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Abstract: Fibrinogen is one of the key molecular players in haemostasis. Thrombin-mediated release
of fibrinopeptides from fibrinogen converts this soluble protein into a network of fibrin fibres that
form a building block for blood clots. Thrombin-activated factor XIII further crosslinks the fibrin fibres
and incorporates antifibrinolytic proteins into the network, thus stabilising the clot. The conversion
of fibrinogen to fibrin also exposes binding sites for fibrinolytic proteins to limit clot formation
and avoid unwanted extension of the fibrin fibres. Altered clot structure and/or incorporation of
antifibrinolytic proteins into fibrin networks disturbs the delicate equilibrium between clot formation
and lysis, resulting in either unstable clots (predisposing to bleeding events) or persistent clots that
are resistant to lysis (increasing risk of thrombosis). In this review, we discuss the factors responsible
for alterations in fibrin(ogen) that can modulate clot stability, in turn predisposing to abnormal
haemostasis. We also explore the mechanistic pathways that may allow the use of fibrinogen as a
potential therapeutic target to treat vascular thrombosis or bleeding disorders. Better understanding
of fibrinogen function will help to devise future effective and safe therapies to modulate thrombosis
and bleeding risk, while maintaining the fine balance between clot formation and lysis.
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1. Introduction

Fibrinogen is one of the most abundant plasma proteins, circulating at 2–3 mg/mL
concentrations, but levels can more than double in pathological states [1,2]. Soluble
fibrinogen is converted into an insoluble fibrin network, which forms the backbone of the
blood clot and has a critical role in haemostasis by limiting blood loss following vascular
injury [3]. However, in diseased blood vessels, the rupture of an atheromatous plaque can
trigger pathological clot formation, which, in severe cases, blocks the vessel, causing end
organ damage including myocardial infarction and stroke.

Quantitative and qualitative changes in fibrinogen can result in fibrin networks that
are difficult to breakdown [4], thus increasing the risk of thrombosis and vascular occlusion.
Other alterations in fibrinogen can result in ineffective or unstable fibrin networks, thus in-
creasing the risk of bleeding [5]. Therefore, the manipulation of the fibrinogen molecule has
the potential to alter thrombosis or bleeding risk by inhibiting clot formation/facilitating
lysis or by making clots that are resistant to breakdown.

While the fibrin network is targeted to treat vascular occlusion, there is no treatment
directed at the fibrinogen molecule itself. The same applies for conditions associated with
blood loss; fibrin sealants, composed of a mixture of coagulation proteins, have been used
to reduce bleeding following vascular injury [6], but again, the fibrinogen molecule is not
used as a target for bleeding disorders.

In the current review, we describe the process of clot formation and lysis, discuss the
factors responsible for stabilising the fibrin network and explore the potential role of the
fibrinogen molecule as a therapeutic target.
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Structure of Fibrinogen

Fibrinogen circulates in blood as a 340 KDa soluble homodimeric glycoprotein. Each
subunit comprises of three polypeptide chains: Aα, Bβ, and γ encoded by three genes, FGA,
FGB and FGG, respectively, which are located in a 3-gene cluster on human chromosome
4 [7]. The Aα and Bβ chains are constitutively expressed with their expression regulated
by housekeeping mechanisms so as to maintain the levels of circulating fibrinogen in the
blood [8,9]. The Bβ chain is transcribed from eight exons and encodes for one form of the
Bβ chain. The Aα is transcribed from five exons, however, alternative splicing from a sixth
exon encodes for AαE chain, which accounts for 1–3% of circulating fibrinogen [7]. Similar
to the Aα chain, γ chains exist in two forms: γ and γ′. The major γ chain is transcribed from
ten exons, while intron 9 is retained in γ′ making its C-terminus 20 amino acids longer than
the γ chain. Fibrinogen molecules containing γ’ exist as heterodimers γ/γ’ or homodimers
γ′/γ′ accounting for 8–15% and <1%, respectively, of the total circulating fibrinogen
in healthy individuals [7,10]. The Aα, Bβ and γ chains are expressed, assembled and
secreted by hepatocytes as a hexamer (Aα, Bβ, γ)2 [11]. Fibrinogen chains are cotranslated
into the lumen of the endoplasmic reticulum (ER) where folding and assembly is driven
by the primary sequence with assistance of chaperones such as Bip and glycosylation
enzymes [2]. Glycosylation begins in the ER and is finalized in the Golgi apparatus, where
N-glycosylation of Bβ and γ is completed [2]. Before forming the full (Aα, Bβ, γ)2 molecule,
each subunit assembles via heterodimer precursors, Aα/γ, Bβ/γ, to form half molecules
where the Aα, Bβ and γ chains form triple helical coiled-coils, which are held together by
disulphide bonds [2,12] (Figure 1, panel A). Approximately 77% of synthesized fibrinogen
is folded and secreted into the extracellular domain [2]. Misfolded or misassembled and
surplus protein are retained in the ER and eventually undergo degradation by quality
control mechanisms (lysosome and proteasome) [2]. Structural studies have shown that
fibrinogen (Aα, Bβ, γ)2 assembles such that the Aα, Bβ, γ subunits are antiparallel to each
other with the N termini of the subunits interacting with each other via disulphide bonds
that hold the two trimeric subunits together to form the hexamer [13–17] (Figure 1). As
a result of its structural arrangement (Aα, Bβ, γ)2, the module consists of five regions;
one central E region, two D regions that flank the region E and two outer αC regions
(Figure 1, panel B). Region E is the unique center that contains the N-termini of the six
polypeptide chains. The D region comprises of a triple helical coiled coil referred to as
the coiled-coil connector and the β- and γ-nodules (Figure 1, panel B). The coiled-coil
connectors connect region E to the β- and γ-nodules of region D. The αC region consists
solely of the C-terminus of the Aα chain and comprises of an αC connector and αC region.
Part of the αC connector folds back into the coiled coil connector through an alpha helix.
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Figure 1. Assembly and structure of fibrinogen. (Panel A) Production of fibrinogen in hepatocytes. Once synthesised, 
fibrinogen chains Aα, Bβ and γ assemble in a stepwise manner. The Aα/γ and Bβ/γ heterodimers are formed first, followed 
by the (Aα/Bβ/γ) trimeric subunit. Once the trimeric subunits are formed, they dimerise in an antiparallel fashion to form the 
(Aα/Bβ/γ)2 hexamer. (Panel B) shows a model of the fibrinogen structure based on the crystal structure of fibrinogen (PDB:3ghg) 
and NMR structure of the αC domain (PDB:2BAF). The assembly of the (Aα/Bβ/γ)2 hexamer gives rise to five regions, the E 
region, two D regions and two αC regions. The E region is the central nodule that comprises of the N-termini of all the chains 
(Aα shown in blue, Bβ shown in green and γ shown in red). The D region comprises of a triple coiled coil connector and the β- 
and γ- nodules. The αC domain composed of the Aα chain and comprises of the αConnector and αC domain. 

2. The Biological Role of Fibrinogen (Conversion of Fibrinogen to Fibrin) 
Fibrinogen is a multifaceted protein with roles in tissue injury, inflammation, angio-

genesis, cell migration and cell adhesion [18–21]. This review will focus on the role of 
fibrin(ogen) in clot formation and lysis. 

The acute phase response initiated by tissue injury can be divided into two distinct 
phases that serve to restore haemostasis and repair the injury. The first phase involves the 
formation of a clot to which fibrinogen is a basic building block. The second phase in-
volves a sequence of events that results in the clearing of the clot, termed fibrinolysis. 

Figure 1. Assembly and structure of fibrinogen. (Panel A) Production of fibrinogen in hepatocytes. Once synthesised,
fibrinogen chains Aα, Bβ and γ assemble in a stepwise manner. The Aα/γ and Bβ/γ heterodimers are formed first,
followed by the (Aα/Bβ/γ) trimeric subunit. Once the trimeric subunits are formed, they dimerise in an antiparallel fashion
to form the (Aα/Bβ/γ)2 hexamer. (Panel B) shows a model of the fibrinogen structure based on the crystal structure of
fibrinogen (PDB:3ghg) and NMR structure of the αC domain (PDB:2BAF). The assembly of the (Aα/Bβ/γ)2 hexamer gives
rise to five regions, the E region, two D regions and two αC regions. The E region is the central nodule that comprises of
the N-termini of all the chains (Aα shown in blue, Bβ shown in green and γ shown in red). The D region comprises of a
triple coiled coil connector and the β- and γ- nodules. The αC domain composed of the Aα chain and comprises of the
αConnector and αC domain.

2. The Biological Role of Fibrinogen (Conversion of Fibrinogen to Fibrin)

Fibrinogen is a multifaceted protein with roles in tissue injury, inflammation, angio-
genesis, cell migration and cell adhesion [18–21]. This review will focus on the role of
fibrin(ogen) in clot formation and lysis.

The acute phase response initiated by tissue injury can be divided into two distinct
phases that serve to restore haemostasis and repair the injury. The first phase involves the
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formation of a clot to which fibrinogen is a basic building block. The second phase involves
a sequence of events that results in the clearing of the clot, termed fibrinolysis. Fibrin goes
from being a building block in phase one to becoming a substrate in phase two. The two
phases are coordinated in a precise temporal and spatial manner to reinstate haemostasis,
control inflammation and promote tissue repair [19].

2.1. Clot Formation

In the event of vessel damage because of trauma (external injury), or an atheroma
rupture of a diseased vessel (internal injury), blood coagulation is activated through a
complex interaction that involves platelets and coagulation factors, culminating in the
formation of thrombin. Thrombin initially cleaves off fibrinopeptides A (FpA) followed by
cleaving fibrinopeptide B (FpB) from the N-termini of the Aα and Bβ chains, respectively,
from fibrinogen, giving rise to fibrin monomers (Figure 2). The thrombin cleavage of FpA
exposes a motif (G-P-R), known as knob ‘A’, which interacts with complementary to a
pocket ‘a’ located on the γ-nodule of another fibrin monomer [22] (Figure 2). The fibrin
monomers spontaneously polymerise into a network of fibres with blood cells embedded
in this structure. Polymerisation occurs in two stages, initially the fibrin monomers are
organised in a half-staggered and/or double-stranded manner, followed by the protofibrils
assembling into fibres through lateral aggregation. FpB is cleaved at a slower rate than FpA,
exposing the GHRP motif known as Knob ‘B’ [23]. Knob ‘B’ interacts with a complementary
pocket hole ‘b’ in the D region of the β chain on a neighbouring fibrin monomer (Figure 2).
Characterisation of the kinetic pathway of the release of FpA and FpB indicated that
most of FpB is released after polymerisation has started. Data from biochemical studies
have demonstrated that the polymerisation of fibrin can occur in the absence of the ‘B:b’,
however, this results in thinner fibrin fibres due to compromised lateral aggregation [23].
Cleavage of FpA and FpB results in conformational change that trigger the release of the
αC regions [24,25], which further promotes lateral aggregation through intermolecular
αC:αC interactions [24–28] (Figure 2).

During and after the process of polymerisation, fibrin is covalently crosslinked by
thrombin-activated factor XIIIa (FXIIIa) [29], which catalyses the formation of ε- (-γ-
glutamyl)-lysyl crosslinks between lysine and glutamate residues in the γ- chain, increasing
fibre density and stiffness [30–32] (Figure 2). The α- chains crosslinks occur at a much
slower rate, traversing between fibrin strands rendering the clot less susceptible to lysis [31].
The α- chain crosslinks also increase stiffness and thickness, decrease inelastic deformation
and appear to promote red blood cell retention during clot contraction [27,33–35]. FXIIIa
also catalyses the crosslinking of antifibrinolytic proteins such as fibronectin, plasmin in-
hibitor, thrombin activatable fibrinolysis inhibitor (TAFI), plasminogen activator inhibitor
2 and even the inflammatory protein complement C3 to fibrin, which further increases the
clot’s resistance to fibrinolysis [36–38]. FXIIIa mediated crosslinking creates a fibrin scaffold
that is capable of accommodating red blood cells, platelets and endothelial cells [33,39,40].

The fibrin network also interacts with platelets via a surface integrin receptor αIIbβ3 [41],
and this enhances platelet aggregation [41]. As thrombin induces the fibrinogen-platelet
interaction it simultaneously converts fibrinogen to fibrin, therefore, with time, polymerised
fibrin becomes the ligand for activated platelet surface receptor αIIbβ3 [41]. This results in a
platelet–fibrin meshwork that enables clot contraction, which occurs through the action of
myosin II and actin proteins in the platelets [42]. The fibrin in the platelet–fibrin meshwork
facilitates the transmission of force during contraction [41]. Clot contraction assists in the
restoration of haemostasis by forming a temporary sealant to stem bleeding while restoring
blood flow to the affected area by decreasing the clot’s size [42].
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Figure 2. Fibrin polymerisation. Thrombin mediated cleavage of fibrinopeptides FpA and FpB initiates fibrinogen conver-
sion into fibrin. Cleavage of FpA and FpB from the N-termini of Aα and Bβ respectively exposes knob ‘A’ and ‘B’, which 
in turn interact with complementary pockets ‘a’ and ‘b’ located on the γ- and β- nodules on a neighbouring fibrin mono-
mer. FpB cleavage occurs at slower rate compared to FpA, and this is followed by the release of the αC domains allowing 
αC:αC interactions and lateral aggregation. Activation of FXIII by thrombin facilitates FXIII-mediated interactions be-
tween glutamate (Glu) residues on the γ chain and lysine (Lys) residues on the Aα chain through ε-(γ-glutamyl)-lysyl 
crosslinks. 
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Fibrinolysis is a tightly regulated process that involves the dissolution of stable fibrin 

clot to reinstate normal blood flow (Figure 3) [43]. Although dissolution of clots is im-
portant in maintaining haemostasis, the spatial and temporal regulation of fibrinolysis 
activation is crucial to haemostasis. Fibrinolysis is initiated by the interaction of plasmin-
ogen and the tissue plasminogen activator (tPA) [44] synthesised by the endothelial cell, 
which can therefore control local clot formation/lysis [45] (Figure 3). The conversion of 
fibrinogen to fibrin results in the exposure of cryptic tPA and plasminogen binding sites 
on the α-C domain (Aα chain, residues 392–610) [43]. The colocalization of tPA and plas-
minogen on fibrin leads to 500-fold increase in catalytic efficiency of plasminogen activa-
tion compared unbound tPA [46,47]. More tPA and plasminogen binding sites are found 
in the D region on the Aα chain (residues 148–160), however, these binding sites have a 
lower affinity compared to sites on the αC domains [48,49]. The Aα chain cryptic sites are 
not specific to tPA or plasminogen and interact with both proteins with similar affinity, 
however, under physiological conditions, these sites are saturated with plasminogen due 
to higher plasma concentrations of the protein [50]. A tPA-specific binding site is located 
in the D region on the γ-chain (residues 312–324), which is 45 Å away from the D region 
on the Aα chain (residues 148–160) [51–53]. The two sites are close in proximity such that 
binding of tPA and plasminogen to these sites brings the two close together, facilitating 
the activation of plasminogen [54] (Figure 3). The initial degradation of fibrin by plasmin 
results in the exposure of more plamin(ogen) binding sites in the C-terminus region, 

Figure 2. Fibrin polymerisation. Thrombin mediated cleavage of fibrinopeptides FpA and FpB initiates fibrinogen
conversion into fibrin. Cleavage of FpA and FpB from the N-termini of Aα and Bβ respectively exposes knob ‘A’ and
‘B’, which in turn interact with complementary pockets ‘a’ and ‘b’ located on the γ- and β- nodules on a neighbouring
fibrin monomer. FpB cleavage occurs at slower rate compared to FpA, and this is followed by the release of the αC
domains allowing αC:αC interactions and lateral aggregation. Activation of FXIII by thrombin facilitates FXIII-mediated
interactions between glutamate (Glu) residues on the γ chain and lysine (Lys) residues on the Aα chain through ε-(γ-
glutamyl)-lysyl crosslinks.

2.2. Clot Dissolution/Lysis

Fibrinolysis is a tightly regulated process that involves the dissolution of stable fibrin
clot to reinstate normal blood flow (Figure 3) [43]. Although dissolution of clots is important
in maintaining haemostasis, the spatial and temporal regulation of fibrinolysis activation
is crucial to haemostasis. Fibrinolysis is initiated by the interaction of plasminogen and
the tissue plasminogen activator (tPA) [44] synthesised by the endothelial cell, which can
therefore control local clot formation/lysis [45] (Figure 3). The conversion of fibrinogen
to fibrin results in the exposure of cryptic tPA and plasminogen binding sites on the α-C
domain (Aα chain, residues 392–610) [43]. The colocalization of tPA and plasminogen on
fibrin leads to 500-fold increase in catalytic efficiency of plasminogen activation compared
unbound tPA [46,47]. More tPA and plasminogen binding sites are found in the D region
on the Aα chain (residues 148–160), however, these binding sites have a lower affinity
compared to sites on the αC domains [48,49]. The Aα chain cryptic sites are not specific to
tPA or plasminogen and interact with both proteins with similar affinity, however, under
physiological conditions, these sites are saturated with plasminogen due to higher plasma
concentrations of the protein [50]. A tPA-specific binding site is located in the D region
on the γ-chain (residues 312–324), which is 45 Å away from the D region on the Aα chain
(residues 148–160) [51–53]. The two sites are close in proximity such that binding of tPA
and plasminogen to these sites brings the two close together, facilitating the activation
of plasminogen [54] (Figure 3). The initial degradation of fibrin by plasmin results in
the exposure of more plamin(ogen) binding sites in the C-terminus region, which in turn
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propagate fibrinolysis [55]. The partial degradation products of fibrin enhance fibrinolysis
because the fragments are better at stimulating the tPA-mediated activation of plasminogen
than intact fibrin, thus supporting the premise of fibrinolysis as a partly self-activating
process [56].
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Figure 3. Fibrinolysis. Fibrin clots are broken down by plasmin, which is produced from plasminogen by the tissue
plasminogen activator (tPA). Conversion of fibrinogen to fibrin results in the exposure of tPA and plasminogen binding sites.
These sites propagate fibrinolysis by enabling the binding of plasminogen and tPA to fibrin network in close proximity, thus
enhancing conversion of plasminogen to plasmin. Fibrinolysis is regulated by antifibrinolytic proteins including thrombin
activatable fibrinolysis inhibitor (TAFI), plasmin inhibitor (PI) and plasminogen activator inhibitor (PAI-1). Activated
TAFI (TAFIa) inhibits the lys-dependent interaction of plasminogen and tPA with fibrin, thus blocking fibrinolysis. PI
interacts with Plasmin preventing plasmin-mediated cleavage of fibrin. PAI-1 interacts with tPA inhibiting the conversion
of plasminogen to plasmin.

A number of proteins inhibit the fibrinolytic process including: (i) TAFI [43,57], which
cleaves off C-terminal lysine residues from partially degraded fibrin, thus preventing the
lysine-dependent binding of plasmin(ogen); (ii) Plasmin inhibitor, which is cross-linked
into the fibrin network by FXIII and inhibits plasmin by forming stoichiometric complexes
with the protein [46]; and (iii) PAI-1, which inhibits plasmin generation, thus reducing clot
breakdown (Figure 3).

3. The Impact of Fibrin(ogen) Modifications and Plasma Levels on Fibrin Clots

As fibrinogen is the main building block for fibrin clots, variations and alterations in
the molecule and its circulating levels in plasma have direct implications on clot formation,
dissolution kinetics and the overall structure of the fibrin matrix [58]. The heterogene-
ity associated with fibrinogen molecules is influenced by environmental factors, genetic
polymorphism, alternative mRNA splicing, proteolytic cleavage and post-translational
modifications [59–65] (Table 1). Alterations in fibrin clot structure may result in either
hyperfibrinolysis or hypofibrinolysis, both implicated in a number of pathologies. Deregu-
lation of both clot formation and dissolution has profound clinical consequences associated
with bleeding or thrombosis.
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Table 1. The effects of fibrinogen modifications on clot structures.

Modifications Associated Effects

Elevated Fibrinogen
concentration ↑ clottability, ↑ clot density, ↑ resistance to clot lysis [5,66]

High Thrombin concentration ↑ fibre diameter, ↑ clot density, ↑ resistance to clot lysis [67,68]

Fibrinogen polymorphisms and
splice variants

γ’:↑ clot stiffness, ↓ fibre thickness, ↓ clot permeability, ↑ clot
density, ↑ resistance to clot lysis [69–71]
Fibrinogen 420: ↓ fibrin degradation by plasmin, ↑ resistance
to clot lysis [72]
BβArg448Lys: ↓ fibre diameter, ↓ permeability, ↑ clot stiffness,
↑ resistance to fibrinolysis [73]

Oxidation ↑ clottability, ↓ fibre thickness, ↓ clot stiffness, ↓ clot
permeability, ↑ clot density, ↑ resistance to clot lysis [74–77]

Glycation ↑ clottability, ↓ clot permeability, ↑ clot density, ↑ resistance to
clot lysis [78–83]

Phosphorylation ↓ fibre thickness, ↓ resistance to clot lysis [84–87]

Citrullination ↓ clottability, ↓ fibre thickness, ↓ clot density, ↑ lysis [88–90]

Acetylation ↑ fibre thickness, ↓ clot stiffness, ↑ clot permeability, ↓ clot
density, ↓ resistance to clot lysis [83,91,92]

Homocysteinylation ↑ clot density, ↑ resistance to clot lysis [93,94]

Guanidinylation ↓ fibre thickness, ↓ clot permeability [95]

Carbamylation ↓ fibre thickness, ↑ clot density, ↓ crosslinking, ↑ resistance to
clot lysis [96]

Nitration ↑ clot stiffness, ↑ resistance to clot lysis [97,98]

Aspirin See acetylation

Metformin ↓ crosslinking, ↓ resistance to clot lysis [99]

Elevated Lipoprotein
concentrations ↓ clot permeability, ↑ resistance to clot lysis [100]

3.1. Changes in Fibrinogen Concentrations

A relationship between elevated concentrations of fibrinogen and risk of cardiovas-
cular disease (CVD) has been repeatedly highlighted [101–103]. High fibrinogen levels
influence clot density and rigidity through increased fibre and branch points [5,104]. Ele-
vated plasma levels of fibrinogen in patients with increased risk of myocardial infarction
may be partly assigned to the formation of more compact and stiffer clots [104]. An as-
sociation of elevated levels of fibrinogen with enhanced fibrin formation, increased clot
mechanical stability and increased resistance to lysis suggested a relationship between
fibrin network changes with increased risk of thrombosis [66]. Conversely, low levels of
fibrinogen are associated with increased bleeding due to less stable fibrin networks [3,21].

3.2. Post-Translational Modifications

Fibrinogen can undergo oxidation, nitration, glycosylation, phosphorylation, acety-
lation and homocysteinylation. It has been shown that fibrinogen is more susceptible
to oxidation compared to other plasma proteins [58]. Post translational modifications of
fibrinogen have a direct impact on clot formation, structure, and lysis [58]. Most of these
modifications have been shown to result in fibrin clots that are less susceptible to lysis and
have a high occurrence in disease states (Table 1). However, acetylation, following aspirin
administration (a classical antiplatelet agent), is associated with clots that are easier to lyse,
thus making aspirin an agent with a dual anti-thrombotic mode of action [58,91].



Int. J. Mol. Sci. 2021, 22, 6916 8 of 20

3.3. Genetic Polymorphism and Splicing

Genetic polymorphism and alternative splicing have given rise to different isoforms
of fibrinogen. As mentioned earlier, alternative splicing results in the γ’ chain, which
is 20 amino acids longer than the γ chain [105,106]. This C-terminal extension has a
negatively charged region with thrombin and FXIIIa binding sites [107,108]. FpB cleavage
from the fibrinogen heterodimer γ/γ’ has been shown to be slower and is implicated
in delayed lateral aggregation, the formation of thinner fibres with more branch points
and reduced clot pore size [70]. It has been shown that clots formed from γ/γ’ exhibit
increased mechanical stiffness and resistance to fibrinolysis [71,109]. Although some
studies demonstrated prothrombotic effects for γ/γ’, Omarova et al. has shown that
γ/γ’ may be anti-thrombotic in venous thrombosis [110], indicating that the exact clinical
significance of γ/γ’ remains an area for future research.

Alternative splicing also gives rise to a version of the α-chain, AαE, that is 236 amino
acids longer resulting in fibrinogen molecule that is 420 kDa (Fib420). Fib420 α- chains have
an additional globular domain that contains Ca2+-binding sites. Calcium ions promote the
FXIII crosslinking of fibrin fibres and modulate the susceptibility to lysis by plasmin [72].

The single nucleotide polymorphism that substitutes arginine with lysine at position
448 in the Bβ chain C-terminus gives rise to clots with thinner fibres, smaller pores, in-
creased stiffness and increased resistance to lysis [73]. This isoform is associated with
thrombotic tendencies and coronary artery disease [111,112].

4. Implications of Changes in Fibrin Clot Characteristics in Disease States

The modulation of fibrin(ogen) such as post-translational modifications can either
lead to hyperfibrinolysis or hypofibrinolysis, thus predisposing to bleeding or thrombosis.

4.1. Fibrin(ogen) in Bleeding Disorders

Fibrinogen levels and quality in plasma have been implicated in acquired and inher-
ited bleeding disorders and are divided into two types, I and II [113]. Type I inherited
disorders, including afibrinogenemia and hypofibrinogenemia, are associated with low
concentrations of fibrinogen and treated efficiently with plasma-derived fibrinogen con-
centrate infusions [113,114]. However, despite low levels of fibrinogen, genetic mutations
in a hypofibrinogenemia can result in a thrombotic phenotype [115]. Type II inherited
disorders, such as dysfibrinogenemia and hypodysfibrinogemia, are a result of missense
mutations in the Aα, Bβ and γ chains [113], causing dysfunctional fibrinogen [116]. In dys-
fibrinogenemia, most missense mutations affect fibrin polymerisation, resulting in variable
tendency for bleeding. Hypodysfibrinogenemia manifests as a result of low fibrinogen
concentrations in a dysfibrinogenemia state [117]. Dysfibrinogenemia and hypodysfibrino-
genemia can have a vast array of clinical presentations ranging from asymptomatic, to
bleeding and even to thrombotic tendencies [20,36]. A case study by Casini et al. revealed
that the fibrin clot structures of individuals with a bleeding phenotype show increased
clot permeability and thick fibrin fibres [117]. In contrast, individuals with thrombotic
disorders had clots that were dense and displayed prolonged lysis [117].

Congenital deficiencies in coagulation factors VIII, IX and XI lead to bleeding disorders,
such as haemophilia A and B. These deficiencies result in the inability to amplify and
propagate thrombin production from prothrombinase [118]. The low levels of thrombin
result in the slow activation of several other pro-coagulation proteins such as fibrinogen,
FXIII and TAFI, which lead to the formation of stable clots [118–120]. Fibrin clots formed
in haemophilic plasma are more soluble than normal because they have thicker fibres
and larger pores, thus explaining the increased permeability [121–123]. The severity in
bleeding in haemophilia is related to the degree of clot permeability, further emphasising
the role of fibrin structure in predisposition to disease. Deficiencies in factor XIII result in
a rare bleeding disorder [124] secondary to lack of fibrin fibre crosslinking and reduced
incorporation of anti-fibrinolytic proteins such as PI [37,38,125–127], thus reducing clot
stability [128]. Hyperfibrinolysis can be acquired through post-translational modifications
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of fibrinogen such as citrullination, which has been reported to inhibit thrombin-mediated
fibrin polymerisation [89,90].

4.2. Fibrin(ogen) in Thrombosis

Thrombosis is a manifestation of hypofibrinolysis and is frequently seen in cardiovas-
cular disease, partially related to more compact fibrin networks and partially to secondary
changes in the fibrinolytic system [100,129–133]. Clots displaying such characteristics have
been observed in pathologies such as cancer, diabetes and antiphospholipid syndrome,
disease states that are associated with increased risk of thrombosis [134–136].

5. Pharmacological Therapies Targeting Fibrinogen and the Fibrin Network

Pro- and anti-coagulants and thrombolytic therapies have been used to modulate
fibrin polymerization and dissolution. Some therapeutic strategies used for prevention
and treatment of cardiovascular disease, including anti-platelet, anti-hyperlipidaemic, anti-
hypertensive and glucose lowering agents are associated with changes in clot structure and
lysis [137]. Mechanisms for changes in clot structure include post-translational modification
of the protein (acetylation of fibrinogen by aspirin), alteration in FXIII activity (metformin)
or modulation of plasma levels of fibrinogen and PAI-1 (statins) [138–140].

5.1. Thrombolytic Therapeutics

The purpose of thrombolytic drugs is to aid the degradation of obstructive thrombi by
activating plasminogen (Figure 4). First generation thrombolytic drugs such urokinase and
streptokinase were not fibrin specific, increasing bleeding complications [141].

In contrast, second generation thrombolytic drugs such as tPA and alteplase were
fibrin-specific, however, high concentrations removed this specificity and still resulted
in bleeding complications. Third generation thrombolytic drugs such as tenecteplase
were developed to improve the half-life, specificity and to reduce the side effects [142].
Tenecteplase, a mutant variant of tPA, was shown to have 14-fold higher specificity for fibrin
compared to alteplase, a longer half-life and slower clearance with an 80-fold increased
resistance to inhibition by PAI-1 [143] (Figure 4). Although Tenecteplase has improved
fibrin specificity, it is not devoid of side effects. In order to improve safety, novel delivery
methods for ensuring fibrin specificity in plasminogen activators have been the focus of
much research. Fibrin-targeting antibodies have been shown to enable the local enrichment
at thrombus sites and increase potency of thrombolytic agents. These studies have shown
success using in vitro and in vivo assays; however, none have reached clinical stages,
probably due to the complexities associated with protein crosslinking and long-term
stability [144].

Novel strategies have also involved the development of carrier-based systems and
triggered release approaches such as fibrinolytic agent carrying erythrocytes, echogenic
liposomes and fibrinolytic agent bearing nanoparticles [145–148]. However, further optimi-
sation of these methodologies is required before these agents make it to the clinical arena.

Due to the general high risk of bleeding with thrombolytic agents, some research
focused on inhibiting a specific antifibrinolytic protein such as TAFI, PAI-1 or PI. Several
small molecule inhibitors against TAFI have been developed, however, as with most drug
discovery and development strategies, a limited number progressed to clinical trials (phase
I and phase II); unfortunately, these trials were discontinued due to the lack of selectivity
and unwanted off-target reactivity [149]. Similarly, most small molecules developed against
PAI-1 showed promise, but none reached a stage of clinical testing [150].
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Figure 4. Current and potential thrombolytic therapies. The aim of thrombolytic drugs is to breakdown obstructive clots.
Tenecteplase is a third-generation thrombolytic drug that has high specificity for fibrin and is available for clinical use.
Due to complexities associated with use of tenecteplase, TAFI, PAI-1, PI and C3 are being explored as therapeutic targets.
Small molecule and antibodies have been developed to inhibit PAI-1, which should enable more efficient plasminogen to
plasmin conversion. Anti-PI antibodies interact with PI preventing its ability to block plasmin activity, thus enhancing clot
lysis. C3 has been shown to interact with fibrin enhancing clot resistance to lysis, an effect that can be modulated with the
use of Affimer technology. A panel of nanobodies has been found that inhibit TAFIa activation and activity, consequently
facilitating lysis. While PAI-1, PI, C3 and TAFI- targeted therapies are exciting and offer a specific approach, none of these
inhibitory agents made into clinical practice and future research in this area is required.

Other attempts involved inhibitory monoclonal antibodies and nanobodies against
TAFI and PAI-1 [149]. Monoclonal antibodies and nanobodies have been reported to inhibit
TAFI directly [151,152]. A panel of nanobodies that inhibit TAFI activation and activity
via different modes were developed and shown to be effective using in vitro/in vivo
studies [153,154] (Figure 4). Owing to the pleiotropic biological function of PAI-1, inhibitory
antibodies tended to exhibit side effects. Since highly specific monoclonal antibodies against
TAFI and PAI-1 had been raised, a bifunctional and bispecific antibody was developed [155].
Administering the heterodimer antibody into murine models resulted in significantly
enhanced fibrinolysis without increased bleeding [155]. Even though a diverse pool of
PAI-1 inhibitors has been developed and extensively characterised, only a few have recently
proceeded to clinical trials [156] and results are awaited with interest.

The potential of PI as a therapeutic target is demonstrated by its inhibitory action
once incorporated into a clot where it increases clot resistance to lysis [157]. Early PI
inhibitory studies in rat models, using a pool of polyclonal anti-PI F(ab)2 fragments,
demonstrated acceleration of fibrinolysis [158]. A more targeted approach that involved a
monoclonal antibody raised against PI demonstrated significantly increased clot lysis [159]
(Figure 4). The N-terminal domain of PI plays a key role in crosslinking to fibrinogen and
therefore peptides mimicking this domain were developed and demonstrated competition
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with full-length PI in relation to incorporation into clots [160–162], and thus may help in
facilitating lysis.

Complement C3 protein is crosslinked into the fibrin network and can also form
noncovalent interactions with the clot [126,163], increasing clot resistance to fibrinoly-
sis [125,163,164]. Moreover, an association of elevated plasma levels of C3 with increased
clot resistance to lysis was observed in type II diabetes mellitus patients [156,157]. Although
C3 is not yet considered an antithrombotic therapeutic target, disrupting the C3-fibrin
interaction using Affimer technology (previously known as Adhiron) reduced clot lysis
time [165] (Figure 4). This strategy demonstrated the potential value of using antibody
mimetics in identifying interaction hotspots with therapeutic potential on fibrinogen. Our
work has shown that fibrinogen-binding Affimers can block the interactions of fibrin(ogen)
with other proteins that determine clot resistance to lysis, thus providing a unique oppor-
tunity to modulate thrombosis risk.

5.2. Hypofibrinolysis Therapeutics

Bleeding complications that arise from traumatic vessel injury or bleeding disorders
are characterised by unstable clots and are a major cause of morbidity and mortality.
Figure 5 summarises the current and potential therapeutics for hyperfibrinolysis. In con-
genital bleeding disorder such as haemophilia, treatment strategies initially involved
replacement of deficient factors. Although factor replacement is the chosen form of treat-
ment, there are several issues such as the development immunogenicity that counteracts
the purpose of replacements [166,167]. These issues have led to the development of strate-
gies that bypass replacement and target the fibrin network. FXIII, thrombomodulin and
tranexamic have been explored as fibrin network stabilising agents. Co-treatment with
FVIII and FXIII enhances fibrin crosslinking and the incorporation of PI into the fibrin
network [168]. Higher than normal concentrations of FXIII resulted in better stabilisation
of clots made from haemophilia patients [168].

A number of studies on haemophilia have largely focused on the thrombin dependent
pro-coagulation activity with minimal attention to the thrombin-dependent antifibrinolytic
activation. Bleeding in haemophilia is in part due to enhanced fibrinolysis because of
defective TAFI activation. Direct addition of TAFI to haemophilic plasma reduced clot lysis
and stabilised the clot [169]. Moreover, the addition of thrombomodulin and/or TAFI to
plasma of haemophilia patients who had developed inhibitory antibodies against FVIII
decreased clot lysis [169].

Supplementing FVIII-deficient plasma with the soluble thrombomodulin solulin re-
sulted in a four-fold increase in clot stability [170], a clear example of a new paradigm in
which fibrin formation and maintenance are targeted in the development of therapeutics to
reduce bleeding [170] (Figure 5).

Some studies have demonstrated that low levels of thrombin produced in haemophilia
patients results in the formation of unstable clots that undergo premature lysis. Tranexamic
acid (TXA) and epsilon amino caproic acid (EACA) are synthetic lysine analogues that
act as antifibrinolytic agents by binding to plasmin(ogen) [171]. The TXA– or EACA–
plamin(ogen) interactions block fibrin–plasmin(ogen), therefore preventing clot dissolution
(Figure 5). TXA is used more widely because it is more potent and has a 6–10-fold higher
affinity for lysine sites compared to EACA [172]. In a clinical trial study, the use of TXA
as a monotherapy had no significant benefits [173], however, when used as an adjunctive,
significant benefits were observed [174]. The combination of FVIII replacement therapy
and TXA improves blood clotting parameters such as clot firmness when compared to
FVIII replacement alone [175]. TXA can cross the blood–brain barrier and increase the risk
of seizures, making dosage consideration in treatment critical [176]. It has also been found
to prevent plasmin inhibition by PI and exhibit pro-fibrinolytic properties at high con-
centrations, further highlighting the complexities in developing fibrin-related therapeutic
agents [55,177,178].



Int. J. Mol. Sci. 2021, 22, 6916 12 of 20

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 20 
 

 

jected intravascularly, the sealants increase the risk of thrombosis. Human-derived pro-
tein used in the sealants have been reported to cause anaphylaxis or infection [6]. Moreo-
ver, the recombinant proteins used in the sealants are not easily accessible, making them 
expensive [186,187], thus preventing widespread use. 

An alternative for fibrin sealants, is an engineered haemostatic polymer (PolySTAT) 
[188] (Figure 5). PolySTAT is a polymer consisting of multiple fibrin-specific binding do-
mains. It acts in a similar fashion to FXIII in that it crosslinks adjacent fibrin monomers 
through noncovalent bonds. Thromboelastography studies demonstrated that supple-
menting whole blood with PolySTAT accelerated clotting, increased clot strength and re-
sistance to lysis [189]. Initial animal studies showed that intravenous administration of 
PolySTAT increased survival rate and decreased blood loss [189]. 

Our group has recently demonstrated the potential use of antibody mimetics that 
alter the fibrin network to control bleeding disorders [190]. Two high affinity fibrinogen-
binding Affimers were found to prolong lysis of clots made from purified fibrinogen, 
plasma or whole blood (Figure 5). Interestingly, one Affimer induced severe changes to 
clot structure whereas the other maintained the physiological structure of the fibrin net-
work [190]. Our data suggested that the antifibrinolytic effects of the Affimer that main-
tained physiological clot structure were related to disruption of tPA-plasminogen inter-
action on fibrin network [190]. When added to FVIII deficient plasma, the Affimer dis-
played a concentration-dependent delay in clot lysis time without affecting clot firmness 
[190]. This opens a new avenue in treating bleeding disorders by stabilising the fibrin net-
work using Affimer proteins. Taken together, fibrinogen-binding Affimers represent a 
new tool to modify both thrombosis and bleeding potential through either prevention of 
anti-fibrinoytic protein interaction with fibrinogen, making the clot easier to breakdown, or 
through modulation of the tPA–plasminogen interactions on the fibrin network, thus increas-
ing resistance to lysis. This may result in safer treatment strategies that maintain physiological 
haemostasis while addressing the pathological changes in coagulation proteins. 

 
Figure 5. Current hyperfibrinolysis therapeutics and potential alternatives. Fibrin sealants are surgical haemostatic agents 
composed of a mix of pro-coagulation proteins, which ensure clot formation and prevents premature clot lysis. PolySTAT, 
a fibrin specific polymer with multiple fibrin domains, facilitates fibrin crosslinking while Chitosan, a biodegradable N-
acetylglucosamine polymer, interacts with erythrocytes leading to erythrocyte agglutination. PolySTAT–Chitosan gauzes 
increase clot stability decreasing susceptibility to lysis. FXIII treatment results in fibrin crosslinking and crosslinking of PI 

Figure 5. Current hyperfibrinolysis therapeutics and potential alternatives. Fibrin sealants are surgical haemostatic agents
composed of a mix of pro-coagulation proteins, which ensure clot formation and prevents premature clot lysis. PolySTAT,
a fibrin specific polymer with multiple fibrin domains, facilitates fibrin crosslinking while Chitosan, a biodegradable
N-acetylglucosamine polymer, interacts with erythrocytes leading to erythrocyte agglutination. PolySTAT–Chitosan gauzes
increase clot stability decreasing susceptibility to lysis. FXIII treatment results in fibrin crosslinking and crosslinking of PI to
the fibrin network which improve clot stability and resistance to lysis. Solulin, a soluble form of thrombomodulin, acts by
activating TAFI, which in turn cleaves lysine residues on fibrin preventing degradation of fibrin. Synthetic lysine analogues,
TXA and EACA interact with plasmin(ogen) and block fibrin–plasmin(ogen) interactions, leading to increased resistance
to clot lysis. More recently, Affimers, antibody mimetics raised against fibrinogen, were shown to interact with the fibrin,
blocking plasmin-mediated degradation of the fibrin network. In vitro studies showed the potential use of Affimers in
stabilizing the fibrin network and preventing premature lysis of the clot.

In addition to antifibrinolytics, fibrin sealants have been used to limit blood loss
associated with trauma and surgery. Fibrin sealants are surgical haemostatic agents com-
posed of a mix of proteins including fibrinogen, thrombin, FXIII and antifibrinolytic
agents [179–182] (Figure 5). Fibrin sealants are used in a variety of surgical procedures
and have multiple modes of action: clot formation, wound healing and gluing tissues to-
gether [6,179–181,183–185]. Although effective, there are a number of limitations associated
with adopting fibrin sealants. The complexity associated with fibrin sealant preparation
is potentially problematic for emergency situations [186]. When inadvertently injected
intravascularly, the sealants increase the risk of thrombosis. Human-derived protein used
in the sealants have been reported to cause anaphylaxis or infection [6]. Moreover, the
recombinant proteins used in the sealants are not easily accessible, making them expen-
sive [186,187], thus preventing widespread use.

An alternative for fibrin sealants, is an engineered haemostatic polymer (PolySTAT) [188]
(Figure 5). PolySTAT is a polymer consisting of multiple fibrin-specific binding domains.
It acts in a similar fashion to FXIII in that it crosslinks adjacent fibrin monomers through
noncovalent bonds. Thromboelastography studies demonstrated that supplementing whole
blood with PolySTAT accelerated clotting, increased clot strength and resistance to lysis [189].
Initial animal studies showed that intravenous administration of PolySTAT increased survival
rate and decreased blood loss [189]. Our group has recently demonstrated the potential
use of antibody mimetics that alter the fibrin network to control bleeding disorders [190].
Two high affinity fibrinogen-binding Affimers were found to prolong lysis of clots made
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from purified fibrinogen, plasma or whole blood (Figure 5). Interestingly, one Affimer
induced severe changes to clot structure whereas the other maintained the physiological
structure of the fibrin network [190]. Our data suggested that the antifibrinolytic effects of
the Affimer that maintained physiological clot structure were related to disruption of tPA-
plasminogen interaction on fibrin network [190]. When added to FVIII deficient plasma,
the Affimer displayed a concentration-dependent delay in clot lysis time without affecting
clot firmness [190]. This opens a new avenue in treating bleeding disorders by stabilising
the fibrin network using Affimer proteins. Taken together, fibrinogen-binding Affimers
represent a new tool to modify both thrombosis and bleeding potential through either
prevention of anti-fibrinoytic protein interaction with fibrinogen, making the clot easier
to breakdown, or through modulation of the tPA–plasminogen interactions on the fibrin
network, thus increasing resistance to lysis. This may result in safer treatment strategies
that maintain physiological haemostasis while addressing the pathological changes in
coagulation proteins.

6. Conclusions

While our knowledge of the fibrinogen molecule has increased exponentially over
the past few decades, the use of this knowledge for clinical therapeutic purposes has been
generally limited. Powerful fibrinolytic agents have had an impact on managing patients
with arterial or venous occlusions, but their role is limited due to the narrow therapeutic
window, high risk of bleeding complications and the superiority of percutaneous coronary
intervention for the treatment of myocardial infarction. Rather than using a “sledge
hammer” approach for thrombotic vascular occlusion, which increases the risk of bleeding
complications, it is perhaps safer to focus on specific molecules that interact with fibrinogen
in order to facilitate clot breakdown while maintaining physiological haemostasis. The
same approach can be adopted for bleeding disorders through employing agents that
stabilise the fibrin network, thus avoiding the use of multiple coagulation factors that can
potentially result in thrombotic complications.

Despite encouraging advances, a key drawback is the general lack of agents that
directly target the fibrinogen molecule. The emergence of Affimers as small proteins that
bind fibrinogen and control clot stability/resistance to lysis creates a new avenue that may
prove to be clinically viable for the treatment of both bleeding and thrombotic disorders.
The simplicity of using the same technology to develop agents for both bleeding and
thrombotic disorders is particularly attractive. Naturally, these are early days, and there is
a long way to go before fibrinogen-specific agents can be routinely used in clinical practice
and future research in this area is awaited with interest.
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