
Original article

Endotypes of primary osteoarthritis identified by
plasma metabolomics analysis

Salem Werdyani 1, Ming Liu1, Hongwei Zhang2, Guang Sun2, Andrew Furey3,
Edward W. Randell4, Proton Rahman2 and Guangju Zhai 1

Abstract

Objective. To identify endotypes of osteoarthritis (OA) by a metabolomics analysis.

Methods. Study participants included hip/knee OA patients and controls. Fasting plasma samples were

metabolomically profiled. Common factor analysis and K-means clustering were applied to the metabolomics data

to identify the endotypes of OA patients. Logistic regression was utilized to identify the most significant metabolites

contributing to the endotypes. Clinical and epidemiological factors were examined in relation to the identified OA

endotypes.

Results. Six hundred and fifteen primary OA patients and 237 controls were included. Among the 186 metabolites

measured, 162 passed the quality control analysis. The 615 OA patients were classified in three clusters (A, 66; B,

200; and C, 349). Patients in cluster A had a significantly higher concentration of butyrylcarnitine (C4) than other

clusters and controls (all P<0.0002). Elevated C4 is thought to be related to muscle weakness and wasting.

Patients in cluster B had a significantly lower arginine concentration than other clusters and controls (all

P<7.98�10�11). Cluster C patients had a significantly lower concentration of lysophosphatidylcholine (with palmitic

acid), which is a pro-inflammatory bioactive compound, than other clusters and controls (P<3.79�10�6). Further,

cluster A had a higher BMI and prevalence of diabetes than other clusters (all P� 0.0009), and also a higher

prevalence of coronary heart disease than cluster C (P¼0.04). Cluster B had a higher prevalence of coronary heart

disease than cluster C (P¼0.003) whereas cluster C had a higher prevalence of osteoporosis (P¼0.009).

Conclusion. Our data suggest three possible clinically actionable endotypes in primary OA: muscle weakness,

arginine deficit and low inflammatory OA.
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Introduction

Osteoarthritis (OA) is the most common chronic progres-

sive joint condition and one of the 10 most disabling

diseases in developed countries [1]. Since the fifties of

the last century, the prevalence of OA has doubled, and

about 240 million individuals have been diagnosed with

OA worldwide.OA is a heterogeneous group of overlap-

ping distinct conditions that have different aetiologies,

but similar clinical manifestations [2]. OA heterogeneity

represents a major obstacle to the detection of the effi-

cacy of disease-modifying OA drugs. Efforts have been

made to classify subtypes of OA patients based on epi-

demiological factors [3], joint structure changes seen on

MRI [4], disease mechanism of onset and pathophysi-

ology [5], anatomical components [6], clinical manifesta-

tions [7], disease stage [8], affected joints [9] and
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. Data demonstrated that metabolomics was a novel tool to classify OA patients into subtypes.

. Three endotypes existed in OA, characterized by C4, arginine and lysophosphatidylcholine levels in plasma.

. The findings provided a better understanding of OA pathogenesis toward developing personalized tools for OA

management.
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inflammation [10], but significant overlapping features

among the OA subtypes defined by these methods limit

their clinical application [11]. Hence, there is a need for

novel tools that can provide clinically actionable classifi-

cations of OA subtypes for personalized medicine in OA

management [11, 12].

Metabolomics provides a snapshot of the entire

physiology of the host and its response to the envir-

onment and genetics, which can be associated with

the outcome phenotype and endotypes [13].

Recently, application of metabolomics to OA research

has identified several promising and potentially clinic-

ally actionable metabolic markers [12, 14]. We there-

fore hypothesized that endotypes of OA patients exist

and can be identified by a metabolomics analysis,

and tested our hypothesis in a well-established

study—the Newfoundland Osteoarthritis Study

(NFOAS) [15].

Methods

Study participants

The subjects were total hip or knee replacement

patients due to primary OA who were recruited to the

NFOAS [15] between November 2011 and September

2017 in St Clare’s Mercy Hospital and Health Science

Centre General Hospital in St John’s, Newfoundland and

Labrador (NL), Canada [11]. OA diagnosis was made

based on the American College of Rheumatology OA

clinical diagnostic criteria [16]. Pathology reports on car-

tilage and osteophytic irregularities were investigated

post-surgery to confirm OA diagnosis. Self-reported

OA-free controls were derived from the same source

population that was originally recruited to the Complex

Diseases in the Newfoundland Population: Environment

and Genetics (CODING) study [17]. The study was

approved by the Health Research Ethics Authority of NL

(reference number 11.311), and written consent was

obtained from all study participants.

Demographic and medical information

A self-administered questionnaire was used to collect

the patients’ demographic and medical information

including age, sex, BMI and comorbidities. A patient’s

age was calculated at the total joint replacement surgery

date. BMI was calculated by dividing a patient’s weight

in kilograms by the squared height in metres.

Comorbidities including diabetes, hypertension, high

cholesterol, coronary heart disease, gout, osteoporosis,

breast cancer, colon cancer, skin cancer, melanoma,

basal cell carcinoma and squamous cell carcinoma

were self-reported by the OA patients [11].

Metabolic profiling

Blood samples were collected after at least 8 hours fast-

ing, and plasma was separated from the whole blood by

a standard protocol and stored in �80�C freezers until

analysis [18]. Metabolic profiling was performed on

plasma using the Biocrates AbsoluteIDQ p180 kit

(Biocrates Life Sciences AG, Innsbruck, Austria), which

measures the concentrations of 186 metabolites.

Supplementary Table S1, available at Rheumatology on-

line, provides the full list of the metabolites measured in

the study. The profiling was done using an API4000

QtrapVR tandem mass spectrometry instrument (Applied

Biosystems/MDS Analytical Technologies, Foster City,

CA, USA) equipped with an Agilent 1100 HPLC system

(Agilent Technologies, Santa Clara, CA, USA) at the

Metabolomics Innovation Centre (https://www.metabolo

micscentre.ca). The complete analytical process of tar-

geted metabolite concentrations was performed using

the MetIQ software package, which is an integral part of

the AbsoluteIDQVR p180 kit, and the concentrations were

reported in micromolar [19]. Our in-house reproducibility

of the assay was performed in 23 samples as previously

described [20]; the mean coefficient of variation (CV) for

all metabolites was 0.07 (0.05)mM.

Statistical analysis

Quality control procedures removed metabolites from

subsequent analysis if >10% of the samples had values

below the limit of detection to minimize the false-

positive results as a standard practice in metabolomics

studies [21]. For metabolites with values below the limit

of detection in <10% of samples, missing values were

imputed by the mean of the given metabolites. Principal

component analysis demonstrated that we did not have

any batch effect in our experiment; therefore, no correc-

tion for batch effects was performed.

Bartlett’s test of sphericity and the Kaiser–Meyer–

Olkin measure of sampling adequacy were used to

evaluate the factorability of the data and to determine

whether there were meaningful latent factors within the

metabolomics data [22]. Then, the number of factors

was determined using a scree plot and parallel analysis

based on the calculated eigenvalues from the correlation

matrices [22]. Based on the suggested number of fac-

tors in the metabolomics data, common factor analysis

was performed to reduce the dimensionality of the

metabolomics data [22, 23]. The identified factors were

utilized in the subsequent clustering analysis if their cor-

responding eigenvalues were >1.0 along with rotated

absolute factor loading for each metabolite >0.3

detected in only one factor [24]. Factor scores for each

study participant were calculated by adding up all the

metabolite concentrations in each identified factor and

used in the clustering analysis [24].

Subsequently, the Hopkins statistic was used to as-

sess the clustering tendency of the calculated factor

scores from 615 OA patients to investigate whether the

metabolomics data were clusterable with any inherent

grouping structure [25]. Then, the optimal number of

clusters was determined using the silhouette width and

elbow plot methods based on the percentage of vari-

ance between expected clusters identified by F-test

[26]. Thereafter, the factor scores from all 615 OA
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patients were utilized in the clustering analysis using the

most commonly unsupervised machine learning

K-means clustering algorithm to identify the endotypes

of OA patients based on the similarity and minimized

variance between the clustered subjects [26].

Then, multivariable logistic regression was performed

to identify the most significant metabolites that contrib-

ute to the classification of the endotypes of OA patients

and differentiate the patients in each group from healthy

controls. Metabolite ratios between those identified

metabolites as proxies for enzymatic reaction were

examined to identify the most likely metabolic pathways

[27]. Receiver operating characteristic (ROC) analysis

was conducted to evaluate the performance of identified

metabolites and ratios in the classification of each endo-

type. The area under the curve (AUC) was calculated

and optimal cut-off values were determined using the

maximum sensitivity and specificity simultaneously

(MaxSpSe) method. Furthermore, we examined 15 clin-

ical and epidemiological variables in relation to the iden-

tified endotypes, including age, sex, BMI and

comorbidities. Joint specificity (knee/hip) for the identi-

fied endotypes was also tested. Significance level was

defined as P�0.0003 after correction of multiple testing

of 162 metabolites with the Bonferroni method. All the

analyses were performed in R version 3.5.1 (R

Foundation for Statistical Computing, Vienna, Austria)

with psych, GPArotation, corpcor, Factoextra, NbClust,

cluster, clValid, stats, pROC, caret, OptimalCutpoints,

dplyr and ggplot2 packages.

To complement our data analytic method, we also

performed a split sample analysis although it was not

advisable because of the insufficient sample size.

Specifically, we randomly split our cohort equally into

training and validation datasets with similar distribution

of age, sex and BMI between the two datasets and

applied exactly the same methods described above to

the training dataset and replicated the results in the val-

idation dataset. The sample splitting was done in R

using the CreateDataPartition function in the caret pack-

age [28].

Results

A total of 615 primary OA patients and 237 OA-free con-

trols were included in the study. OA patients were sig-

nificantly older (P¼0.0001) and had a higher BMI than

controls (P¼0.0001), but there was no difference in sex

distribution between OA patients and controls (P¼0.27;

Table 1).

Among the 186 metabolite concentrations measured,

162 metabolites passed the quality control criteria and

were included in the analysis. The evaluation of the fac-

torability of the metabolomics data using Bartlett’s test

of sphericity showed statistical significance (P¼ 0.0001),

suggesting a significant difference of the correlation ma-

trix from the identity matrix, thereby indicating that the

metabolomics data are factorable. Also, the Kaiser–

Meyer–Olkin test indicated that the metabolomics data

were adequate for factor analysis with overall measure

of sampling adequacy of 0.93. A scree plot (Fig. 1A) and

parallel analysis (Fig. 1B) estimated that the metabolo-

mics data can be categorized by 17 factors based on

their correlation and relationship. Accordingly, common

factor analysis retrieved a rotated factor matrix of 17

distinct factors from 93 metabolites that had a rotated

factor loading >j0.3j in only one factor. These 93 metab-

olites included 12 amino acids, three biogenic amines,

22 acylcarnitines, 48 glycerophospholipids, seven sphin-

golipids and one sugar hexose (>90% is glucose)

(Supplementary Table S2, available at Rheumatology

online).

The Hopkins statistic indicated that the metabolomics

dataset of OA patients was significantly clusterable with

Hopkins statistic value of 0.18. The minimum silhouette

width and elbow plot anticipated that the 615 OA

patients could be classified into three main clusters

based on the metabolomics factor scores (Fig. 1C and

D). K-means clustering analysis determined three dis-

tinct main clusters (cluster A, 66; cluster B, 200; and

cluster C, 349) of OA patients with between sum of

squares/total sum of squares ¼ 77.0% (Fig. 2).

Logistic regression identified butyrylcarnitine (C4), argin-

ine and lysophosphatidylcholine with palmitic acid (lysoPC

a C16:0) to be the major contributing factors for the clas-

sification and differentiation between clusters A, B and C.

The cluster A patients were characterized by a significant-

ly higher concentration of C4 than the other two clusters

(P¼ 2.04� 10�4) and OA-free controls (P¼4.08�10�8)

(Table 2). While it did not reach the pre-defined signifi-

cance, the second metabolite was a phosphatidylcholine

with 40 carbons and three double bonds (PC ae C40:3)

for which the patients in cluster A had a lower concentra-

tion than other OA patients (P¼0.01) and controls

(P¼ 1.30� 10�11) (Table 2). When the ratio between these

two metabolites was considered, the significance became

stronger. The PC ae C40:3 to C4 ratio was significantly

TABLE 1 The characteristics of the 615 OA patients and 237 OA-free controls

OA patients (n 5 615) OA-free controls (n 5 237) P-value

Sex, female, % 55.28 59.49 0.265
Age, mean (S.D.), years 66.05 (8.55) 49.23 (12.71) 0.0001

BMI, mean (S.D.), kg/m2 33.74 (6.86) 29.03 (5.05) 0.0001

P-values were obtained from chi-square test for sex distribution and Student’s t-test for continuous variables.
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lower in cluster A patients than in patients of other clus-

ters (P¼ 4.89�10�7) and controls (P¼1.31�10�11)

(Table 2). ROC analysis showed that the ratio had an

AUC of 0.92 (95% CI: 0.89–0.95) to distinguish cluster A

patients from OA-free controls with a sensitivity of 0.83

and specificity of 0.83 at the optimal cutoff value of 4.75.

The ratio had a moderate discriminatory power to distin-

guish patients in cluster A from patients in other clusters

with an AUC of 0.68 (95% CI: 0.62–0.75) (Fig. 3A).

The cluster B patients had a significantly lower arginine

concentration than those of clusters A and C

(P¼ 3.44� 10�16) and controls (P¼7.98�10�11)

(Table 2). The ROC curve analyses showed that arginine

had an AUC of 0.82 (95% CI: 0.78–0.85), and a sensitivity

of 0.74 and specificity of 0.75 to discriminate patients in

cluster B from patients in the other two clusters at an op-

timal cutoff value of 28.30mM; and an AUC of 0.99 (95%

CI: 0.98–1.00) with a sensitivity of 0.95 and a specificity of

FIG. 1 Estimation of the factor and cluster numbers from the concentrations of 162 metabolites of 615 OA patients

The red arrows in the Scree plot (A) and parallel analysis plot (B) indicate that the metabolite data could be catego-

rized by 17 factors based on their correlation and relationship. The red vertical dash line in the minimum silhouette

width plot (C) and the red arrow in the elbow plot (D) indicate that the 615 OA patients can be classified into three

main clusters based on the calculated metabolite factor scores from the 17 identified factors. FA: factor analysis; PC:

principal component analysis.
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0.96 to discriminate patients in cluster B from controls at

the optimal cutoff value of 56.10mM (Fig. 3B).

Patients in cluster C were distinguished from

patients in the other two clusters and OA-free controls

by a lower concentration of lysoPC a C16:0 (all

P�3.79�10�6) (Table 2). Although it did not reach

the pre-defined significance level, the second top

associated metabolite was a phosphatidylcholine with

38 carbons and two double bonds (PC ae C38:2)

(P�0.006; Table 2). When examining the ratio of these

two metabolites, we found that the significance be-

came stronger and the lysoPC a C16:0 to PC ae

C38:2 ratio was significantly lower in patients in clus-

ter C than in patients of the other clusters (P¼ 0.0001)

but significantly higher than in OA-free controls

(P¼0.0001) (Table 2). The ratio was also significantly

higher in patients of clusters A and B than in controls

(P¼0.0001). The ROC curve analyses showed that the

FIG. 2 Three distinct clusters of OA patients identified by K-means clustering method coupled with metabolomics

data

TABLE 2 Most significant metabolites contributing to the classification of endotypes of primary OA patients

Metabolite Mean (S.D.) Other OA patients Controls

Mean (S.D.) P-value Mean (S.D.) P-value

Cluster A (n¼66)

C4 concentration, mM 0.34 (0.25) 0.26 (0.16) 0.0002 0.23 (0.14) 4.08�10�8

PC ae C40:3 concentration, mM 0.85 (0.32) 0.97 (0.37) 0.01 1.67 (0.58) 1.30�10�11

PC ae C40:3 to C4 ratio 3.11 (1.57) 4.51 (2.39) 4.89�10�7 8.81 (4.51) 1.31�10�11

Cluster B (n¼200)
Arginine concentration, mM 21.39 (17.83) 41.76 (19.48) 3.44�10�16 115.08 (50.77) 7.98�10�11

Cluster C (n¼349)
LysoPC a C16:0 concentration, mM 79.02 (25.46) 130.47 (65.10) 1.42�10�12 82.61 (37.02) 3.79�10�6

PC ae C38:2 concentration, mM 1.94 (1.44) 1.74 (1.20) 0.006 4.54 (2.30) 1.33�10�7

LysoPC a C16:0 to PC ae C38:2 ratio 53.15 (25.09) 90.93 (50.67) 0.0001 22.34 (12.13) 0.0001

C4: butyrylcarnitine; lysoPC a C16:0: lysophosphatidylcholine with 16 carbons and no double bond; PC ae C38:2: phos-
phatidylcholine acyl-alkyl with 38 carbons and two double bonds; PC ae C40:3: phosphatidylcholine acyl-alkyl with 40 car-
bons and three double bonds.
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ratio had an AUC of 0.74 (95% CI: 0.70–0.78), and

sensitivity of 0.66 and specificity of 0.70 to discrimin-

ate patients in cluster C from patients in the other

clusters at an optimal cutoff value of 63.28, and an

AUC of 0.87 (95% CI: 0.85–0.90) with a sensitivity of

0.80 and specificity of 0.81 to discriminate cluster C

patients from OA-free controls with the optimal cutoff

value of 32.01 (Fig. 3C).

In the split sample analysis, a total of 615 OA patients

were randomly divided into a training dataset (n¼ 308)

and a validation dataset (n¼ 307). The minimum silhou-

ette width and elbow plot estimated that the training

dataset could be classified into three main clusters

(Supplementary Fig. S1, available at Rheumatology on-

line), which was validated in the validation dataset

(Supplementary Fig. S2, available at Rheumatology on-

line). K-means clustering analysis identified three distinct

clusters (TA, 39; TB, 95; and TC, 174) of OA patients in

the training dataset, which was also validated in the val-

idation dataset (VA, 10; VB, 112; and VC, 185). Logistic

regression analysis identified exactly the same metabo-

lites—arginine (P¼4.28�10�8) and lysoPC a C16:0

(P¼4.79�10�10)—that were the key contributors for

clusters B and C as found in the entire cohort analysis,

which was also confirmed in the validation dataset (with

P¼1.38�10�7 and P¼ 2.98� 10�9 for arginine and

lysoPC a C16:0, respectively; Supplementary Table S3,

available at Rheumatology online). C4 was also identified

as the key contributor for cluster A in the training data-

set and confirmed in the validation dataset, but the P-

value (0.01) did not reach the pre-defined significance

level because of the small sample size (Supplementary

Table S3, available at Rheumatology online).

With regards to the clinical and epidemiological fac-

tors, there was no sex difference among the three

identified clusters (all P> 0.22), but patients in cluster A

had a higher BMI and a higher prevalence of diabetes

than those of the other two clusters (all P� 0.0009), as

well as being significantly older than those of cluster B

(P¼0.018) and had a higher prevalence of CHD than

those cluster C (P¼0.039) (Table 3). Patients in cluster

B had a significantly higher prevalence of CHD than

those of cluster C (P¼ 0.003), whereas patients in clus-

ter C had a significantly higher prevalence of osteopor-

osis than those of cluster B (P¼0.009). The prevalence

of osteoporosis in cluster C was also higher than that in

cluster A (22.06% vs 15.15%) but was not statistically

significant (Table 3).

In addition, the study cohort included 68% of knee

OA patients and 32% of hip OA patients. However, we

found that there was no difference in the distribution of

knee and hip OA among the three identified OA clusters

(P¼0.43). The proportion of knee OA in clusters A, B

and C was 72.73%, 62.32% and 69.86%, respectively.

Discussion

In this metabolomics analysis with a large sample size,

we were able to identify three distinct endotypes of OA

patients. The significant metabolite contributors to each

of the three endotypes implied that the primary OA

patients can be classified as having muscle

weakness, arginine deficient, and low inflammatory OA.

The findings provide new insights into the pathogenesis

of primary OA and could help to develop personalized

tools for OA management.

In a preliminary study with only 80 OA patients, we

previously found that the OA patients can be classified

into two distinct groups [11]. Eleven percent of the 80

FIG. 3 ROC curve analysis results

(A) The PC ae C40:3 to C4 ratio distinguishing patients in cluster A from other clusters and controls. (B) Arginine dis-

tinguishing patients in cluster B from other clusters and controls. (C) LysoPC a C16:0 to PC ae C38:2 ratio distin-

guishing patients in cluster C from other clusters and controls. C4: butyrylcarnitine; lysoPC a C16:0:

lysophosphatidylcholine with 16 carbons and no double bond; PC ae C38:2: phosphatidylcholine acyl-alkyl with 38

carbons and two double bonds; PC ae C40:3: phosphatidylcholine acyl-alkyl with 40 carbons and three double

bonds; ROC: receiver operating characteristics.
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patients were classified into one group characterized by

a high concentration of acetylcarnitines in the synovial

fluid. The findings of the current study were consistent

with it, and we found that 11% of the 615 primary OA

patients were classified into cluster A based on plasma

metabolic profiles, and a specific acetylcarnitine, C4,

was the key contributor to the clustering. The patients in

cluster A had on average a 33% increase in C4 com-

pared with the OA patients in the other two clusters and

a 52% increase compared with OA-free controls.

Acetylcarnitines are used to transport fatty acids from

cytosol into the mitochondrial matrix for energy produc-

tion [11]. C4 is a short-chain acetylcarnitine and respon-

sible for the transfer of short-chain fatty acids. It

has been reported that accumulation of C4 reflects the

abnormal concentration of tissue butyryl-CoA due to a

defect or inhibition of short-chain acyl-CoA dehydrogen-

ase, which is the key enzyme involved in the short-chain

fatty acid b-oxidation pathway in mitochondria, leading

to an energy pathway defect and generalized muscle

weakness [29]. An elevated concentration of C4 in blood

is one of the diagnostic parameters for short-chain acyl-

CoA dehydrogenase (SCAD) deficiency. SCAD defi-

ciency is a clinically heterogeneous disorder with vari-

able clinical phenotypes ranging from fatal metabolic

decompensation in early life to subtle adult onset with

asymptomatic phenotypes in some patients [30]. Adult

patients are more likely to have problems related to

muscle weakness and wasting [30, 31]. Muscle weak-

ness has been associated with OA [32]. Thus, our find-

ings suggest that patients in cluster A might have

weakened muscle strength that makes them susceptible

to OA. To the best of our knowledge, elevated plasma

concentration of C4 had not been reported in OA

patients previously, but it had been associated with dis-

orders including diabetes, obesity and cardiovascular

diseases [33, 34]. Interestingly, the analysis of 15 clinical

and epidemiological factors in relation to the identified

clusters found that the majority of cluster A patients

were diabetic and had a higher BMI than the other study

participants. This cluster also had a significantly higher

prevalence of CHD than cluster C.

Previously, we found that both knee OA patients and

diabetic patients had a lower concentration of two

phosphatidylcholines (PC ae C34:3 and PC ae C36:3)

than controls [35]. In the current study, we found that

patients in cluster A were also associated with a phos-

phatidylcholine, PC ae C40:3. Although the statistical

test only reached the pre-defined significance when

comparing cluster A with controls, the strength of asso-

ciation became much stronger when examining the ratio

of these two top metabolites, supporting a hypothesis

that cluster A had an impaired fatty acid oxidation for

energy production leading to insufficient energy levels

for muscle functions. Thus, OA patients in cluster A

would benefit from interventions or therapies that im-

prove muscle strength.

Cluster B with 200 OA patients was characterized by

a significant reduction of plasma free arginine concen-

tration. Previous studies have reported that blood argin-

ine levels were reduced by 24–31% in OA patients [36,

37]. An animal model of OA showed a significant reduc-

tion of arginine concentration after anterior cruciate liga-

ment transection (ACLT) in the ACLT rabbit model with a

negative association between the post-ACLT arginine

concentration and severity of OA [38], suggesting the

potential mechanism of the reduced arginine concentra-

tion in OA patients is increased demand of arginine for

cartilage repair in OA [14] and inability of the body to

meet the demand.

Further, arginine has antihypertensive and antioxidant

properties, which influences blood viscosity and the co-

agulation system, and affects the metabolism of glu-

cose, lipids and proteins [39]. Evidence shows that

arginine intake in cardiovascular patients reverses endo-

thelial dysfunction associated with major cardiovascular

risk factors, such as hypercholesterolaemia, smoking,

hypertension, diabetes, obesity, insulin resistance and

ageing [40]. Also, multiple studies have reported an im-

portant role of arginine in improving blood flow in the

arteries of the heart, which may improve symptoms of

clogged arteries, chest pain or angina, and CHD [41].

Interestingly, our analysis is in agreement with the find-

ings of these studies and showed that cluster B patients

had a significantly higher prevalence of CHD especially

relative to cluster C. Hence, supplementation of arginine

might be beneficial to OA patients, particularly cluster B

patients. Further, arginine is a natural inhibitor of

TABLE 3 Significant epidemiological factors and comorbidities associated with each of the identified clusters

Factors Cluster A Cluster B Cluster C P-value

A vs B A vs C B vs C

Age, mean (S.D.), years 67.78 (7.37) 65.03 (8.32) 66.32 (8.82) 0.018 0.207 0.094

BMI, mean (S.D.), kg/m2 36.57 (7.27) 33.29 (6.70) 33.46 (6.74) 0.0009 0.0008 0.776
Diabetes (%) 54.55 13.50 12.89 1.039�10�11 4.906�10�15 0.840
CHD (%) 7.57 8.00 2.58 0.912 0.039 0.003

Osteoporosis (%) 15.15 13.00 22.06 0.658 0.206 0.009

P-values were obtained from chi-square test or Student’s t-test where appropriate. CHD: coronary heart disease.
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cathepsins such as cathepsin B and K, proteases that

break down cartilage [35], and thus the depletion of ar-

ginine in cluster B OA patients reduces its inhibitory ef-

fect and leads to overactivity of cathepsin that in turn

leads to cartilage breakdown. Functional studies are

needed to confirm this.

Significant differences in the concentration of lysoPC

a C16:0 contributed to the categorization of cluster C of

349 OA patients as distinct from other OA patients and

controls. LysoPCs are bioactive lipids that contribute to

a variety of cellular functions [42, 43], such as prolifer-

ation, apoptosis, smooth muscle contraction, wound

healing and tumour cell invasiveness [44], and they have

been reported to stimulate pro-inflammatory cytokines,

such as IL-1b, TNF and IL-6, leading to the initiation and

progression of OA [45]. The other possible pathway to

produce lysoPCs from phosphatidylcholines uses the re-

active oxygen species (ROS) in neutrophils [18]. Under

the oxidative stress that is implicated in the pathogen-

esis of OA, the majority of OA joint cells can produce

large amounts of ROS and NO in response to biomech-

anical or biochemical stimuli. Then, the mixture of pro-

teolytic enzymes released from neutrophils combined

with different ROS may stimulate the cartilage damage

at the OA joints [18, 46].

Although the second metabolite, PC ae C38:2, only

reached the pre-defined significance when comparing

patients in cluster C with controls, the ratio of lysoPC a

C16:0 to PC ae C38:2 was statistically significant. The

ratio was significantly higher in all three identified OA

clusters than in OA-free controls, which is in agreement

with our previous studies in which we documented a

significant increase of the lysoPCs to PCs ratio as being

associated with knee OA risk [18], knee cartilage volume

changes in 2-year follow-up [47], and an increased risk

for undergoing total knee joint replacement in 10-year

follow-up [18]. The ratio has also been found to be able

to predict an OA patient’s response to symptomatic

drugs [48]. The elevated ratio indicated that the conver-

sion pathway of PC to lysoPC was overactivated in OA

and led to the stimulation of inflammation. Thus, the

lysoPCs to PCs ratio has been suggested as a possible

biomarker for monitoring anti-inflammatory treatment in

rheumatoid arthritis as well [49]. Between identified clus-

ters, the lysoPC a C16:0 to PC ae C38:2 ratio was sig-

nificantly lower in cluster C patients compared with OA

patients in the other clusters, suggesting that cluster C

might have a lower level of inflammation. Further ana-

lysis found a significantly lower percentage of cluster C

patients to have diabetes and CHD, but a higher per-

centage of these patients had osteoporosis compared

with the other two clusters. These findings support a

proposed hypothesis that bone loss might be an initi-

ation factor for OA development at least for patients in

cluster C [50]. Thus, identifying cluster C patients for

clinical trials of anti-osteoporotic drugs in OA would be

helpful for determining its efficacy.

There are a number of limitations in the study. The

metabolic profiling was done with a commercially

available metabolomics assay kit that has limited cover-

age of metabolites. Thus, we might have missed some

metabolites that may contribute to the endotypes of OA.

Also, study participants included both knee and hip OA

patients. While knee and hip OA share a number of risk

factors, the aetiology might be different between them.

However, we did not find a different distribution of knee

and hip OA in the identified three clusters. Further stud-

ies of a knee and hip OA cohorts with sufficient sample

sizes are needed to confirm the findings. Similarly,

prevalence of OA, particularly knee OA, was different

between men and women; however, we did not find a

sex difference in the three identified endotypes of OA.

Different endotypes might have different severity of the

disease or different observed characteristics such as

muscle weakness in cluster A, but we did not have data

on the severity or muscle strength, and further studies

are needed to confirm these. Lastly, all the study partici-

pants were from Newfoundland and Labrador, which is

a genetically and ethnically homogeneous population

that may limit the generalizability of our results to other

populations.

In conclusion, our data demonstrated that at least

three distinct endotypes existed in primary OA, suggest-

ing muscle weakness, arginine deficiency and low in-

flammatory OA subtypes that can be distinguished by

specific blood metabolic markers. While confirmation is

needed, these findings provide new insights into the

understanding of OA pathogenesis and hold promise in

developing personalized tools for OA management to-

ward a reduction of economic burden and a better qual-

ity of life for OA patients.
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