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Abstract: Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies that primarily
originate from the bile duct. Tumor heterogeneity is a prime characteristic of CCA and considering
the scarcity of approved targeted therapy drugs, this makes precision oncology impractical in CCA.
Stratifying patients based on their molecular signature and biomarker-guided therapy may offer
a conducive solution. Receptors tyrosine kinases (RTK) are potential targets for novel therapeutic
strategies in CCA as RTK signaling is dysregulated in CCA. This study aims to identify targetable
RTK profile in CCA using a bioinformatic approach. We discovered that CCA samples could be
grouped into molecular subtypes based on the gene expression profile of selected RTKs (RTK25).
Using the RTK25 gene list, we discovered five distinct molecular subtypes of CCA in this cohort.
Tyrosine kinase inhibitors that target each RTK profile and their subsequent molecular signatures
were also discovered. These results suggest that certain RTKs correlate with each other, indicating
that tailored dual inhibition of RTKs may be more favorable than monotherapy. The results from this
study can direct future investigative attention towards validating this concept in in vivo and in vitro
systems. Ultimately, this will facilitate biomarker-guided clinical trials for the successful approval of
novel therapeutic options in CCA.

Keywords: cholangiocarcinoma; targeted therapy; biomarkers; receptor tyrosine kinases; preci-
sion medicine

1. Introduction

Cholangiocarcinoma (CCA) is a group of heterogeneous malignancies which originate
in the biliary tract, the duct that carries bile to the liver. CCA is generally asymptomatic and
aggressive in nature, which makes its diagnosis and treatment problematic. CCA, although
rare, is a cause for global concern due to its increasing incidence and high mortality rate.
There is a deficit of early detection techniques and efficacious treatment options, which
result in a dismal prognosis, with a less than 10% five-year survival rate [1,2]. Currently,
the treatment options are limited based on disease progression. Surgical intervention is
the only treatment with curative intent for patients in early stages of CCA [3]. Moreover, a
combination of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemother-
apy (HIPEC) is performed to improve overall survival (OS) in patients with advanced
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metastatic CCA [4,5]. Furthermore, patients with unresectable CCA are limited to pal-
liative chemotherapy [1]. However, the cancer recurrence rate in patients undergoing
surgery is high and the patients in the most advanced stage are unable to tolerate the
aggressiveness of systemic therapy [6,7]. In addition, the highly heterogeneous nature of
CCA impede the effectiveness of available treatment in CCA. As the disparities at genomic,
epigenetic, and molecular levels contribute to the tumor heterogeneity, a more stratified
approach is required to molecularly profile CCA patients to better prescribe therapeutics.
There is increasing evidence that support the use of guided targeted therapy drugs by
accurately treating patients according to their distinct molecular profiles [7]. The advent
of molecular profiling studies identified CCA subtypes with IDH mutants and FGFR2
fusions. Currently, inhibitors of IDH and FGFR are being evaluated in clinical trials for
specific subtypes of patients with IDH mutations (NCT02989857, NCT04521686) and FGFR2
fusions (NCT03656536, NCT03773302, NCT01752920) [8]. The outcomes of clinical trials
has encouraged the approval of Pemigatinib, an FGFR2 inhibitor, for previously treated
patients with advanced metastatic CCA harboring FGFR2 fusions [9]. The success of this
trial encourages more investigations to find other key driving receptors that might be
actionable targets in treating CCA. Hence, targeted therapy has emerged recently as a
potential measure against CCA.

Receptor tyrosine kinases (RTKs) have a role in triggering several pathways such as cell
proliferation, morphogenesis, survival, invasion, and migration in cancer [10]. Oncogenic
activation of RTKs can be initiated by several oncogenic mechanisms such as gain-of-
function mutations, overexpression and amplification, chromosomal rearrangements, and
autocrine loop (where the cell expressing the target receptors are also the ligand secreting
cells). In addition, there are emerging mechanisms such as miRNA, epigenetic modulations
that can regulate the activity of RTK signaling in cancer [11]. ALK, EGFR, FGFR, FLT3,
NTRK, and VEGFR are the most well-known RTKs with aberrant signaling in different
cancer types. This is characterized by the approval of several tyrosine kinase inhibitors
(TKIs) targeting these RTKs [12]. Similarly, aberrant RTK signaling is known in CCA. EGFR,
ERBB2, and MET expression are documented and are associated with poor prognosis.
Moreover, FGFR2 translocations and ROS1 kinase fusion proteins are also known in CCA. In
addition, CCA cells also secrete platelet-derived growth factor B (PDGFB) that activates its
associated receptor PDGFR [1,13]. Furthermore, CCA cells also express vascular endothelial
growth factor A (VEGFA) which is correlated with increased vascular density which in
turn correlates with cancer progression, metastasis, and prognosis in intrahepatic and hilar
cholangiocarcinoma [14].

Altogether, this implicates RTKs as potential therapeutic targets in CCA management.
RTK inhibitors, a class of targeted therapeutics that target the active site of RTKs to prevent
their phosphorylation and subsequent activation of downstream signaling cascades, can be
vital for CCA treatment [12]. Several other kinase inhibitors that target RTKs are currently
in various phases of clinical trials in CCA. However, despite numerous clinical trials on
RTK inhibitors, there is still a scarcity of targeted therapy drugs in CCA. We previously
reported the importance of patient stratification for successful clinical trials which would
eventually result in increased approved targeted therapy in CCA [15]. Recognizing that
many of these drugs will be off patent in the coming years [16], their biosimilars may make
targeted therapy and precision medicine more affordable to patients. Nevertheless, the
molecular signature of RTKs and their role in CCA pathogenesis is still poorly understood.
Our study aims to identify distinct RTK profiles to help understand their significance in
CCA. The findings from this study will provide necessary insights about the landscape of
RTKs in CCA to discern TKIs and novel combinations that target these profiles. Moreover,
our study identifies specific areas with knowledge gaps in CCA biology and treatment and
can direct future investigative attention towards precision therapy. Ultimately, this will
facilitate biomarker-guided clinical trials and redefine patient stratification for personalized
medicine in CCA.
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2. Results
2.1. Ectopic Expression of Certain RTKs Is Identified in CCA

Overexpression or ectopic expression of RTKs can lead to dysregulated signaling in
cancer. While it is known from several reports that RTK signaling is frequently dysregulated
in CCA, there are not many studies that investigate all the receptors from the RTK family
holistically. Hence, to identify the differentially expressed RTKs in CCA tissues, we
constructed a gene expression matrix using the 10 independently collated datasets obtained
from GEO, consisting of 704 CCA tumors and 165 normal tissues, as listed in Table 1.
The schematic workflow of this meta-analysis is illustrated (Figure 1). RTK gene list
was obtained from HUGO Gene Nomenclature Committee (HNGC) [17] We performed
pairwise comparisons of the mRNA expression of 54 RTKs between CCA and normal
tissues, which resulted in a total of 37 significantly differentially expressed RTKs in CCA,
the difference of mean was plotted to illustrate the ectopic expression of the RTKs from
all subfamilies (Figure 2). EGFR, ERBB3, CSF1R, FGFR1-4, MET, EPHA1-4, EPHB3, AXL,
TYRO3, MERTK, TEK, and DDR1 were expressed in significantly higher levels in CCA when
compared with normal tissues. However, ERBB2, ERBB4, INSRR, PDGFRA, FLT1, FLT4,
PTK7, NTRK1, EPHA7, EPHA8, EPHA10, EPHB1, EPHB2, EPHB4, EPHB6, DDR2, ROS1,
ROR1, and ROR2 were expressed in significantly lower levels in CCA compared to the
normal tissues. Together, these results suggest that certain RTKs are differentially expressed
exclusively in CCA tissues, thereby insinuating that certain RTKs may be actionable targets
for treatment with TKIs in CCA.

Table 1. Databases used in the bioinformatics analysis of the gene expression profile in CCA.

GEO ID Platform CCA
Normal

Reference
Bile Duct Liver

GSE132305 Affymetrix Human Genome
U219 Array 182 38 [18]

GSE22633 Illumina Human-6 v2.0 20 4 [19]

GSE26566 Illumina HumanRef-8 v2.0 104 6 59 [20]

GSE32225 Illumina HumanRef-8
WG-DASL v3.0 149 6 [21]

GSE32879 Affymetrix Human Gene 1.0
ST Array 16 0 7 [22]

GSE35306 Affymetrix Human Gene 1.0
ST Array 3 0 [23]

GSE57555 Agilent-039494 SurePrint G3
Human GE v2 11 0 11 [24]

GSE66255 Illumina HumanHT-12 V4.0 10 17 [25]

GSE76297 Affymetrix Human
Transcriptome Array 2.0 91 92 [26]

GSE89749 Illumina HumanHT-12 V4.0 118 2 [27]

Total 704 165
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cholangiocarcinoma; RTK, receptor tyrosine kinase; DEGs, differentially expressed genes; TCGA, The Cancer Genome Atlas.
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Figure 2. Pairwise comparison of RTKs between CCA and normal tissues. The gene expression of
54 RTKs from 20 different classes were compared between CCA and normal tissues. The difference in
mean expression of each RTKs in CCA tumors (n = 704) from normal tissues (n = 165) were calculated
and plotted as a bar graph. The RTKs with higher mean expression in CCA than normal tissues are
indicated with red bars whereas the RTKs with lower mean expression are indicated with the blue
bars. The method for differential analysis between tumor and normal was one-way ANOVA testing
followed by Holm-Sidak post-hoc analysis. * p < 0.05, ** p < 0.01, **** p < 0.0001.

2.2. Molecular Profiling Using RTK25 Identifies Five Instrisic Subtypes with Distinct RTK
Expression Profiles in CCA

Recognizing the significance of certain RTKs expression on CCA tumors, we spec-
ulated that due to the heterogeneity of CCA tumors, the samples would comprise of
distinct expression profiles of RTKs. We hypothesized that the CCA samples could be
separated into intrinsic molecular subtypes based on their RTK gene expression profile.
To investigate this hypothesis, we performed unsupervised hierarchical clustering using
the significantly differentially expressed RTKs against the 704 CCA samples. Hierarchical
clustering analysis employs an algorithm to mathematically group samples based on gene
expression data. For the optimal separation of the clusters, our final gene list resulted
in 25 RTKs (RTK25) out of the 37 RTKs that were significantly differentially expressed in
CCA compared with normal tissues (Table S1). With unsupervised hierarchical clustering
analysis, we observed that the 704 CCA samples grouped into 5 different clusters, each
with a distinct RTK expression profile (Figure 3a). Since the similarly expressed RTKs were
also clustered into groups, we sought to identify the relationship amongst RTKs using the
pairwise Pearson correlation coefficient (r) analysis. The results revealed the degree of
correlation among the RTK25, positive correlation coefficients (r > 0) indicated co-expressed
RTKs whereas negative correlation coefficients (r < 0) indicated antagonistic relationship
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between RTKs. With the ordered correlation matrix, we observed that positively correlated
RTKs were grouped similarly to the clustering analysis (Figure 3b). Based on the unsu-
pervised clustering and pairwise Pearson correlation analysis, we discovered that there
are five distinct groups of RTK expression profiles in this cohort, we named these clusters
numerically, 1, 2, 3, 4, and 5 (Figure 3c). DDR1, EGFR, ERBB2, FGFR1, FGFR2, FLT4, INSRR,
PTK7, and ROR2 are highly expressed in the first group, cluster 1. Whereas AXL, MET,
MERTK, and TEK were highly expressed in cluster 2. Likewise, ERBB3, FGFR3, and TYRO3
were highly expressed in cluster 3. Cluster 4, the smallest group, had a high expression of
AXL, FGFR2, FGFR4, MERTK, and MET. Finally, ERBB4, DDR2, FLT1, NTRK1, PDGFRA,
ROR1, and ROS1 were expressed highly in cluster 5. To validate whether these groups
could form intrinsic molecular subtypes in this cohort, we performed multidimensional
scaling (MDS) analysis using (a) RTK genes (n = 25) and (b) all the common genes from the
merged expression data (n = 13454). MDS analysis is a method to visually represent the
similarity or dissimilarity among samples. The first MDS plot (Figure 3c) shows that the
CCA samples were grouped into five distinct clusters based on the RTK25 gene expression.
The second MDS plot (Figure 3d) confirms that the same CCA samples were separated into
five distinct clusters. This analysis shows that there were five molecular subtypes of CCA
in this cohort, and these groups could be characterized by their own unique RTK signature.
Together, these results illustrate distinct molecular subtypes with targetable RTK profiles in
CCA that could be identified using RTK25 gene list.

Figure 3. Molecular subtypes with distinct RTK profile can be identified using RTK25. (a) Hierarchical
clustering was performed on the CCA tissues (n = 704) based on the gene expression of selected
RTKs (RTK25). The heatmap indicates the expression values (red indicates high expression and
blue indicates low expression) of RTK25 in each cluster (red = 1, blue = 2, green = 3, purple = 4,
and orange = 5). (b) Correlation matrix shows significant (p < 0.05) Pearson correlation coefficients.
Color indicates correlation (blue, positive correlation (r = 0 to 1); red, negative correlation (r = −1 to
0)). Area of the square indicates the value of the corresponding Pearson’s correlation coefficients.
Multi-dimensional scaling (MDS) plot of 704 CCA samples based on the expression of (c) RTK genes
(n = 25) and (d) all the common genes from the merged expression data (n = 13454). PC1: first MDS
component (x-axis); PC2: second MDS component (y-axis); PC3: third MDS component (z-axis).
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2.3. Differentially Expressed Genes amongst CCA Clusters Show That Each Subtype Has an
Unique Molecular Signature

Having established the five molecular subtypes identified for our CCA cohort, we
aimed to survey the transcriptomic signatures that define these tumors against normal
tissues. Hence, we performed differential gene expression (DGE) analysis between each
of the five clusters and normal tissues using LIMMA statistical model and selected genes
with a Benjamini–Hochberg adjusted p-value lower than 0.001. This analysis resulted in a
total of 108 downregulated and 175 upregulated DEGs in cluster 1, 103 downregulated and
171 upregulated DEGs in cluster 2, 116 downregulated and 288 upregulated in cluster 3,
271 downregulated and 299 upregulated in cluster 4 and finally, 5 downregulated and 30
upregulated in cluster 5 (Figure 4a–e). We noticed that the samples in cluster 5 were most
similar to the normal group and resulted in very few DEGs compared to the other clusters.
In addition to clustering analysis, we also confirmed that each cluster was independent
of each other using DGE analysis of every cluster against other clusters (Figure S1). The
resultant upregulated DEGs in each cluster were plotted using a Venn diagram generator,
which identified DEGs that are unique to each cluster (135 in cluster 1; 88 in cluster 2; 242
in cluster 3; 206 in cluster 4; 30 in cluster 5) (Figure 4f). The expression of these DEGs,
which are exclusively upregulated in each cluster, are shown in the heatmap (Figure 4g).
Unsupervised clustering analysis separated the samples into clusters similar to the RTK
profile (Figure 3a). Together, these results demonstrate that the groups profiled using
RTK25 not only have a distinct RTK expression profile but also have their own unique
overall gene expression signature.

Figure 4. Differentially expressed genes (DEGs) in each cluster compared to normal tissues. Volcano plots comparing
the fold change in clusters and normal tissues illustrate DEGs in (a) cluster 1, (b) cluster 2, (c) cluster 3, (d) cluster 4
and (e) cluster 5. Statistically significant DEGs which meet the fold change cut-off are represented by red dots (adjusted
p < 0.001), blue dots represent significant DEGs beyond the log2 fold change cut-off (adjusted p < 0.001), and grey dots
represent non-significant genes. (f) Venn diagram of upregulated DEGs that are unique in each cluster. (g) Heatmap of the
upregulated DEGs that are unique in each cluster.
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2.4. Gene Ontology and Pathway Enrichment Analysis

To identify the functional role of the molecular signature of each cluster, we performed
pathway enrichment analysis in ‘Enrichr’ using the DEGs unique to each cluster. p-value
cutoff was set at 0.05 and the significantly enriched pathways were ordered by combined
score. The top 10 enriched GO terms and pathways from the BioPlanet, KEGG, MSigDB,
and Wikipathways databases for each cluster are illustrated as bubble plots (Figures S2–S6).
Major oncogenic signaling pathways, such as ‘VEGF signaling’, ‘angiogenesis’, ‘focal
adhesion’, ‘epithelial–mesenchymal transition’, and inflammation associated pathways
such as ‘interferon’ and ‘interleukin’ pathways were significantly enriched in cluster 1
(Figure S2A,B). In cluster 2, cellular respiratory and metabolic pathways such as electron
transport chain, oxidative phosphorylation, and mitochondrion pathways were signifi-
cantly enriched. Additionally, the ‘p53 pathway’ was also enriched in this cluster (Figure
S3A,B). In cluster 3, intracellular signaling pathways such as ‘Wnt’ and ‘KRAS’ signaling
and ‘Hedgehog’ signaling were significantly enriched. Moreover, metabolic pathways
such as ‘lipid metabolism’, ‘bile acid metabolism’, and ‘fatty acid metabolism’ and cellular
respiratory pathways such as ‘TCA cycle’, ‘disorder of the Krebs cycle’, and ‘oxidative
phosphorylation’ were also enriched (Figure S4A,B). Inflammation-associated pathways
such as ‘interferon’ and ‘interleukin’ pathways were enriched in cluster 4, predominantly.
Moreover, metastasis-related pathways such as ‘cell adhesion’, ‘ECM-receptor interaction’,
‘epithelial–mesenchymal transition’, ‘focal adhesion’, and ‘cadherin binding’ were also
enriched in cluster 4 (Figure S5A,B). Finally, intracellular signal transduction pathways
such as ‘p38 MAPK’, ‘ERK’, ‘BMP’, ‘TGF-beta’ signaling, and ‘CREB’ phosphorylation were
enriched in cluster 5 (Figure S6A,B). Altogether, this data shows that RTKs had diverse
roles in CCA therefore, they could serve as actionable targets for therapeutic intervention
in CCA patients.

2.5. Validation of RTK25 Gene List for Molecular Profiling in CCA

Considering that our RTK25 gene set was able to segregate samples into distinct
profiles of CCA, we wished to confirm this using independent cross-platform datasets to
validate this model. For this purpose, we utilized RNA-seq data of cholangiocarcinoma
tissues from TCGA-CHOL and a publicly deposited dataset GSE107943. We observed that
the RTK25 gene signature was expressed in significantly higher levels in CCA tumors when
compared with normal tissues (p < 0.05) (Figure 5a,b). In addition, testing these samples
with the training set revealed that the samples from TCGA-CHOL predominantly exhibit
RTK25 signature similar to that of cluster 4 (Figure S7) whereas the samples from the
GSE107943 dataset are clustered with cluster 2 and 4 (Figure S8). Moreover, the correlation
matrix with significant correlation coefficients (r) showed that the CCA tumors exhibited
similar patterns of the RTK25 gene expression signature (Figure 5c,d). For example, samples
with high EGFR subfamily expression also had high expression of the FGFR receptors and
these RTKs were positively correlated in both datasets. Similarly, AXL, MET, and ROS1
receptors were significantly positively correlated with each other in the GSE107943 dataset
(Figure 5d). Furthermore, this molecular profiling strategy was able to sort RNA-seq data
of biliary tract cancer cell lines from Cancer Cell Line Encyclopedia (CCLE), a publicly
available database, into cluster 4 (Figure S9). Altogether, these results confirm that RTK25
is a potential molecular profiling strategy in CCA.
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Figure 5. Validation of RTK25 in two independent RNA-seq databases. Boxplots represent the
median value of averaged gene expression of RTK25 in CCA and normal tissues in (a) The Cancer
Genome Atlas-Cholangiocarcinoma (TCGA-CHOL) and (b) GSE107943. ‘n’ refers to the number of
samples in each group. The method for differential analysis between tumor and normal was one-way
ANOVA testing followed by Holm–Sidak post-hoc analysis (*** p < 0.001, **** p < 0.0001). Correlation
matrix represents significant Pearson correlation coefficients in (c) TCGA-CHOL and (d) GSE107943.
Color indicates correlation (blue, positive correlation (r = 0 to 1); red, negative correlation (r = −1 to
0)). Area of the square indicates the value of corresponding Pearson’s correlation coefficients. FKPM:
fragments per kilobase million; RPKM: reads per kilobase million.

2.6. Several Tyrosine Kinase Inhibitors Were Enriched to Target the Different RTK Expression Profiles

We surveyed the highly expressed RTKs in each of the clusters against the Harvard
Medical School (HMS) KinomeScan database in Enrichr, to find small molecule kinase
inhibitors that are significantly enriched for those RTKs. Additionally, we also sought to
identify small molecule kinase inhibitors that are discordant or inversely enriched to the
given differentially expressed gene signatures using iLINCS. Together, these results present
enriched candidate molecules that target the distinct RTK profiles and can potentially
reverse the molecular signature in each subtype. The resultant drugs that target the RTKs
from HMS KinomeScan were retrieved and sorted according to the combined score and
the top 10 drugs are reported (Figure 6). The RTK gene expression signature in cluster 1
resulted in enriched EGFR targeting inhibitors such as afatinib, canertinib, erlotinib, and
neratinib. Moreover, multi-kinase inhibitors such as WZ-4-145, vandetanib, ibrutinib were
also enriched for cluster 1. AXL, MERTK, and MET targeting kinase inhibitors such as
crizotinib, foretinib, KIN001-127, neratinib, JW-7-24-1, ZM-447439, MLN8054, and KIN001-
111 were significantly enriched for cluster 2. ERBB3 and FGFR3 targeting inhibitors such
as neratinib, lapatinib, and PD173074 were significantly enriched for cluster 3. Some
multikinase inhibitors such as AG1478, BI-D1870, HG-5-113-01, and MLN8054 were also
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enriched in Cluster 4, which had a mixed RTK signature. For the RTK gene signature
in Cluster 5, mostly DDR1, ERBB4, and ROS1 inhibitors—such as sorafenib, afatinib,
crizotinib, and canertinib—were enriched. Multi-kinase inhibitors that targeted DDR1,
ERBB4, and ROS1 were also particularly enriched for this cluster.
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Gene signature concordance from the iLINCS perturbation database was also evalu-
ated using the DEG signature for each cluster when compared with the normal samples. We
compared the DEG signature for each cluster with the signature of the drug perturbagens to
identify which drugs can inhibit the upregulated genes for each cluster. We identified drug
perturbagens from the ‘Cancer therapeutics response signatures’ database that reverses the
input gene signature. Some of the drugs with discordant signatures were also observed
in the enrichment analysis using Enrichr. The full list of significantly discordant drugs is
provided in Supplemental Table S2. Erlotinib seemed to elicit the most discordant signature
to the DEGs for cluster 1 and was also enriched to target the high-expressing RTKs in that
cluster. This shows that the CCA samples in cluster 1 are most likely to respond to erlotinib.
Similarly, RTK inhibitors such as cediranib, gefitinib, erlotinib, and crizotinib were dis-
cordant to the DEG signature for cluster 2. For cluster 3, JAK inhibitor, AZD-1480, and
multi-targeted tyrosine kinase inhibitor, linifanib, showed a slight concordance. Likewise,
afatinib, pazopanib, and crizotinib elicited the same DEG signature that was discordant to
the DEG signature of cluster 4. Finally, cluster 5 was the most normal-like cluster; however,
canertinib, afatinib, and neratinib showed concordance to its gene signature. Furthermore,
sorafenib and crizotinib showed different levels of concordance in different cancer types,
yet, seeing that these drugs were also enriched to target the RTK profile for cluster 5, they
could be potential therapeutic candidates for the patients pertaining to this gene signature.
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3. Discussion

CCA is a deadly disease with a dismal prognosis and a high mortality rate. Therefore,
the increasing incidence of CCA is a cause for global concern. Treatment by surgical
intervention is technically challenging; also, most patients are not well enough to withstand
the toxicity of systemic therapy. Moreover, the recurrence rate, even after treatment, is high.
Tumor heterogeneity, a prime characteristic of CCA, is a concern as it affects the response
to treatment. Therefore, there is increasing evidence that supports the use of molecular
profiling and biomarker-guided treatment in CCA. However, this effort is challenging due
to the poor understanding of CCA’s genetic landscape. The advent of molecular profiling
of CCA tumors has identified several molecular subtypes, including a specific subtype
of patients harboring FGFR2 fusions. This eventually led to the accelerated approval of
Pemigatinib for patients with advanced metastatic CCA that harbor FGFR2 fusions [9]. This
expedited process of drug development highlights the urgent need for targeted therapy in
CCA. Aberrant RTK signaling is a well-known phenomenon in CCA. Even though their
potential as therapeutic targets has been explored to some extent, there is still a paucity
of approved RTK targeted drugs in CCA. We believe that accurate patient stratification
may improve the outcomes of clinical trials to launch more RTK targeted therapy in
CCA management. While heterogeneous RTK expression is acknowledged in different
cancer types, including CCA [29,30], there is still very little understanding of its molecular
signature in cancer. This is the first meta-analysis study to report the comprehensive
expression profile of RTKs in CCA at this scale.

Meta-analysis makes use of advanced statistical techniques to combine results from
multiple independent studies. In this meta-analysis, we utilized publicly available microar-
ray datasets of ten independent studies in CCA to identify a molecular profiling strategy.
First and foremost, we have identified RTK genes with significance in CCA biology. We
developed a molecular profiling strategy named RTK25, which discovered that there are
five molecular subtypes in CCA. In addition, we also discerned candidate drugs that
can target these molecular subtypes based on their gene signature. Firstly, we identified
differentially expressed RTKs by comparing their expression in the tumors to that of the
normal samples. We used the significantly dysregulated RTKs for the clustering analysis
and for the optimal separation of clusters we used the RTK25 gene list. We discovered
that, within this cohort, there are five subtypes with distinct RTK expression profiles. In
addition to unsupervised clustering analysis, the multi-dimensional scaling analysis also
verified the distinct transcriptomic differences between these clusters, hence classifying
them uniquely. Therefore, the RTK25 molecular profiling strategy provides new insights
into molecular characterization of CCA patients.

Crosstalks amongst the different RTKs are well-known in cancer. Besides, there are
several reports of this phenomenon in other cancer types [31,32]. However, this area is
not yet fully understood in CCA. Hence considering the tumor heterogeneity in CCA,
we further evaluated the relationships amongst the RTKs using the Pearson correlation
statistical test. Our findings show that the EGFR family and FGFR family are closely related.
Also, AXL, MET, and MERTK are positively correlated while negatively correlated with
other RTKs. These results suggest that there may be crosstalk between these RTKs in
CCA. Furthermore, the RTK expression profile in the clusters corroborates with previous
evidence that shows FGFR and EGFR working together in a manner of resistance against
targeted therapies in other cancer types [33–35]. Ultimately, this compels future studies to
investigate the efficacy and mechanism of dual-RTK inhibition as a therapeutic strategy
in CCA.

Furthermore, we also identified inhibitors that can target the RTK profile of the
different CCA clusters stratified using RTK25. We found that EGFR inhibitors (afatinib,
erlotinib, and neratinib), FGFR inhibitor (PD173074), and AXL, MET inhibitor (crizotinib)
were enriched to target the RTK profile in multiple clusters. This suggests that these
drugs might be potential targeted therapy candidates for practicing precision medicine in
CCA. However, more studies investigating the efficacy and understanding the underlying
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mechanism of these inhibitors are required in CCA. Previously, we reported that CCA cells
expressing EGFR were sensitive to afatinib [36]. Here, we show that afatinib is enriched
in clusters 1 and 5, which have high expression level of EGFR and ERBB2, and ERBB4,
respectively. Altogether, this establishes proof of concept that biomarker-guided targeted
therapy is feasible in CCA. Increasing evidence advocates the use of molecular profiling to
identify subtypes of CCA and, to discover novel therapeutic strategies to target them [37].
Therefore, the RTK25 gene list can potentially be utilized for effective patient stratification
and biomarker-guided therapy in CCA.

In addition, we also discovered several novel areas with knowledge gaps in CCA,
in terms of the RTKs. We found that Eph receptors seemingly play a role in CCA biol-
ogy; EPHA1-4, EPHB3 were highly expressed whereas, EPHA7, EPHA8, EPHA10, EPHB1,
EPHB2, EPHB4, and EPHB6 had a lower expression in CCA tumors compared to normal
tissues. However, we omitted these receptors from our RTK25 gene list for the optimal sepa-
ration of the clusters. Nevertheless, the Eph receptors remain to be indispensable players in
CCA pathogenesis and promising targets for treatment. Several reports illustrate the high
Eph receptor expression and their potential as actionable targets in CCA [38–40]. Similarly,
AXL receptor kinase is emerging as a promising target for anti-cancer therapy [41,42]. Our
findings showed that AXL was expressed highly in CCA samples from clusters 2 and 4.
Crizotinib is known to target and decrease AXL phosphorylation in other cancer types [43].
This is in line with our findings as crizotinib was one of the small molecules enriched in
those clusters. Furthermore, data mining shows that CCA cell lines can be sorted into
cluster 4 using RTK25 profiling (Figure S9) and are consequently sensitive to crizotinib
(IC50 in µM: HuCCT-1, ~10.5; SNU1196, ~5.26, SNU1079, ~4.44; SNU869, ~6.85, SNU478,
~7.22) [44]. Moreover, we noticed that Pemigatinib, the only FDA approved targeted ther-
apy drug in CCA, was not enriched for any of the clusters. One possible explanation for
this is that Pemigatinib is a relatively new drug that was developed specifically for FGFR
fusions in CCA, hence experimental data about the inhibitor is not yet publicly available.
However, other FGFR inhibitors were enriched to target the CCA clusters with FGFR
expression, which reiterates FGFRs as actionable targets in CCA. This further validates
RTK25 molecular profiling strategy for therapeutic stratification. Altogether, the findings
from this study can direct future investigative attention towards potential novel therapeutic
strategies in CCA.

The main limitation of this meta-analysis is the lack of mutational profiling analysis
of these tumors. The inclusion of mutational profiling would have provided more under-
standing of the underlying molecular mechanisms of CCA biology in the different clusters.
As the datasets used in this meta-analysis were mainly from the microarray platform,
the corresponding mutational data was not readily available for each study. However,
this is the first report to describe the heterogeneous expression profile of RTKs in CCA.
Moreover, the RTK25 strategy can also be utilized to characterize the molecular profile of
CCA tissues using an RNA-sequencing platform as well, as illustrated in the validation
analysis (Figures S7 and S8). In addition, the normal tissues used in this meta-analysis were
collected from cancer-free tumor margins of CCA patients undergoing surgical resection.
Hence, the normal tissues could also contain precursor cancerous cells. Therefore, future
studies that investigate the RTK profile between CCA patients and healthy individuals
may adequately address this limitation. In addition, the risk levels were not evaluated for
the identified subtypes due to the lack of availability of the data; however, we believe this
could be useful for predicting prognosis in CCA patients. Finally, this study also identified
candidate drugs that can target the different molecular subtypes, however, further experi-
mental validation of this strategy in preclinical in-vitro and in-vivo systems is warranted
before it can be investigated in clinical trials.

In the long-term, our findings are expected to facilitate the incorporation of precision
medicine techniques in clinical trials, in turn, this can expedite new drug development. As
a result, novel therapeutics options for CCA management can be discovered. Altogether,
we believe that this study has laid the foundation for future research involving RTKs in
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CCA. Therefore, RTK25 molecular profiling is expected to redefine patient stratification for
personalized medicine in CCA.

4. Materials and Methods
4.1. Data Acquisition

Microarray gene expression data were obtained from Gene Expression Omnibus (GEO)
using the search terms “cholangiocarcinoma” AND “human”. Results were filtered to
select only tissue samples with baseline expression profiling. Ten datasets, containing a
total of 704 CCA tumors, and 165 normal tissues were collated. Dataset information is
summarized in Table 1.

4.2. Data Pre-Processing

Each dataset was normalized using quantile normalization. Subsequently, the datasets
were annotated with corresponding gene IDs to probes in each respective platform. Upon
collating the datasets and merging the gene IDs, the datasets were again normalized
between arrays using quantile normalization. The gene expression data constructed using
10 different microarray datasets had a total of 704 tumors and 165 normal tissues samples.
To this normalized expression data, we applied log2(x + 1) transformation. Processing
was done using ‘R’ version 4.0.2. The schematic workflow of data acquisition and pre-
processing is described in Figure 1.

4.3. Statistical Analysis

The normalized and transformed dataset was filtered using the RTK gene list (n = 54)
obtained from HUGO Gene Nomenclature Committee (HGNC). Average expression was
compared between CCA tumors versus normal tissues using one-way ANOVA followed
by post-hoc analysis by Holm–Sidak’s multiple comparison test using GraphPad Prism 9.
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. For correlation analysis, pairwise Pearson
coefficient calculated for the selected RTKs and ordered matrix was generated using corrplot
package, version 4.0.2 in ‘R’. Differential Gene Expression (DGE) analysis was performed
using ‘limma’ package, version 4.0.2 in ‘R’.

4.4. Hierarchical Clustering

Our final gene list (RTK25) resulted in 25 RTK genes that were significantly differen-
tially expressed in the CCA, this was used to conduct hierarchical clustering of the samples,
using the ‘Complete’ clustering method and ‘Euclidean’ clustering distance. Heatmap was
drawn using the pheatmap package, version 4.0.2 in ‘R’.

4.5. Gene Ontology and Pathway Enrichment Analysis

Gene Ontology (GO) and Pathway Enrichment analysis for the DEGs were obtained
per cluster group when compared with normal using the web tool ‘Enrichr’ [18,35,36]. The
resultant terms were filtered for statistical significance (p < 0.05) and ordered according
to the combined score. The top 10 enriched results from GO cellular component, GO
biological process, GO molecular function, BioPlanet, KEGG, MSigDB, and WikiPathways
databases were represented.

4.6. Drug Enrichment Analysis

Enrichment of kinase perturbation for the RTK profile for each cluster was performed
using Enrichr with utilizing KINOMEscan kinase inhibitor screening database [18,35,36].
Statistically significant kinase inhibitors (p < 0.05) were ordered according to combined
score (also known as enrichment score [28]) and the top 10 results are reported. The DEG
signature obtained for each cluster was compared with the gene signatures from chemical
perturbation database in iLINCSs [45]. The concordance for the statistically significant
perturbagens were evaluated.
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4.7. Validation

We used FKPM (fragments per kilobase million) data from The Cancer Genome Atlas
-Cholangiocarcinoma (TCGA-CHOL) which contains CCA (n = 36) and normal tissues
(n = 9) and RPKM (reads per kilobase million) data from the GSE107943 dataset from
GEO which also contains CCA (n = 30) and normal tissues (n = 27). The gene signature
expression was conducted by averaging the expression of RTK25 in CCA and normal
tissues using one-way ANOVA followed by post-hoc analysis by Holm–Sidak’s multiple
comparison test using GraphPad Prism 9. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
Unsupervised clustering was performed using RTK25 gene list and pairwise correlation
coefficient was calculated using Pearson method.

5. Conclusions

By using the RTK25 gene list, we identified that there are distinct RTK gene expression
profiles in subsets of CCA samples. In some clusters, the EGFR and FGFR subfamily are
highly expressed whereas in other clusters, AXL, MET, MERTK, and TEK are highly ex-
pressed. Understandably, EGFR and FGFR targeting inhibitors and multi-kinase inhibitors
are enriched for the clusters with a high EGFR and FGFR expression profile. Similarly,
multikinase inhibitors—such as crizotinib—were enriched for the subset of samples with
high AXL, MET, and MERTK expression. However, there are also subsets of sample groups
that have a mixed RTK signature outside of this pattern. Altogether, the results suggest that
RTK expression is heterogeneous in CCA, hence it is important to explore their role in CCA
further to identify novel therapeutic combinations for effective intervention. Ultimately,
our findings will facilitate patient stratifications for treatment based on RTK expression
with the potential to redefine precision medicine in CCA.
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Pathways for Cluster 5; Figure S7: Validation of the molecular profiling using cholangiocarcinoma
samples from The Cancer Genome Atlas (TCGA-CHOL) database; Figure S8: Validation of the
molecular profiling using cholangiocarcinoma samples from publicly available dataset (GSE107943);
Figure S9: Validation of the molecular profiling using cholangiocarcinoma cell lines from publicly
available data in Cancer Cell Lines Encyclopedia (CCLE); Table S1: The RTK gene list used in this
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