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Aim: Computational exploration of small-molecule-based relationships between 
target proteins from different families. Materials & methods: Target annotations 
of drugs and other bioactive compounds were systematically analyzed on the basis 
of high-confidence activity data. Results: A total of 286 novel chemical links were 
established between distantly related or unrelated target proteins. These relationships 
involved a total of 1859 bioactive compounds including 147 drugs and 141 targets. 
Conclusion: Computational analysis of large amounts of compounds and activity data 
has revealed unexpected relationships between diverse target proteins on the basis 
of compounds they share. These relationships are relevant for drug discovery efforts. 
Target pairs that we have identified and associated compound information are made 
freely available.

Lay abstract: Relationships between proteins are usually studied by comparing their 
sequences and functions. However, in addition to biological relationships, chemical 
links between proteins can also be established by searching for active compounds 
they share. If proteins have active compounds in common, they are likely to interact 
with small molecules in similar ways, which provides important clues for drug 
discovery. Therefore, we have systematically searched for unexpected compound-
based relationships between proteins.
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Relationships between proteins are typically derived 
on the basis of evolutionary criteria including sequence 
similarity and functions [1–5]. This also applies to the 
organization of protein families and the assignment of 
new proteins to existing families [4,5]. In addition to 
biological considerations, relationships between pro-
teins can also be established on the basis of ligands they 
share [6–9]. This approach especially applies to pharma-
ceutically relevant targets capable of interacting with 
small molecules [10,11]. If such targets share active com-
pounds, they are likely to have similar binding charac-
teristics. These chemical relationships are relevant for 
drug discovery. A variety of attempts have been made 
to systematically account for currently available pro-
tein–small molecule interactions [12–21]. Many of these 
investigations have focused on target prediction for 
drugs or other bioactive compounds. As a representa-
tive example, Nicola et al. [20] have implemented work-
flows to arrive at knowledge-supported target hypoth-
eses for active compounds taking  chemical similarity 
into account.

The idea to establish relationships between target 
proteins on the basis of active compounds originated 
about a decade ago when the notion of polypharma-

cology emerged [6]. Evidence was accumulating that 
many drugs and other bioactive compounds interacted 
with multiple rather than single targets [6]. Multitar-
get activities were found to be responsible for desired 
pharmacological effects, but also for undesired site 
effects [7]. Such insights also gave rise to more global 
views of target–compound interactions, leading to the 
design of network representations linking chemical 
and target space [6–8]. Clearly, drugs and other com-
pounds with unexpected multitarget activities were 
prime candidates to further explore questions relating 
to drug efficacy and pharmacology. Moreover, if target 
proteins shared active compounds, indicating similar 
ligand-binding properties, a new dimension would 
be added to biological relationships and implications 
of such chemical links for drug discovery could be 
explored.

Compared with the situation a decade ago, com-
pound activity data have grown in an unforeseeable 
manner [22–25]. In the public domain, millions of com-
pounds have become available that are active against 
more than 10,000 targets [23,25]. These are astonishing 
numbers that would have been hard to imagine just 
a few years ago. Recent growth in compounds and 
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Graphical abstract: Shown here are exemplary small molecules that are active against two targets 
with different functions. Thus, these compounds establish an unexpected chemical/ligand-binding 
relationship between these targets.
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activity data thus provides unprecedented opportuni-
ties to, for example, further explore molecular origins 
of polypharmacology [23] or investigate compound-
based target relationships. This has prompted us to 
conduct a systematic search for small molecule con-
nections between distantly related or unrelated targets, 
as reported in the following. Our analysis does not 
involve predictions of targets for given drugs or other 
active compounds. Rather, it is based upon a system-
atic data mining effort to analyze target annotations of 
small molecules and establish compound-based target 
pairs.

Materials & methods
Compounds & activity data
Bioactive compounds were assembled from ChEMBL 
version 22 [25]. ChEMBL compounds originate from 
medicinal chemistry publications and are often (but 
not always) the result of chemical optimization efforts. 
Only compounds involved in direct interactions (tar-
get relationship type ‘D’) with human targets at the 
highest confidence level (target confidence score 9) 
were selected. As potency measurements, only numeri-
cally defined equilibrium constants (K

i
 values) and 

IC
50

 values were considered. Approximate measure-
ments indicated by ‘>,’ ‘<,’ or ‘∼’ were discarded. If 
a compound had multiple K

i
 or IC

50
 values for the 

same target, the geometric mean of the values was 
calculated as the final potency annotation, provided 
all values fell into the same order of magnitude. Oth-
erwise, the values were disregarded. Because only 
high-confidence activity data were considered in our 
analysis and weak compound activities were worth 
considering for establishing remote target relation-
ships, no potency cutoff was applied. Furthermore, we 
note that records of in activity in different assays are 
not available in ChEMBL. Compound structures were 
standardized using the OpenEye OEChem toolkit [26]. 
Standardization involved removal of salts and solvent 
molecules from compound records, conversion of iso-
topes, removal of stereoisomers, neutralization of bases 
and acids and canonicalization of the representation of 
aromatic structures.

Applying these selection criteria focusing on high-
confidence activity data, a total of 224,532 unique 
compounds were obtained with activity against human 
1687 targets. Antitargets belonging to the hERG and 
CYP450 families and compounds active against them 
were not considered. By definition, compounds used 
to establish target relationships must have at dual- or 
multitarget activity. However, prior to searching for 
compound-based target relationships, preselected com-
pounds were filtered for potential assay interference 
compounds [25,27] and aggregators [28] to flag those that 

may give rise to artifacts (despite the exclusive use of 
high-confidence activity data), leading to the removal 
of a total of 10,606 questionable compounds. Applica-
tion of these filters, which cannot be expected to be 
perfect, might also remove compounds with true activ-
ity. On the other hand, other compounds with inter-
ference characteristics might exist. However, removal 
of more than 10,000 potential candidates for assay 
interference represented a conservative approach in the 
context of our study.

Target assignments
Two target assignment protocols were applied in paral-
lel. First, targets were selected that could be assigned 
to specific families on the basis of the UniProt clas-
sification scheme [29], referred to as ‘family-based’ 
selection. Second, target pairs were enumerated and 
pairs with similar sequences (identity > 20% or at least 
30 identical residues) were removed [30], referred to as 
‘sequence-based’ selection. For selected targets, addi-
tional information was retrieved from the Therapeutic 
Target Database [31] and from KEGG [32].

Compound-based target pairs
For the formation of a target pair, we required at least 
three available active compounds. For family-based 
selection, all pairs of targets were determined that orig-
inated from different families (pairs originating from 
the same family were not considered). For sequence-
based selection, all pairs of sequence-diverse targets 
were identified which shared active compounds. Then, 
the intersection of the two sets of compound-based 
target pairs was formed. Approved drugs involved 
in forming these target pairs were identified using 
 DrugBank [33].

Network representation
For selected pairs, a compound-based target network 
was generated using Gephi [34] in which targets were 
nodes that were connected if they shared active com-
pounds. The network layout was generated using the 
force-directed Fruchterman–Reingold algorithm [35].

Results & discussion
Compound-based target relationships
We have systematically searched for pairs of dis-
tantly related or unrelated targets sharing active com-
pounds on the basis of high-confidence activity data. 
A summary is shown in Figure 1. For targets belong-
ing to different families, 456 compound-based target 
pairs were identified that involved 2545 unique active 
compounds and 164 unique targets. In addition, for 
sequence-diverse targets, 3262 pairs were identified 
involving 4532 compounds and 771 targets. Deter-
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mining the intersection of these two sets focused on 
the analysis of relationships between targets that 
belonged to different families and had low sequence 
identity, in other words, distantly or unrelated targets, 
and yielded 295 target pairs with 1974 compounds and 

143 targets. Database searches revealed that only nine 
of these target relationships were previously reported, 
leading to our final set of 286 new target pairs that 
were based upon a total of 1859 active compounds 
and comprised 141 different targets.’ The compounds 
involved in these relationships included 147 drugs [33].

Compound frequency
How strong were the chemical links between differ-
ent targets? In other words, how many active com-
pounds participated in the formation of target pairs? 
In Figure 2, the distribution of compounds over target 
pairs is provided. We determined that 21% of the pairs 
shared 3–9 active compounds; 46%, 10–19; 21%, 
20–49; and 7% of the pairs at least 50 compounds. 
Thus, target pairs were frequently established on the 
basis of large numbers of compounds, lending fur-
ther credence to unexpected chemical relationships 
between different targets.

Targets
Figure 3 shows the distribution of different targets 
over families for which compound-based relationships 
were established. Dominant among these targets were 
G-protein coupled receptors (GPCRs, 46 members) 

Figure 1. Identification of compound-based target pairs. A summary of the analysis is presented, as described in 
the text.

Figure 2. Compound frequency. The pie chart reports 
the percentages of target pairs that were formed by 
increasing numbers of active compounds (i.e., 3–9, 
10–19, 20–49 or at least 50 compounds).
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and protein kinases with 11 members. GPCRs and 
kinases currently represent most popular pharmaceuti-
cal targets. In addition, targets from pairs included a 
variety of enzymes including hydrolases (30 members) 
and oxidoreductases (12) as well as different trans-
porter proteins (8), transcription factors (5) and other 
(non-GPCR) receptors (6). Thus, distantly related or 
unrelated targets forming pairs originated from diverse 
families having different functions.

Composition of target pairs
Figure 4 shows families from which targets forming 
compound-based relationships originated. Many dif-
ferent – and unexpected – combinations of families 

were observed; some of which were frequent, whereas 
others were not. For example, interesting unique com-
binations included, among others, a cell adhesion 
protein and a kinase or a DNA-binding protein and 
a transporter. More frequent combinations included, 
for example, 13 instances of transcription factors and 
various enzymes. The most frequent combinations 
involved GPCRs and different enzymes (32 examples), 
kinases and GPCRs (38) as well as transporters and 
GPCRs (87), by far the most frequent pairing.

Were there dominating targets participating in many 
relationships? To address this question, a compound-
based target network was generated (Figure 5). Network 
analysis revealed that only a few targets were involved 

Figure 3. Target distribution. The distribution of targets from pairs over different families is shown.

Figure 4. Target pair composition. The distribution of target pairs over different combinations of families is 
shown. Matrix cells representing family combinations and are colored by population using a color spectrum from 
red (one pair) over yellow to dark green (largest number of pairs).

GPCR: 46
Protein kinase: 11
Transporter: 8
Receptor: 6
Transcription factor: 5
Oxidoreductases: 12
Transferases: 6
Hydrolases: 30
Lyases: 6
Isomerases: 2
Other targets: 9

Receptor

R
ec

ep
to

r

Transporter

T
ra

ns
po

rt
er

Protein kinase

P
ro

te
in

 k
in

as
e

GPCR

G
P

C
R

Enzyme

E
nz

ym
e

30 32 11 3 3 13 2

11258738

5 1 3

4 4 1

1

1

1

1

6

1

2

T
ra

ns
cr

ip
tio

n 
fa

ct
or

Io
n 

ch
an

ne
l

U
nc

la
ss

ifi
ed

C
el

l a
dh

es
io

n

D
N

A
-b

in
di

ng

D
ev

el
op

m
en

ta
l p

ro
te

in

H
or

m
on

e

M
ot

or
 p

ro
te

in



10.4155/fsoa-2017-0037 Future Sci. OA (2017) 3(3), FSO212 future science groupfuture science group

Research Article    MiljkoviĆ, Kunimoto & Bajorath

in many different relationships, notably small numbers 
of transporter proteins and kinases (forming a small 
densely connected network component). By contrast, 
although many pairings were detected for GPCRs, 
individual receptors were mostly only involved in few 
relationships. Furthermore, the network also contained 
a number of isolated target pairs.

We also asked the question which functionally or 
therapeutically relevant information might already be 
available for new target pairs. Table 1 provides a sum-
mary of our database analysis. Nearly 90% of the pairs 
consisted of designated therapeutic targets, consistent 
with our approach to focus on compounds and target 
annotations from medicinal chemistry. However, tar-

gets from less than 20% of all pairs were implicated in 
the same disease and targets from less than 10% in a 
biological pathway relationship. For only less than 5% 
of all pairs, both targets were implicated in the same 
disease and involved in a pathway relationship. Thus, 
for the majority of newly identified compound-based 
target pairs, no therapeutic or pathway relationships 
were known.

Exemplary relationships
Figure 6 shows the representative examples of unex-
pected target relationships and corresponding active 
compounds such as the link between a dipeptidyl 
peptidase and muscarinic acetylcholine receptor M1, 
which shared a series of analogs. All compounds in 
Figure 6 had dual-target activity, in other words, they 
were only annotated with the targets forming the 
respective pairs. The examples shown also illustrate 
that novel target pairs involved compounds that were 
highly potent for one or both targets. Many such rela-
tionships can be further explored by focusing on shared 
active compounds and other molecules only annotated 
with one or the other target. In addition to target rela-
tionships, pairs also revealed new target hypotheses, 

Table 1. Target pair information.

Available information New target pairs (%)

Therapeutic target 89.4

Disease relationship 19.2

KEGG pathway relationship 9.8

Disease + Pathway relationship 4.2

Reported here is the percentage of all newly identified target pairs for which disease and/or 
pathway relationship information is currently available.

Figure 5. Compound-based target network. For targets comprising 286 new pairs, a compound-based target 
network is shown. Nodes represent targets that are connected by an edge if they share active compounds. In 
addition, nodes are color-coded by target family (different enzyme families according to Figure 3 are combined 
into one family; red) and scaled in size by their degree (i.e., number of relationships with other targets).

Enzyme: 56
GPCR: 46
Protein kinase: 11
Transporter: 8
Receptor: 6
Transcription factor: 5
Other targets: 9
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as illustrated in Figure 7 for three exemplary drugs. In 
each case, established primary targets were taken from 
DrugBank. However, these drugs also participated in 
the formation of new target relationships on the basis 
of activities reported in ChEMBL. We note that the 
exemplary drugs shown were only weakly active against 
the pairs of unrelated targets. However, this might 

nonetheless indicate small-molecule-based relation-
ships between these targets that merit further explora-
tion. Borderline activities of drugs were sometimes also 
reported in ChEMBL for their primary targets from 
DrugBank, as also shown. In addition, new target 
relationships involving drugs might provide additional 
hypotheses for secondary drug targets. For example, 

Figure 7. New target hypotheses for approved drugs. Shown here are three examples of approved drugs that participate in the 
formation of new target pairs, given at the top. For each drug, known target(s) from DrugBank is (are) listed at the bottom. In each 
case, proteins from pairs represent potential new drug targets. Potency values are provided for new target pairs and targets from 
DrugBank (if available in ChEMBL). 
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the well-known cholesterol lowering agent lovastatin 
also participated in forming a relationship between a 
dopamine transporter and the neurokinin 2 receptor. 
In addition, orlistat, implicated in lipid metabolism 
and having several known targets, was also annotated 
with the cannabinoid CB1 receptor, a functionally 
distinct target. In addition, montelukast, an asthma 
and allergy medication primarily directed against the 
cysteinyl leukotriene receptor 1, an anti-inflammatory 
target, was involved in a relationships between MAPK 
and the 5-HT2b receptor that are critical for distinct 
signaling events. Thus, montelukast likely represents 
a polypharmacological agent. Our target pairs include 
nearly 150 known drugs that are involved in different 
relationships and whose primary and secondary targets 
might be compared and further investigated.

Conclusion
In this study, we have searched for target proteins that 
share active compounds. The search was carried out 
by systematically analyzing target annotations of com-
pounds with available high-confidence activity data 
taking protein sequence and family information into 
account. The large-scale character of our current study, 
considering all proteins for which medicinal chemistry 
efforts have been reported, sets it apart from previous 
attempts to search for compound relationships among 
groups of targets. To focus the search on distantly 
related or unrelated targets, intrafamily relationships 
were not considered. Rather, the aim of our analysis 
was the identification of unexpected chemical links 
between targets with diverse functions.

Both targets and compounds implicated in such rela-
tionships are of interest. For instance, if unrelated tar-
gets share active compounds, they have similar ligand-
binding characteristics and thus might be inhibited (or 
activated) simultaneously if relevant compounds are 
administered. These insights also provide opportunities 
for the design of polypharmacological ligands, if targets 
with shared active compounds have complementary 
functions that are of interest for therapy, for example, if 
they participate in coordinated signaling and metabolic 
pathways. Furthermore, for drugs or other bioactive 
compounds involved in such  relationships, new target 
hypotheses might be obtained.

Our current analysis has identified 286 pairs of 
distantly or unrelated targets that met our selection 
criteria, shared varying numbers of active compounds 
and involved a total of 141 unique proteins. Many of 
these pairings combined targets with distinct func-
tions, hence providing many opportunities for follow-
up investigations. For example, for implicated pairs 
of distantly related or unrelated targets, a search or 
screening effort for new active compounds might be 

initiated to further investigate pharmacological conse-
quences of parallel engagement. In addition, in these 
instances, multitarget ligands with functional effects 
across different therapeutic areas might be generated 
and  pharmacological readouts be explored.

Future perspective
In recent years, volumes of compounds and activity 
data have grown in an unprecedented manner. Cur-
rently available bioactive compounds provide a rich 
source for information for exploring structure–activity 
relationships or multitarget activities. The latter topic 
is particularly relevant for better understanding the 
molecular basis of polypharmacology and for study-
ing compound–target relationships on a large scale, as 
reported herein. Establishing links between distantly 
related or unrelated targets on the basis of active small 
molecules they share is of considerable interest for 
pharmaceutical research. Chemical links between tar-
gets were often established by large numbers of com-
pounds, and our analysis identified more compound-
based target relationships than we expected to find 
when planning this study. For many emerging targets, 
only a few active compounds are currently available, 
and these compounds are unlikely to be extensively 
tested against other targets. However, since there is no 
end in sight for compound data growth, we anticipate 
that more unexpected compound-based target rela-
tionships will become available in the future, making 
this an attractive area of research going forward.

As a part of our study, all relationships reported 
herein and the associated compound and target infor-
mation are made freely available as an open access 
deposition [36].
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Summary points

Background
•	 Small molecules might be specifically active against multiple target proteins.
•	 Different targets might share sets of active compounds.
•	 Sharing active compounds indicates similar ligand-binding characteristics.
•	 Ligand-binding features add another dimension to biological relationships.
Materials & methods
•	 Compound-based target relationships were explored on a large scale.
•	 Chemical relationship analysis was focused on targets from different families.
•	 Care was taken to base the analysis on high-confidence activity data.
Results & discussion
•	 Nearly 300 unexpected compound-based target relationships were identified.
•	 These relationships involved a total of 141 different proteins.
•	 Paired targets were often unrelated and had distinct functions.
•	 For a number of approved drugs, new target hypotheses were derived.
Conclusion & future perspective
•	 Bioactive compounds provide a rich source of information for connecting chemical and target space.
•	 Exploring compound-based target relationships is relevant for pharmaceutical research and drug 

repositioning.
•	 Further compound data growth is expected to yield more chemical links between proteins with different 

biological functions.
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