± 8.4 6.7 ± 1.6

ZXY 45◦ 613 ± 27 16.0 ± 2.3 2.7 ± 0.3

ZXY 60◦ 694 ± 32 25.6 ± 8.9 8.4 ± 5.7

ZXY 90◦ 426 ± 150 17.1 ± 10.0 6.0 ± 3.4

Duraform
Layer thickness 0.1 mm

Part bed temperature 175 ◦C
Laser power 38 W

ISO 527-1
ZXY 1675 ± 41 47.6 ± 1.5 6.6 ± 0.7

[176]
YXZ 1610 ± 61 40.6 ± 3.4 3.7 ± 0.6

Orgasol IS
Layer thickness 0.1 mm

Part bed temperature 164 ◦C
Laser power 48 W

ISO 527-1
ZXY 1700 ± 25 54.7 ± 0.7 12 ± 0.4

[176]
YXZ 1580 ± 21 29.3 ± 3.6 1.9 ± 0.3

EOSINT Laser power 3.33 W
Powder bed temperature 140 ◦C 205.0 ± 29.3 57.7 ± 10.3 11.5 ± 1.3 [228]

PA-11
Building chamber temp 157 ◦C

Powder bed temperature 177 ◦C
Layer thickness 0.3 mm

ISO 527-2 7.1 ± 0.5 5.9 ± 0.5 [177]

PP

Powder bed temperature 150 ◦C
Layer thickness 0.12 mm - 27.9 - [196]

Trial Corporation
Powder bed temperature 150 ◦C

Laser power 13.75 W
Layer thickness 0.15 mm

ISO 527-2 ZYX 599.1 ± 14.1 19.9 ± 3.5 122.25 [229]

PA 6 Mazzafero
Tecnopolímeros S.A.

Powder bed temperature 120 ◦C
Laser power 2.34 W 166.6 ± 77.8 62.4 ± 16.0 10.9 ± 3.7 [228]
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Table 5. Cont.

Polymer Supplier Print Setting Test Standard Print
Orientation

Tensile
Modulus (MPa)

Tensile
Strength (MPa) Elongation (%) Ref.

PC HRPS
Laser power 13.5 W

Layer thickness 0.15 mm
Bed temperature 100 ◦C

ISO527-2 ZYX 40.12 1.1 5.05 [230]

Resin

PR 48 Autodesk, USA Layer thickness 50 µm
Print resolution

ZXY 0◦ 723 - -

[219]

ZXY 45◦ 350 - -

ZXY 90◦ 376 - -

ZXY 0◦ 901.4 - -

ZXY 45◦ 667.1 - -

ZXY 90◦ 182.2 - -

Clear V4 Formlabs Layer thickness 50 µm ISO 527
Mean

0,15◦ ,30◦ ,45◦ ,
60◦ ,75◦ ,90◦

2298 60.8 8.05 [217]

Watershed 11122 DSM Somos
Layer thickness 0.175 mm

Laser power 2.5 W
Laser scanning speed 3200 mm/s

ASTM D638

XYZ 0◦ 37.75 ± 1.82 3.45 ± 0.11 11.67 ± 4.97

[221]

XYZ 45◦ 43.25 ± 0.98 3.51 ± 0.03 7.60 ± 3.48

XYZ 90◦/YXZ 38.24 ± 2.22 3.26 ± 0.08 8.53 ± 4.29

XZY 0◦ 46.07 ± 0.99 3.54 ± 0.07 9.27 ± 1.10

XZY 45◦ 47.70 ± 0.52 3.65 ± 0.02 9.00 ± 3.57

XZY 90◦/YZX 45.72 ± 0.48 3.50 ± 0.05 6.60 ± 0.30

Monomer: EGPEA
Crosslinker: 1,6-hexanediol diacrylate

Photoinitiator: 2-Benzyl-2-(dimethylamino)-
4′-morpholinobutyrophenone

Monomer 1, crosslinker 0.4
Monomer 1, crosslinker 1.0 ASTM D638

18.026 ± 0.302 1.861 ± 0.435 0.106 ± 0.025
[220]

36.586 ± 1.210 2.243 ± 0.709 0.062 ± 0.021
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Table 6. A summary of the flexural properties of a few common print materials for all three, FDM, SLS, and SLA, printing techniques. Information such as print setting, print orientation,
flexural modulus, flexural strength, and elongation at break are provided.

Polymer Supplier Print Settings Sample Orientation Flexural Modulus
(MPa)

Flexural Strength
(MPa) Elongation (%) Ref.

Thermoplastic Filament

ABS 100% infill XYZ 1750 60 3 [231]

PLA
100% infill

Bed temperature 230 ◦C
Nozzle temperature 210 ◦C

XYZ 0◦ 3187 102.203 10.6

[209]XYZ 45◦ 2985 90.649 7.8

XYZ 90◦ 3000 86.136 4.5

PEEK Arevo Labs
100% infill

Bed temperature 230 ◦C
Nozzle temperature 340 ◦C

XYZ 0◦ 1972 114 10.6

[211]XYZ 90◦ 1954 83.59 5.81

XYZ 0◦ and 90◦ 2146 88.70 6.58

ThermoplasticPowder

PA-12 Duraform, 3D Systems 546 ± 28 86 ± 5 11 ± 0.5 [232]

PC
Laser power 13.5 W

Layer thickness 0.15 mm
Bed temperature 100 ◦C

93.83 2.48 - [230]

PA 2200 EOS
Laser power 25 W

Building chamber temperature
170 ◦C

XZY 0◦ 551.24 + −5.6 59.23 + −4.1 4.9 + −0.74 mm

XZY 45◦ 433.05 + −61.4 46.25 + −6.4 4.96 + −0.56 mm

XZY 90◦ 345.39 + −41.5 19.89 + −2.8 3.28 + −1.51 mm

Resin

Freeprint splint DETAX GmbH - 19.5 ± 2.5 -

[233]LuxaPrint Ortho Plus DMG GmbH - 39.3 ± 2.0 -

Nextdent Ortho Clear Vertex-Dental B.V. - 91.3 ± 5.9 -

Dental SG resin Formlabs Layer thickness 0.05 mm

ZXY 0◦ 1654.35 ± 152.27 117.48 ± 12.39 -

[88]ZXY 45◦ 1467.56 ± 89.36 130.73 ± 5.12 -

ZXY 90◦ 1456.73 ± 149.83 135.69 ± 5.93 -
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In SLA, the build orientation is the main factor influencing flexural strength. The
specimen printed with a layer orientation parallel to the axial load is reported to have
superior flexural strength and flexural modulus [88]. For example, maximum flexural
strength was found at 90◦ (135.69 MPa), compared to 45◦ (130.73 MPa) and 0◦ (117.48 MPa)
at ZXY orientation [88].

In Tables 5 and 6, the findings of a number of different studies are presented for the
comparison of mechanical properties under the action of tensile and flexural loading of
FDM, SLS, and SLA printed parts. The tabular summary can be referred to screen and select
a suitable print process and material to meet the requirement of the targeted application in
terms of the mechanical properties.

5. Towards Magneto-Active 4D Printing

The 3D printing of smart materials is regarded as 4D printing (4DP) since it is first
introduced in 2013 [234]. Smart materials can respond to external stimuli such as heat, pH,
magnetic/electric field, etc. [235–240]. As illustrated in Figure 9, 4D printing essentially
means the 3D printing of smart materials. The 4D printed structures can change their
physical/chemical properties, for example, stiffness, density, etc., and demonstrate various
phenomena such as shape memory effects and shape-shifting [235–238,241–244]. The shape
memory effect is a phenomenon where a system/structure can remember a certain shape
and could be switched from one to another shape (original to programmed shape) in a
controlled way in the presence of external stimuli. Shape-shifting is a phenomenon where a
system/structure can shift its shape from one to another when triggered by external stimuli.
Here, we briefly cover the process and the material requirements to develop polymer-based
4D structures via FDM, SLS, and SLA printing. Our particular focus is magnetic field
triggered systems.

The printing materials (resin/powder/filament) must have a magnetic field respon-
sive element(s)/component(s) (typically known as fillers) to be triggered by an external
magnetic field to demonstrate the 4D effect. Therefore, the first essential step to devel-
oping 4D structures via 3DP is to modify the printing materials by incorporating active
components. The widely used magneto-active filler materials are carbonyl iron pow-
ders (CIPs), Iron (II, III) oxides, and Fe-Nd-B micro/nanoparticles [245–248]. All these
magnetic fillers are yet to be implemented in all 4D printing methods (considered here)
mostly due to the filler size. There are, however, other printing methods such as di-
rect ink write (DIW) where nano to micron-sized fillers have been used successfully to
a greater extent [236,249–251]. The filler materials should facilitate the re-extrudability
of composite filaments for FDM [252,253], production of composite or surface decorated
(with nanofillers) micro powders for SLS [254], and high stability in the liquid resin for
SLA/DLP [255–257]. Please note that the pure SLA here is modified to its variants, to
direct laser processing (DLP) or micro-continuous liquid interface production (µCLIP) or
two-photon polymerization (2PP). All variants, however, are based on the light-mediated
conversion of liquid resin [24,184,220,258].
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Figure 10 collectively shows material modification methods and key material prop-
erties of modified materials to be understood for all three different printing techniques.
The main aim is to produce a composite filament with homogenously distributed fillers for
FDM, composite powders with homogenously decorated/distributed fillers for SLS, and
composite colloidal inks with homogenously dispersed/suspended fillers for SLA variants.

Modifications of filaments for FDM include adding the filler to produce a homoge-
nous mixture of the host material and magnetic fillers and the re-extrusion of composite
filaments for printing. For instance, the original filament material (i.e., thermoplastic
rubber) was heated to 70 ◦C to soften the surface then the magnetic fillers (i.e., CIPs)
were added and mixed thoroughly. After that, a twin extruder was used to produce a
composite filament [253]. In another study, PCL or TPU were mechanically mixed with
CIPs first and then hot melted (at 200 ◦C) within the extruder and the composite filament
was extruded [252]. Likewise, a composite filament of Fe3O4 nanoparticles and PLA was
produced via melt compounding [260]. The processing factors such as melting, mixing,
homogenization, granulation of compounds, and viscosity for extrusion play a vital role to
produce composite filaments and there are a number of other different studies where the
influence and optimization of these parameters are well reported, see Dohmen et al. [261],
and others [262–264]. After the extrusion, cross-sectional morphology must be studied
to investigate the homogeneity of the filler-matrix system. More importantly, the ther-
mal properties of the composite filament need to be understood in detail for successful
printing via FDM. For example, it has been reported that thermal properties (DSC and
TGA thermographs) of the modified PLA with Fe3O4 nanofillers do not get altered sig-
nificantly compared to virgin PLA (Figure 10d), hence the printing conditions (nozzle
temperature, feed rate, print speed and so on) are altered to only a slighter extent [265],
however, optimization of print parameters is still needed.

SLS printing sinters micron-sized powders to produce a part. In order to demon-
strate the 4D effect, again the raw material (powders, e.g., PA12) should be modified by
incorporating fillers. Compared to FDM and SLA (and its variants), there are very few
studies where SLS is implemented to develop 4D structures of magneto-active polymers.
To develop composite powders for SLS, the process is well reported in a recent article [254],
wherein a novel method called nano-additivation is used. A colloid of magnetic fillers
was formed first and then such magnetic particle-based colloid is laser fragmented by
irradiating a laser light. The uniformly developed colloid is mixed with PA12 polymer to
develop composite polymer powders for SLS (Figure 10b). Thereafter, the thermal material
characteristics of nano-additively developed composite PA12 are studied using DSC and
TGA methods. To print magnetic parts using such composites, all the process parameters
such as temperature, laser output power, scan speed, hatch distance and energy density
are studied in detail and optimized. It is reported that the thermal behaviour of the surface
functionalized PA12 is similar to that of virgin PA12 powders (Figure 10e). In another
very recent study (2021), micron-sized fillers (Nd-Fe-B) are used together with TPU [266].
Therein, composite is prepared just by blending the polymer and fillers, silica nanoparticles
are added to improve the flowability. The mixing process is conducted just for 3 min at a
rate of 600 rpm. Again, investigation of morphological, thermal, and mechanical properties
of TPU/Nd-Fe-B composite is reported. The tensile strength of composites is found to be
decreased compared to virgin TPU [266], while thermal properties remained similar to
virgin TPU.

In SLA and its variants, which are resin-based systems, photopolymerization gov-
erns the conversion of liquid into a solid object in the presence of UV light (Figure 10c).
Photopolymerization is a multi-stage and dynamic process therefore researchers have
adopted different types of laboratory-based monomers/oligomers or copolymers to pro-
duce composite inks as a starting material. Various acrylate-based monomers/oligomers
such as urethane acrylate with CIPs [267], with Nd-Fe-B [257], and with Fe oxides [255],
and polyethene diacrylate with Fe2O3 [268] are reported. The development of composite
ink is the mixing of different components (monomer, crosslinker, initiator), magnetic fillers
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and additives to produce a homogenous and stable ink [269]. Usually, the mixing proce-
dure includes mechanical mixing followed by sonication. For ink, the essential material
properties or parameters are resin viscosity, stability/sedimentation of fillers, and cure
depth/penetration depth. The ink material properties highly depend on filler concentration
and size (micro/nano) [256]. In the process, parameters such as exposer time per projection,
layer height, waiting time before exposure, and influence of additives must be investigated
and optimized [255]. For instance, viscosity and storage modulus (before and after exposer
to UV light) of butyl acrylate-Fe2O3 composite inks are required to be very similar to that
of virgin butyl acrylate resin (Figure 10f) [255], which defines the limit of the filler loading.
Moreover, sedimentation is another major concern if micron-sized fillers are used [256].
There are a number of different studies where both materials and processes for vat-based
printing of composite inks are studied in detail, refer to [255,256,269–271].
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(a) Composite filament formation method (adapted from [253]), (b) composite powder formation method (adapted
from [254]), (c) composite ink formation method (adapted from [256]), (d) examples of thermal and chemical proper-
ties of modified PLA-iron oxide composite filaments for FDM (adapted from [265]), (e) examples of thermal properties of
modified PA12-iron oxide composite powder for SLS (adapted from [254]), and (f) rheological properties of acrylate iron
oxide composite ink for DLP (adapted from [255]).

A few typical examples of 4D printed structures of magneto-active polymers using
FDM, SLS, and SLA (or its variants) are given in Figure 11. Development of a flower-like
structure is one common practice to demonstrate the 4D effect, where such flower-like
structures can blossom/open or close in the presence/absence of an external magnetic field.
FDM and SLS produce a more rigid structure while resin-based systems (SLA variants) can
produce flexible to rigid structures based on the varieties of tailored polymers because of
the greater flexibility to control the polymer network. Magneto-active polymeric struc-tures
possess a huge potential to exploit in a number of different applications such as in soft
robotics and in the biomedical field, where shape-shifting or shape morphing is highly
desired [237,238].
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Figure 11. Examples of shape-morphing phenomenon demonstrated by 4D printed magnetic struc-
tures. (a) 4D effect of the flower-like biomimetic magnetic actuator under an external magnetic
field, produced via FDM printing [253], (b) 4D effect of a gripper under an external magnetic field,
produced via SLS printing [266], and (c) 4D effect of flower-like structure and folding of 2D to the 3D
structure under an external magnetic field, produced via DLP printing [255].
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6. Concluding Remarks

AM is transforming the manufacturing industry with the ability to produce geomet-
rically simple to highly complex and delicate structures. With a variety of 3D printing
processes available for a wide range of materials, 3D printing has been extensively adopted
in a number of different fields including but are not limited to mechanical engineering, civil
engineering, aerospace, electronics, and biomedical. In this review, various aspects of the
three most conventional, on the other hand, extensively adopted, 3D printing processes i.e.,
FDM, SLS, and SLA have been discussed. Correlation of three different aspects, materials,
processes, and properties, for these polymer 3D printing techniques is presented. Each of
these processes requires materials in a unique form which are filament, powder, and liquid
for FDM, SLS, and SLA respectively. Although the fundamental of developing the product
layer by layer remains the same, each method has a unique process and parameters of
manufacturing to consider. A few process parameters such as CAD design of the model
(.stl file), external environmental conditions, and the fundaments of 3D printing are similar
in all the processes.

In order to select a 3D printing process for a specific application the requirements of
print materials, properties of printed parts, the simplicity of printing, printing time, and
layer resolution are essential factors to be considered (Table 7). For instance, SLA has the
capability of printing high-resolution parts of up to 10 µm [33], while the minimum layer
resolution of the SLS printed part is 20 µm [123]and the FDM has the capability of printing
high-resolution parts of up to 40 µm [124]. On the other hand, in terms of the simplicity in
printing, FDM is the most suitable technique because the process is as simple as heating
the polymer filament to a semi-solid state and depositing it on the print bed. SLS is a
comparatively complicated process among others, it requires the movement of two systems:
roller and laser light. FDM 3D printers are the most economical and widely available while
SLS 3D printers are the expensive ones. According to a recent study [272], a reasonable
result in terms of accuracy can be achieved with all print methods; however, the preference
should be more based on the print material, the intended application, and the budget. For
example, dimensional accuracy and precision of 50 mandibular samples produced from
various techniques show that the highest accuracy was found for SLS (0.11 ± 0.016 mm),
followed by FDM (0.16 ± 0.009 mm) and SLA (0.45 ± 0.044 mm) [272]. In terms of print
time, in their study, SLS (~ 48 min) is the fastest followed by FDM (~2 h and 40 min) and the
SLA (~ 5 h 16 min plus post-processing ~15 min). On the other hand, in terms of cost, the
SLS printer has the highest purchase price (e.g., EOSINT P 385 ~ USD 150,000), followed by
the FDM printer (e.g., Ultimaker 3 Ext. ~USD 4000) and the SLA printer (e.g., Form 2 ~USD
3500), please note that the prices are estimates and may vary by reseller or country [272].
All in all, the FDM, being the simplest printing method, always marks higher in different
aspects and thus is a highly reliable option in a number of different applications.

For each process, a wide range of materials are commercially available. For FDM,
ABS, and PLA are the most prominently used thermoplastic filaments while, for SLS,
PA12 powders are most widely used. For SLA, standard resins with unique formulations
for different applications are developed by the manufacturers and there are a number
of unique photocurable formulations based on polyester, polycarbonate, and polyether
polymers, developed in the research laboratories. Although traditional SLA offers high
lateral resolution compared to FDM and SLS, it is inadequately slow for large objects,
therefore, a number of variants of vat-based techniques such as digital light processing
(DLP), continuous liquid interface production (CLIP), and two-photon polymerization
(2PP) have emerged to facilitate the printing time as well as resolution (2PP provides
resolutions in the nm range).
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Table 7. A comparative overview of FDM, SLS, and SLA printing processes. The representation is created to provide a
guideline only.

Fused Deposition Modelling
(FDM) Selective Laser Sintering (SLS) Stereolithography (SLA)

Operational principal Material extrusion Laser sintering UV curing

Resolution
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4D printing, on the other hand, offers developing highly innovative and sophisticated
devices/structures for various applications such as in soft robotics and the biomedical field.
As reviewed in this work, FDM and SLA (mostly its variants) are increasingly adopted 4D
printing techniques compared to SLS owing to their facile process and appropriateness for a
variety of materials. The fundamental question/challenge of 4DP is how to modify the print
materials (ink/resin/powder) as the well-established or commercially available materials
cannot directly be used. The addition of various stimuli-active filler materials such as
magneto-active, electro-active, and so on are to be incorporated successfully. Tailoring
material properties, as well as optimization of the 3D print methods, are different from
each other, i.e., for FDM, SLS, and SLA. In order to make printable materials as well as to
meet the requirement of the targeted 4D application, a detailed investigation of the print
materials and print processes is necessary. 4D printing is a highly interdisciplinary field
and the expertise of material modification, process, and characteristics of targeted 4D effect
is required for successful printing.

The material-process requirements discussed here in this review for a magneto-active
polymer-based system remains similar for other active systems to develop other stimuli-
active or even multi-stimuli-active 4D structures. It is believed that the correlation of
material-process-properties of conventional polymeric material-based 3D printing together
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with an example of 4D printing provides a methodical guideline for 3D/4D printing of
polymer materials using FDM, SLS, and SLA (or its variants).
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AM Additive Manufacturing
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ASTM American Society for Testing and Materials
FDM Fused Deposition Modelling
LOM Laminated Object Manufacturing
WAAM Wire and Arc Additive Manufacturing
EBF3 Electron Beam Free Form Fabrication
SLS Selective Laser Sintering
EBM Electron Beam Melting
SLM Selective Laser Melting
LMD Laser Metal Deposition
SLA Stereolithography
MJ Material Jetting
STL Standard Tessellation Language
FFF Fused Filament Fabrication
PLA Polylactic Acid
SLA Selective Laser Sintering
PP Polypropylene
TPU Thermoplastic Polyurethane
TPE Thermoplastic Elastomer
ABS Acrylonitrile Butadiene Styrene
TGA Thermogravimetric Analysis
PA Polyamide
PEEK Polyether Ether Ketone
TGA Thermogravimetric Analysis
PCL Polycaprolactone
PLGA Polylactic Glycolic Acid
PEI Polyethylenimine
PEKK Polyetherketoneketone
ASA Acrylonitrile Styrene Acrylate
PMMA Polymethyl Methacrylate
PS Polystyrene
PET polyethylene Terephthalate
PES Polyethersulfone
PVA Polyvinyl Alcohol
PPF Polypropylene Fumarate
PTMC Polytrimethylene Carbonate
PEG Polyethylene Glycol
DSC Differential Scanning Calorimetry
CIPs Carbonyl Iron Powders
DLP Direct Laser Processing
µCLIP Micro-Continuous Liquid Interface Production
DIW Direct Ink Write
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172. Miedzińska, D.; Gieleta, R.; Popławski, A. Experimental study on influence of curing time on strength behavior of sla-printed
samples loaded with different strain rates. Materials 2020, 13, 5825. [CrossRef]

https://wematter3d.com/gravity-sls-3d-printer/
https://pro.xyzprinting.com/landing-page/en-US/mfgpro230_xs
https://nexa3d.com/3d-printers/thermoplastic-printers/
https://www.shining3d.com/downloads/ep-p3850-plastic-3d-printer/
https://www.shining3d.com/downloads/ep-p3850-plastic-3d-printer/
https://www.prodways.com/en/industrial-3d-printers/promaker-p1000/
https://www.prodways.com/en/industrial-3d-printers/promaker-p1000/
https://www.eos.info/en/additive-manufacturing/3d-printing-plastic/eos-polymer-systems/formiga-p-110-velocis
https://www.eos.info/en/additive-manufacturing/3d-printing-plastic/eos-polymer-systems/formiga-p-110-velocis
https://www.3dsystems.com/3d-printers/prox-sls-6100
http://en.farsoon.com/solution_list01_detail/FrontColumns_navigation01-1497537754897FirstColumnId=2&FrontColumns_navigation01-1497537754897SecondColumnId=58&productId=25.html
http://en.farsoon.com/solution_list01_detail/FrontColumns_navigation01-1497537754897FirstColumnId=2&FrontColumns_navigation01-1497537754897SecondColumnId=58&productId=25.html
http://en.farsoon.com/solution_list01_detail/FrontColumns_navigation01-1497537754897FirstColumnId=2&FrontColumns_navigation01-1497537754897SecondColumnId=58&productId=25.html
https://www.aniwaa.com/product/3d-printers/nyomo-minny/
https://www.aniwaa.com/product/3d-printers/nyomo-minny/
https://www.bhphotovideo.com/c/product/1180391-REG/xyzprinting_3l10xxus00c_nobel_printer.html/specs
https://www.bhphotovideo.com/c/product/1180391-REG/xyzprinting_3l10xxus00c_nobel_printer.html/specs
https://formlabs.com/asia/post-processing/wash-cure/tech-specs/
https://www.dream3d.co.uk/product/photocentric-liquid-crystal-pro/
https://www.dream3d.co.uk/product/photocentric-liquid-crystal-pro/
https://pick3dprinter.com/dws-x-pro-s-review/
https://europac3d.com/3d-printers/sla-uniontech-rspro/
https://europac3d.com/3d-printers/sla-uniontech-rspro/
https://www.treatstock.com/machines/item/156-prox-950
https://www.treatstock.com/machines/item/156-prox-950
http://doi.org/10.1007/BF00396562
http://doi.org/10.1016/j.addma.2017.10.002
http://doi.org/10.1016/j.apsusc.2017.01.112
http://doi.org/10.1016/j.addma.2020.101281
https://repositories.lib.utexas.edu/handle/2152/69898
http://doi.org/10.1016/j.matpr.2018.02.279
http://doi.org/10.1108/RPJ-02-2013-0017
http://doi.org/10.1002/pc.24701
http://doi.org/10.1557/jmr.2014.138
http://doi.org/10.1016/j.powtec.2014.04.003
http://doi.org/10.3390/polym13142325
http://doi.org/10.1177/2280800018764770
http://doi.org/10.3390/ma13245825


Polymers 2021, 13, 3101 34 of 37

173. Jiang, F.; Drummer, D. Curing kinetic analysis of acrylate photopolymer for additive manufacturing by photo-DSC. Polymers
2020, 12, 1080. [CrossRef]

174. Papadakis, L.; Chantzis, D.; Salonitis, K. On the energy efficiency of pre-heating methods in SLM/SLS processes. Int. J. Adv.
Manuf. Technol. 2018, 95, 1325–1338. [CrossRef]

175. Wang, R.J.; Wang, L.; Zhao, L.; Liu, Z. Influence of process parameters on part shrinkage in SLS. Int. J. Adv. Manuf. Technol. 2007,
33, 498–504. [CrossRef]

176. Schmid, M.; Kleijnen, R.; Vetterli, M.; Wegener, K. Influence of the origin of polyamide 12 powder on the laser sintering process
and laser sintered parts. Appl. Sci. 2017, 7, 462. [CrossRef]

177. Dechet, M.A.; Lanzl, L.; Werner, Y.; Drummer, D.; Bück, A.; Peukert, W.; Schmidt, J. Manufacturing and application of pa11-glass
fiber composite particles for selective laser sintering. In Proceedings of the 30th Annual International Solid Freeform Fabrication
Symposium, Austin, TX, USA, 12–14 August 2019.

178. Fitzharris, E.R.; Watanabe, N.; Rosen, D.W.; Shofner, M.L. Effects of material properties on warpage in fused deposition modeling
parts. Int. J. Adv. Manuf. Technol. 2018, 95, 2059–2070. [CrossRef]

179. Armillotta, A.; Bellotti, M.; Cavallaro, M. Warpage of FDM parts: Experimental tests and analytic model. Robot. Comput. Integr.
Manuf. 2018, 50, 140–152. [CrossRef]

180. Spoerk, M.; Holzer, C.; Gonzalez-Gutierrez, J. Material extrusion-based additive manufacturing of polypropylene: A review on
how to improve dimensional inaccuracy and warpage. J. Appl. Polym. Sci. 2020, 137, 48545. [CrossRef]

181. Yang, T.C. Effect of extrusion temperature on the physico-mechanical properties of unidirectional wood fiber-reinforced polylactic
acid composite (WFRPC) components using fused depositionmodeling. Polymers 2018, 10, 976. [CrossRef] [PubMed]

182. Osmanlic, F.; Wudy, K.; Laumer, T.; Schmidt, M.; Drummer, D.; Körner, C. Modeling of laser beam absorption in a polymer
powder bed. Polymers 2018, 10, 784. [CrossRef] [PubMed]

183. Suslick, K.S. Encyclopedia of Physical Science and Technology. Sonoluminescence and Sonochemistry Massachusetts; Elsevier Science Ltd.:
Amsterdam, The Netherlands, 2001; pp. 1–20.

184. Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing.
Chem. Rev. 2017, 117, 10212–10290. [CrossRef] [PubMed]

185. Zhang, X.; Jiang, X.N.; Sun, C. Micro-stereolithography of polymeric and ceramic microstructures. Sens. Actuators A Phys. 1999,
77, 149–156. [CrossRef]

186. Schüller-Ravoo, S.; Teixeira, S.M.; Feijen, J.; Grijpma, D.W.; Poot, A.A. Flexible and elastic scaffolds for cartilage tissue engineering
prepared by stereolithography using poly(trimethylene carbonate)-based resins. Macromol. Biosci. 2013, 13, 1711–1719. [CrossRef]
[PubMed]

187. Garay, A.C.; Paese, L.T.; Souza, J.A.; Amico, S.C. Studies on thermal and viscoelastic properties of vinyl ester resin and its
composites with glass fiber. Rev. Mater. 2015, 20, 64–71. [CrossRef]

188. Chen, J.; Smith, D.E. Filament rheological characterization for fused filament fabrication additive manufacturing: A low-cost
approach. Addit. Manuf. 2021, 47, 102208. [CrossRef]

189. Singh, R.; Kumar, R.; Ahuja, I.P.S. Mechanical, thermal and melt flow of aluminum-reinforced PA6/ABS blend feedstock filament
for fused deposition modeling. Rapid Prototyp. J. 2018, 24, 1455–1468. [CrossRef]

190. Wojtyła, S.; Klama, P.; Baran, T. Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and
nylon. J. Occup. Environ. Hyg. 2017, 14, D80–D85. [CrossRef]

191. Trhlíková, L.; Zmeskal, O.; Psencik, P.; Florian, P. Study of the thermal properties of filaments for 3D printing. AIP Conf. Proc.
2016, 1752, 040027. [CrossRef]

192. Esmizadeh, E.; Tzoganakis, C.; Mekonnen, T.H. Degradation behavior of polypropylene during reprocessing and its biocompos-
ites: Thermal and oxidative degradation kinetics. Polymers 2020, 12, 1627. [CrossRef]

193. Hao, X.; Guo, Y.; Li, Y.; Yang, Y.; Shen, Y.; Hao, X.; Wang, J. Study on the Structure and Properties of Novel Bio-based
Polyamide56 Fiber Compared with Normal Polyamide Fibers BT. In Proceedings of the 2015 International Conference on
Materials, Environmental and Biological Engineering, Guilin, China, 28–30 March 2015; Atlantis Press: Amsterdam, The
Netherlands, 2015; pp. 147–152.

194. Wei, S.T.; Zhou, K.; Chao, C. A Comprehensive Investigation on 3D Printing of Polyamide 11 and Thermoplastic Polyurethane
via Multi Jet Fusion. Polymers 2021, 13, 2139.

195. Ituarte, I.F.; Wiikinkoski, O.; Jansson, A. Additive manufacturing of polypropylene: A screening design of experiment using
laser-based powder bed fusion. Polymers 2018, 10, 1293. [CrossRef]

196. Fang, L.; Wang, Y.; Xu, Y. Preparation of polypropylene powder by dissolution-precipitation method for selective laser sintering.
Adv. Polym. Technol. 2019, 2019, 5803895. [CrossRef]

197. Shanmugam, V.; Das, O.; Babu, K.; Marimuthu, U.; Veerasimman, A.; Johnson, D.J.; Neisiany, R.E.; Hedenqvist, M.S.; Ramakrishna,
S.; Berto, F. Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. Int. J.
Fatigue 2021, 143, 106007. [CrossRef]

198. Safai, L.; Cuellar, J.S.; Smit, G.; Zadpoor, A.A. A review of the fatigue behavior of 3D printed polymers. Addit. Manuf. 2019, 28,
87–97. [CrossRef]

199. Yao, T.; Ouyang, H.; Dai, S.; Deng, Z.; Zhang, K. Effects of manufacturing micro-structure on vibration of FFF 3D printing plates:
Material characterisation, numerical analysis and experimental study. Compos. Struct. 2021, 268, 113970. [CrossRef]

http://doi.org/10.3390/polym12051080
http://doi.org/10.1007/s00170-017-1287-9
http://doi.org/10.1007/s00170-006-0490-x
http://doi.org/10.3390/app7050462
http://doi.org/10.1007/s00170-017-1340-8
http://doi.org/10.1016/j.rcim.2017.09.007
http://doi.org/10.1002/app.48545
http://doi.org/10.3390/polym10090976
http://www.ncbi.nlm.nih.gov/pubmed/30960901
http://doi.org/10.3390/polym10070784
http://www.ncbi.nlm.nih.gov/pubmed/30960709
http://doi.org/10.1021/acs.chemrev.7b00074
http://www.ncbi.nlm.nih.gov/pubmed/28756658
http://doi.org/10.1016/S0924-4247(99)00189-2
http://doi.org/10.1002/mabi.201300399
http://www.ncbi.nlm.nih.gov/pubmed/24214105
http://doi.org/10.1590/S1517-707620150001.0009
http://doi.org/10.1016/j.addma.2021.102208
http://doi.org/10.1108/RPJ-05-2017-0094
http://doi.org/10.1080/15459624.2017.1285489
http://doi.org/10.1063/1.4955258
http://doi.org/10.3390/polym12081627
http://doi.org/10.3390/polym10121293
http://doi.org/10.1155/2019/5803895
http://doi.org/10.1016/j.ijfatigue.2020.106007
http://doi.org/10.1016/j.addma.2019.03.023
http://doi.org/10.1016/j.compstruct.2021.113970


Polymers 2021, 13, 3101 35 of 37

200. Erokhin, K.S.; Gordeev, E.G.; Ananikov, V.P. Revealing interactions of layered polymeric materials at solid-liquid interface for
building solvent compatibility charts for 3D printing applications. Sci. Rep. 2019, 9, 1–14. [CrossRef]

201. Liu, T.; Guessasma, S.; Zhu, J.; Zhang, W.; Nouri, H.; Belhabib, S. Microstructural defects induced by stereolithography and
related compressive behaviour of polymers. J. Mater. Process. Technol. 2018, 251, 37–46. [CrossRef]

202. Bano, S.; Iqbal, T.; Ramzan, N.; Farooq, U. Study of surface mechanical characteristics of abs/pc blends using nanoindentation.
Processes 2021, 9, 637. [CrossRef]

203. Batakliev, T.; Georgiev, V.; Ivanov, E.; Kotsilkova, R.; Di Maio, R.; Silvestre, C.; Cimmino, S. Nanoindentation analysis of 3D
printed poly(lactic acid)-based composites reinforced with graphene and multiwall carbon nanotubes. J. Appl. Polym. Sci. 2019,
136, 3–7. [CrossRef]

204. Mansour, M.; Tsongas, K.; Tzetzis, D. Measurement of the mechanical and dynamic properties of 3D printed polylactic acid
reinforced with graphene. Polym. Technol. Mater. 2019, 58, 1234–1244. [CrossRef]
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