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Abstract: Preterm birth is the leading cause of death in newborns and the survivors are prone to
health complications. Threatened preterm labor (TPL) is the most common cause of hospitalization in
the second half of pregnancy. The current methods used in clinical practice to diagnose preterm labor,
the Bishop score or cervical length, have high negative predictive values but not positive ones. In
this work we analyzed the performance of computationally efficient classification algorithms, based
on electrohysterographic recordings (EHG), such as random forest (RF), extreme learning machine
(ELM) and K-nearest neighbors (KNN) for imminent labor (<7 days) prediction in women with
TPL, using the 50th or 10th-90th percentiles of temporal, spectral and nonlinear EHG parameters
with and without obstetric data inputs. Two criteria were assessed for the classifier design: F1-score
and sensitivity. RFg; » and ELMg; » provided the highest F1-score values in the validation dataset,
(88.17 £ 8.34% and 90.2 & 4.43%) with the 50th percentile of EHG and obstetric inputs. ELMp; »
outperformed RFg; 5 in sensitivity, being similar to those of ELMgepg (sensitivity optimization). The
10th-90th percentiles did not provide a significant improvement over the 50th percentile. KNN
performance was highly sensitive to the input dataset, with a high generalization capability.

Keywords: electrohysterogram; uterine myoelectrical activity; tocolytic therapy; random forest;
extreme learning machine; K-nearest neighbors; imminent labor prediction

1. Introduction

Preterm labor is defined as natural or induced labor prior to 37 weeks of gestation [1].
Currently, preterm birth and its consequences are a serious problem in health systems
in most developed countries, and despite the fact that the treatment protocols for these
deliveries have evolved considerably and reduced the mortality of neonates, it is still
associated with 35% of newborn deaths [2]. It has not been possible to reduce the prevalence
of preterm births, which continues to increase year after year, assuming between 8% and
13% of total deliveries worldwide, affecting some 15 million families [3]. This increase is
fundamentally associated with a more advanced mean age of pregnant woman and the
increased use of fertility treatments, resulting in a higher risk of preterm delivery. Preterm
deliveries increase health spending not only due to the immediate treatment required by
preterm infants, but also due to normally chronic problems that tend to develop due to
early deliveries, ranging from respiratory, gastrointestinal and immune problems to more
severe neurological, cognitive and motor problems [4].

Prompt preterm labor diagnosis is vitally important to be able to administer uterine
inhibitory drugs in time so that the corticosteroids can accelerate fetal lung development,
reduce perinatal and neonatal death risk, intra ventricular hemorrhage, and underdevelop-
ment in childhood [5]. Although great efforts have been made and obstetrical parameters
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such as cervical length (CL) by themselves or in combination with other biochemical mark-
ers such as fetal fibronectin (fFN) have shown a certain degree of usefulness in detecting
preterm births, currently there is no technique that allows assessing time-to-delivery objec-
tively and accurately and whether or not it will be premature [6]. A study measuring fFN
and CL in women between 22 and 30 weeks’ gestation showed an AUC of 0.59 in preterm
birth prediction, an AUC of 0.67 for cervical length alone and a very similar value for the
combination of both [7]. Although cervical length and fFN have high negative predictive
values, their positive predictive values are lower and do not identify the patients who are
actually going to deliver prematurely [8].

The problem not only lies in premature births but also in the threat of premature
labor (TPL), this being the most common cause of hospitalization in the second trimester
of pregnancy. This involves prolonged clinical stays, drug treatment with possible side
effects, significant distress for the pregnant woman and her family, reduced care for her
other children (if any) and a high economic cost derived from the hospitalization and
absence of the pregnant woman from work [9]. As the literature reports that only 34%
of the women who go to the emergency room with threatened preterm labor give birth
preterm [10], predicting whether a woman with TPL will give birth prematurely can help
to optimize labor management, allowing decisions to be made that lead to the best result
from the point of view of maternal-fetal health and hospital resource management [9].

The studies in the literature state that the mechanisms that trigger labor start several
days or even weeks before it and involve changes in the electrical potential of myometrial
muscle cells. This myoelectrical activity, known as an electrohysterogram (EHG), can be
recorded on the surface of the abdomen. The bursts of action potentials in the EHG is
associated with uterine contractions [11,12]. The EHG has been proposed as a promising
technique for preterm labor prediction due to the fact that uterine activity increases its
intensity and synchronization near labor [13-15]. The increased number of myometrial
cells recruited in uterine contractions when labor is near results in a greater EHG am-
plitude, while the intensified cell excitability shifts the EHG spectral content to higher
frequencies [16,17], and the labor onset entails changes in myometrial cell connectivity that
modifies the regularity of the measured EHG signal: EHG predictability increases while
signal complexity is reduced [18-20].

Labor or preterm labor prediction algorithms have been developed with over 90%
accurate metrics [21-24] when using EHG recordings from women during clinical checkups
under physiological conditions. However tocolytic drugs are usually administered to in-
hibit uterine contractions at the first sign of threatened preterm labor and modify the EHG
features [25,26]. The feasibility of imminent preterm labor prediction in women with TPL
undergoing tocolytic treatment by means of an artificial neural network (ANN) algorithm
has been proved using median values of EHG parameters in 120 s analysis windows and
obstetric data inputs [27]. Despite being one of the most frequently used classification
algorithms, ANN has certain drawbacks, such as a low learning speed associated with the
backpropagation algorithm and the fact that it can easily get into local optima [28]. In the
present study we focus on three different computationally efficient algorithms, random
forest (RF), extreme learning machine (ELM) and K-nearest neighbors (KNN), which have
been used in biological classification problems to distinguish between gestational or labor
contractions or term/preterm deliveries from EHG recordings from routine checkups [28].
A recent study revealed that the 90th and 10th percentiles of the EHG parameters computed
in 120 s whole analysis windows outperformed median values in discerning between differ-
ent obstetric scenarios, as term vs. preterm labor, in recordings from routine checkups [20].
The better ability of the 10th-90th percentiles of EHG parameters to discriminate were
associated with being more representative of the contractile segments in the recording
session [20], choosing the 10th or 90th percentile of the EHG parameters according to their
expected trend as delivery approaches [20]. In addition, the optimization criterion in the
classifier design was not clearly indicated in the literature regarding term/preterm birth or
labor /nonlabor prediction, regardless of the classification algorithm employed [24,29-31].
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In applications such as the prediction of preterm labor or imminent delivery in women with
TPL, it is of vital importance to develop prediction systems with high sensitivity values.

The aim of the present work was therefore to assess and optimize the performance
of EHG based computationally efficient classification algorithms (RF, ELM and KNN) for
imminent labor (<7 days) prediction in women with TPL. It was also intended to determine
whether the 10th-90th percentiles of EHG parameters computed in 120 s analysis windows
with or without obstetric input features contain more information for imminent labor
prediction in women with TPL than median values, and to determine how the optimization
criteria in the classifier design affect their performance.

2. Materials and Methods
2.1. EHG Database and Characterization

A database of 140 30-min EHG recordings conducted on 84 singleton-pregnant women
with TPL symptoms such as uterine dynamics and/or cervical effacement or dilatation
taken at the “Hospital Universitari i Politeécnic la Fe” (Valencia, Spain) from 2015 to 2019
was used in the study, which was approved by the hospital’s Institutional Review Board.
Women with preterm membrane rupture were excluded. The women were informed of
the aims of the study and asked to give their written consent. Most EHG signals were
recorded during or after the administration of the Atosiban tocolytic agent, which blocks
uterine contractility. Thirty records in the database were from women who gave imminent
birth (time to delivery (TTD) < 7 days) and 110 gave birth in more than 7 days. For the
TTD < 7 days group, 13 recordings were performed during tocolytic treatment, 13 post-
tocolytic treatment and four were obtained before tocolytic treatment. In the TTD > 7 group,
47 records were taken during tocolytic treatment, 43 post-tocolytic treatment and 20 before
tocolytic treatment. Obstetrical data picked up were gestational and maternal age, cervical
length at the recording, parity, gestations, and abortions. This information can be found
in [27].

A single bipolar EHG signal was recorded as described in [27] by means of two
disposable Ag/AgCl electrodes (3M red dot 2560, wet with solid hydrogel) placed on
the abdomen over the navel symmetrically to the median axis with an interelectrode
distance of 8 cm (electrodes M1 and M2). Two additional electrodes were placed on the
patient’s hips acting as ground and reference electrodes. Signals were digitized with a
24 bit ADC at 500 Hz and downsampled to 20 Hz. A bipolar recording was computed as
the difference of the two monopolar recordings from M1 and M2 in the 0.1-4 Hz bandwidth
to diminish common-mode interference. Signal segments with motion artefacts or with
considerable respiratory interference were discarded in a visual inspection by experts in
a double-blinded process. The EHG characteristics were worked out in 120 s windows
with a 50% overlap, and were a tradeoff between saving representative sections of the
recordings and a rational computational cost [25]. This avoids burst annotation and is more
appropriate for future ‘real-time” applications, bringing EHG closer to clinical practice.

Twenty-three temporal, spectral, complexity and regularity parameters were worked
out in the whole EHG bandwidth, 0.1-4 Hz (unless otherwise noted), to characterize
the recordings (see Table 1). Amplitude in temporal domain tends to increase as labor
approaches due to the growth of cells recruited in uterine contractions [21,22]. Spectral
parameters are used to assess the shift of EHG spectral content to higher frequencies as labor
approaches [12,17,32]. We computed the dominant frequencies in the bandwidth 0.2-1 Hz
(DF1) and in 0.34-1 Hz (DF2), considering that the Fast Wave Low of the EHG ranges
from 0.2 to 0.34 Hz and Fast Wave High, which includes EHG components above 0.34 Hz,
limiting the high frequency to 1 Hz to diminish ECG and respiration interference [13,33];
the high-to-low frequency energy ratio (H/L ratio, as the ratio of energy in 0.34-1 Hz
to energy in 0.2-0.34 Hz); deciles of the power spectrum and the spectral moment ratio
(SMR) [20,34].
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Table 1. Summary of electrohysterographic recordings (EHG) features and obstetric data inputs.

EHG Temporal EHG Spectral EHG Nonlinear Parameters Obstetric Data
Parameters Parameters
Binary Lempel-Ziv
Multistate Lempel-Ziv (n = 6) Cervical length
DF1 Sample entropy Gestational age at moment of
Peak-to-peak H/?FZ . Spectral entropy recordilng
amplitude 1/L ratio .Fuzzy entropy Maternz? age
Deciles [D1-D9] Time reversibility Gestations
SMR SD1 Parity
SD2 Abortions
SD1/SD2

A set of representative complexity and regularity parameters to distinguish between
preterm and term labor were also calculated to characterize the EHG signal, as in the related
literature [20]: Lempel-Ziv (Binary and multistate n = 6), which assesses signal complexity
from the number of different patterns in the signals [35]; sample, fuzzy and spectral
entropy, which measure regularity based on the self-similarity in temporal and spectral
domains [36-39]; and time reversibility [40], which estimates the similarity of a time series
when time goes forward or back. A Poincare plot [41] of consecutive EHG signal samples
was obtained and parameters SD1, SD2 were also computed to assess corresponding short-
and long-term EHG changes, and SD1/5SD2 to measure EHG randomness [42]. To avoid
redundant information, other nonlinear parameters were not calculated as in [31,43].

To obtain representative values for each EHG parameter in each recording we worked
out the 50th (median) and 10th-90th percentiles of the parameters for all the analyzed
windows [20]. The 50th percentile mainly assesses basal activity rather than uterine
contractions in nonlabor recordings. This is because, considering uterine electrophysiology
throughout pregnancy, during the 30-min recording session the time-percentage of EHG-
bursts (associated with uterine contraction) is expected to be relatively low, especially in
pregnancy recordings (maximum contraction rhythm: 3 in 10-min during active phase of
labor). To characterize uterine contractions (EHG-Bursts) the 10th and 90th percentiles of all
the analyzed windows were thus calculated. For EHG parameters with an increasing trend
in contractile periods as labor approaches, as amplitude, DF1, DF2, deciles and H/L and
time reversibility, the 90th percentile was computed. In contrast, for the EHG parameters
whose values decrease in contractile periods as labor approaches the 10th percentile was
worked out, as was the case of SMR, Binary and Multistate Lempel-Ziv (n = 6), Sample
Entropy, Fuzzy Entropy, Spectral Entropy, SD1, SD2 and SD1/SD2.

2.2. Classifiers Design and Assessment

The database was clearly imbalanced towards the patients who gave birth after 7 days
(TTD <7 days 21.4%, TTD > 7 days 78.6%). To overcome this well-known problem of imbal-
anced data training, which may induce a clear bias towards the majority class predictions,
the synthetic oversampling technique (SMOTE) [44] was used. This technique has been
broadly used to deal with imbalanced classification problems [21,31,32,45]. SMOTE was
applied by using five neighbors to interpolate the minority samples in a ratio of 3:1. This
led to a balanced database with 110 recordings from the majority class and 90 recordings
from the minority class (TTD < 7 days 47%, TTD > 7 days 53%). To check the robustness
of the classifiers under different data conditions a holdout method was applied 30 times
by randomly splitting the database into training, validation and test subsets each time.
The main purpose of repeating each experiment 30 times was to be able to reduce the
possible bias induced by a particular distribution of the subsets and to ensure the strength
of the statistical tests (nonparametric Wilcoxon paired test) performed to optimize the
hyperparameters, based in statistically relevant differences in the validation subset. For
each experiment repetition (partition), the subset percentages were distributed as follows:
1/3 for test, so as to evaluate the classifiers’ generalization capacity, and 2/3 for the classi-
fiers” design, training (2/3 * 2/3) and validation (2/3 * 1/3). The percentages were thus 44%
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training (89 samples), 23% validation (45 samples) and 33% test (66 samples), see Figure 1.
For each subset (train, validation and test) we maintained the proportion of TTD < 7 and
TTD > 7 data, 47% of the minority class and 53% majority class. The same 30 partitions
were conserved over all “stages” in the classifiers design (train and validation) and test. No
randomness was involved in the case of KNN classifier training, but ELM initial weights
and RF random sampling and feature selection were dealt with by initializing each classifier
with the same hyperparameter combination 30 times and different fixed seeds (correspond-
ing to 100 initializations). Trained algorithms were assessed under the validation subset
and the best seed was chosen and stored as an “additional” hyperparameter, ensuring
reproducibility and consistency between different trials. This seed acted in RF by forcing
the algorithm to select a similar subset of features in each trial and in ELM by forcing the
initial layer weights to be the same over different trials. Therefore, besides maintaining
the same 30 partitions for all classifiers, for the ELM and RF ones the same combination
of seeds and weights optimized in validation were used for the test. To avoid overfitting
problems due to the number of input features being larger than the number of recordings
(23 EHG and six obstetric), a principal component analysis (PCA) was carried out retaining
98% variance but reducing the number of input parameters [23,37,46].

ORIGINAL DATASET
L
“SMOTE
I S : N S
PARTITION#L [PARTITION#30
T * ¥ ¥ ]
TRAIN#1 VALIDATION#1 TESTH TRAIN#30 VALIDATION&30 TEST#30
: DI;A z [;IM
PCA_ - RepucTiON ECA) -WREDUcTioN
. }
3 g
VALIDATION#1 VALIDATION#30
CLASSIFIER#1 - METHES eve CLASSIFIER#30 - raalicd

HYPERPARAMETERS
GRID-SCARC) |

Max averaged F1-Scare far both
optimization criteria

TRAIN#L VALIDATIONZL iTESTn TRAIN#30 VALIDATION:#30 TEST#30

| ‘ | -

PCA Renagﬂﬂou PCA—— REDﬁI(’;’I‘TION
3 4
1 4
CLASSIFIER#1* e CLASSIFIER#30*
(Hyperparameters TEST#1L METRICS (Hyperparameters — JESTAI0METRICS
optimized) optimized)
PERFORMANCE{MEAN+STD)

F1-SCORE

SENSITIVITY

SPECIFICITY
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Figure 1. Scheme of the method used to train, validate and test the imminent labor prediction
classifiers (time to delivery (TTD < 7) based on EHG in women with threatened preterm labor. This
was performed with two optimization criteria in the classifier design: F1-score and sensitivity.

The performance of three computationally efficient classification algorithms was as-
sessed in this study: the extreme learning machine (ELM), K-nearest neighbors (KNN) and
random forest (RF), all of these implemented on public packages of R. The public Ranger
package for RF classifiers was used to develop random forest. This is an efficient parallel
implementation of the RF algorithm proposed by Breiman in [47,48]. The number of trees,
the maximum depth of these trees and the cost of division based on the criterion of gain
of information were optimized. The elImNNRcpp package, based on the implementation
proposed by Huang was selected for the ELM classifier [49]. The hyperparameters to be
optimized were in this case the number of neurons in the hidden layer, and the activation
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function. KNN was implemented in the R KNN algorithm, which uses the Minkowski
distance and a weighting based on a probabilistic kernel [50]. The hyperparameters to
optimize were number of neighbors and the Kernel used for weighting the distances. In an
appendix to this article we included four tables (Tables A1-A4) detailing the gridsearch
carried out for the parameters and the optimized values for the classifiers.

As previously mentioned, as classifiers with high sensitivity values are required for
preterm labor or imminent delivery prediction in women with TPL, we dealt with two
different optimization criteria for the classifiers” design, the F1-Score (harmonic mean of
precision and recall) and sensitivity [51]. In both cases we carried out a hyperparameter
grid search (see Figure 1) and after obtaining the metrics of the classifiers in each of
the 30 partitions, they were averaged, choosing the hyperparameters which gave the
highest mean F1-Score in validation subsets (for both criteria). This was decided because
F1 would avoid the overdetection of false positives, as happens today in clinics, where
uterine inhibitors are administered to all the women with TPL symptoms. After selecting
the optimal hyperparameters, their performance in the test data was assessed. For each
classifier four sets of input features were appraised: (1) the 10th-90th percentiles of EHG
parameters and obstetric data; (2) the 50th percentile of EHG data and obstetric data; (3) the
10th-90th percentiles of EHG parameters; (4) the 50th percentile of EHG data. Table 2
summarizes the classifiers developed according to their input dataset and optimization
criterion, F1-score or sensitivity.

Table 2. Summary of the classifiers developed, their input features and optimization criterion (F1-score or sensitivity). RF:

random forest, ELM: extreme learning machine, K-nearest neighbors (KNN).

RF ELM KNN
Input Features Criterion F1-Score Sensitivity F1-Score Sensitivity F1-Score Sensitivity
percenEtiIIIeCs; 105};_522:2(: data RFp1 1 RFseN_1 ELMEq_; ELMggN_1 KNNFEq_1 KNNseN_1
EHG 50th + Obstetric data RFpp 2 RFsgN 2 ELMFp; » ELMggN 2 KNNF; » KNNgeN 2
EHG 10th-90th percentiles RFp; 5 RFgN 3 ELMg; 5 ELMggn 3 KNNFE; 3 KNNgpy 3
EHG 50th percentile RFpy 4 RFsEN 4 ELMp; 4 ELMggn 4 KNNFE 4 KNNggy 4

To assess the models” performance, a set of metrics (F1-score, sensitivity, and speci-
ficity) was obtained for each partition in training, validating and testing the data. They
were computed as follows:

o 2xTP
F1 —score (%) = 2+ TP+ P+ EN 100 1)
TP
Sensitivity (O/0> — mloo (2)
e TN
SpelelClty (0/0) = mloo (3)

where, TP, TN, FP, and FN are true positives, true negatives, false positives, and false
negatives, respectively. In this work, a true positive is labor TTD < 7 days correctly
predicted by the algorithm. The Wilcoxon signed rank test was used to check for any
statistically significant differences between pairs of classifier metrics. This was done first
for all classifier metrics from the validation dataset to find any statistically significant
differences for the same classifier when changing the optimization criteria (e.g., ELMp; »
vs. ELMggNs 2). Secondly, we looked for any statistically significant differences regarding
the classifier input dataset (e.g., ELMp; » vs. ELMp; 1) in the optimization criteria and
metrics. It should be noted that validation and test results were not mixed in any case. The
coefficient of variation of the above-mentioned metrics were worked out for the 30 test
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datasets to analyze the strength of the algorithms when using new and different sets.
Finally, the receiver operating curve (ROC) was obtained and represented for the classifier
with the best performance.

3. Results

Regarding the nature of the classifiers used in the present study, as the metrics obtained
for the training subset, for which the classifiers were trained, were in most cases 100% they
were not considered relevant for our purpose and are not included here.

3.1. Random Forest (RF)

Regardless of the optimization criterion (Fl-score or sensitivity), the best classifiers for
each data input set showed the same optimal hyperparameters, that is: RFp; 1 = RFgpN 1;
RFp1 2 = RFsgN 2; RFp1 3 = RFsgN 3; RFp1 4 = RFgpn 4. Figure 2 shows a bar plOt of the
metrics of the RF classifiers in the validation dataset for each set of input features. It can be
seen in this figure that the highest mean F1-score is for RFp; 5 (88.17 & 8.34%), which also
has the highest sensitivity (81.83 &= 12.9%). As for RF classifiers, adding obstetric data to
EHG parameters as data inputs slightly improves their performance over using only EHG
parameters (i.e., RFp; 1 vs. RFp; 3 and RFp; » vs. RFp; 4) without statistically significant
differences between them (except in specificity RF_p; » vs. RF_p; 4). On the other hand,
the use of the 10th-90th percentiles vs. 50th percentile of the EHG parameters as inputs
(i.e., RFp1 1 vs. RFpp 2 and RFp; 3 vs. RFp; 4) reduced Fl-score and sensitivity, with no
statistically significant differences. There were only statistically significant differences
in terms of specificity between the RF 5 4 and the rest with a mean specificity value of
93.75 £ 5.97%, whereas the mean specificity values for the other RF classifiers range from
97.78 £ 4.2% to 98.75 % 2.48%. RF metrics for the validation dataset showed high mean
values for specificity, but modest sensitivity (from 73.83 = 12.08% to 81.83 & 12.9%). The
mean values of the RFs metrics for the test group are shown in Figure 2. As occurs in the
validation group, the highest F1-score for the test belongs to RFg », but dropping its values
to 80.35 £ 6.78%. The RF classifiers stand out especially for their high specificity metrics
(over 90% for all test datasets), but with low sensitivities, ranging from 65.78 £ 11.61% to
74 £ 10.41%, this latter for RFg; . The high variability of the RF classifier metrics is also
noticeable in the test group (Table 3), especially for sensitivity, with coefficients of variation
between 14.1% and 17.6%, which is a major drawback in predicting preterm labor.

WRF_FI_1 WRF_FI2 WRF_FI_3 mRF_Fl_4
1007

= _
° = [ [u]S!

80%

98.75%
93.75%
o, 83.69% 85.78%
73835 B133%
0%

F1-Score Sensitivity Specificity

Y
3

'
3

»
S

Figure 2. Mean values of different RF classifier metrics for validation datasets in the 30 data partitions
optimized by Fl-score. The same results were obtained when optimizing by sensitivity. For each
metric the significant differences (p < 0.05) for each input dataset are marked with: Il 10th-90th
percentiles of EHG parameters + obstetric input data; Bl 50th percentile of EHG + obstetric input
data; B8 10th-90th percentiles of EHG parameters;  50th percentile of EHG parameters.



Sensors 2021, 21, 2496

8 of 18

Table 3. Mean =+ standard deviation and coefficient of variation (in brackets) of RF classifiers performance metrics in test dataset for

predicting imminent birth (TTD < 7days) in women with threatened preterm labor (TPL) using EHG data or a combination of EHG

and obstetric data. The maximum value for each metric is shown in bold. F1: Fl-score, Sens: Sensitivity, Spec: Specificity.

Opt. Criterion Inputs Classifier Test_F1 Test_Sens Test_Spec
EHGp1_poo + Obs RFp; 7751 +7.58% (9.8%) 6622+ 11.70% (17.7%)  97.12 & 4.13% (4.3%)
F1-Score EHGps + Obs RFp1 » 80.35 + 6.78% (8.4%)  74.00 &+ 10.41% (14.1%)  92.25 = 5.35% (5.8%)
Sensitivity EHGp10_po0 RFp; 5 7781 +871% (112%) 6578 + 11.61% (17.6%)  98.29 -+ 2.51% (2.6%)
EHGps RFp1 4 77.7 + 6.6% (8.5%) 7144 £ 10.99% (154%)  90.72 = 4.58% (5.0%)

100

o

F1-Score

WELM T

3.2. Extreme Learning Machine (ELM)

Figure 3 shows a bar plot of the metrics of the ELM classifiers for each set of input
parameters in the validation dataset when optimizing with Fl-score and sensitivity. First
of all, it should be noted that optimizing ELM classifiers with the F1-score or sensitivity
criteria resulted in statistically significant differences (ELMg; x vs. ELMggN x) in all their
metrics for the same input dataset. ELMp outperforms ELMggy classifiers in F1-score and
specificity metrics, but gives lower values for sensitivity. This latter increase in ELMgpn
sensitivity metrics (about 3.5%) was at the cost of a notable reduction in specificity (about
20%). For instance, comparing ELMsge, » and ELMg; », an improvement of around 4%
(95.5 +4.61% vs. 99.33 + 1.73) in sensitivity led to a reduction of more than 20% in specificity
(86.8 +7.14% vs. 65.33 + 10.78%) and to a statistically significant reduction in the Fl-score
from 90.2 + 4.43% to 82.11 + 4.5%. It should also be noted that, unlike what happened with
the RF classifiers, the ELMp; classifiers presented high sensitivity values, with mean values
between 93.17 £ 5% and 95.5 £ 4.61% for the validation dataset. This performance is of
special importance when developing imminent labor predictive systems in women with
TPL and for preterm labor prediction in general

(@ (b)

mELM_ 12 ELM_F1_3 FLM_T1_4 WELM Sens 1 WwELM Sens 2 mELM Sens 3 mELM_ Sens 4

s *0 «m % * * * *
* bk N *W % *
* * .
*B *u *
50% 80% L L
*0 * *
60% 60% *8
%
" B7A7% 87.58% B 8278% 82.80% B
o = 40% 7933% $130%
paaon S427%
“ 0%

Scnsitivity Specificity Fl-Score Sensitivity Specificity

Figure 3. Mean values of different ELM classifier metrics for validation datasets in the 30 data partitions (a) optimizing

F1-score (b) optimizing sensitivity. For each optimization criteria and metric, the significant differences (p < 0.05) for each
input dataset are marked with Il 10th-90th percentiles of EHG parameters + obstetric input data; Bl 50th percentile of
EHG + obstetric input data; B8 10th-90th percentiles of EHG parameters;  50th percentile of EHG parameters. Significant

differences between the two optimization criteria for the same input data set are marked with *.

Analyzing the effect of the input features in the classifier performance, regardless
of the optimization criteria, the highest F1-score was reached by the classifiers that used
the 50th percentile of EHG parameters and obstetric data, ELMp; 5 (90.2 £ 4.43%) and
ELMsEgN 2 (82.11 £ 4.5%). ELMp; » and ELMggy » also reported the highest sensitivities
(95.5 £ 4.61% and 99.33 £1.73%) and specificities (86.8 £+ 7.14% and 65.33 + 10.78%)
for each optimization criteria. For the same optimization criteria, these metrics did not
present statistically significant differences with those of classifiers using the 10th-90th
percentile of EHG parameters and obstetric data as inputs (ELMyx 1 vs. ELMy 7). Using
only EHG parameters as data inputs slightly worsens ELM classifier metrics compared to
the combined use of EHG and obstetric data (ELMx 1 vs. ELMx 3 and ELMx_vs. ELMx 4).
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On the other hand, the performances of the ELM classifiers for the test datasets are
consistent with those obtained in the validation dataset, although all the metrics are reduced
(see Table 4). The highest F1-score, sensitivity and specificity were reached by ELME; »
with corresponding 82.14 & 5.88%, 89.89 &+ 7.14% and 76.4 & 8.12% values. Similarly, when
optimizing by sensitivity criteria, the highest F1-score, sensitivity and specificity values
for the test dataset are for ELMggn 2, but dropping its F1-score to 75.42 £ 3.96%, mainly
due to the low specificity of 52.25 & 9.58%, regardless of the high sensitivity of 96.00 +
5.13%. Indeed, the results of the ELM classifiers for test datasets reveal that specificity has
the greatest variability, especially when the sensitivity optimization criterion is applied,
reaching 19.5% (ELMggN 4) in this case.

Table 4. Mean =+ standard deviation and coefficient of variation (in brackets) of ELM classifiers’ performance metrics in
test dataset for predicting imminent birth (TTD < 7 days) in women with TPL using EHG data or a combination of EHG
and obstetric data. The maximum value for each metric and optimization criterion is shown in bold. F1: F1-score, Sens:
sensitivity, Spec: specificity.

Opt. Criterion Inputs Classifier Test_F1 Test_Sens Test_Spec
EHGp10-pgp + Obs ELME 1 80.00 £ 4.98% (6.0%)  87.56 & 8.53% (9.7%) 74.77 £+ 7.32% (9.8%)
Fl-score EHGpsg + Obs ELMF » 82.14 + 5.88% (7.2%)  89.89 + 7.14% (7.9%) 76.40 + 8.12% (10.6%)
EHGp10-poo ELME 3 78.41 4+ 4.55% (5.8%)  85.89 &+ 7.91% (9.2%) 73.24 £ 6.93% (9.5%)
EHGps) ELMp; 4 79.00 + 5.06% (6.4%)  86.22 £ 6.65% (7.7%) 73.87 £ 8.64% (11.7%)
EHGp1-poo + Obs ELMggN 1 74.83 4 3.88% (5.2%)  95.44 4 4.59% (4.8%) 51.35 &£ 9.28% (18.1%)
Sensitivity EHGps) + Obs ELMgen 2 75.42 + 3.96% (5.3%)  96.00 * 5.13% (5.3%) 52.25 4= 9.58% (18.3%)
EHGp10-poo ELMggN 3 73.13 £ 3.10% (4.2%)  94.78 £ 4.61% (4.9%) 47.57 + 8.83% (18.6%)
EHGps) ELMgeN 4 73.83 £ 3.24% (4.4%)  94.89 £ 5.01% (5.3%) 49.37 £ 9.63% (19.5%)
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As can be seen in Figure 4, KNN classifier metrics do not present statistically significant
differences according to the optimization criteria, except in the case of the specificity
between KNNp; 3 and KNNggns 3. The highest F1 score in the validation dataset for each
optimization criteria is for KNNFp; 3 (83.88 & 10.31%) and KNNggns 3 (79.9 £ 9.72%) with
the 10th-90th percentiles of EHG parameters as inputs.

@) (b)
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Figure 4. Mean values of different KNN classifier metrics for validation datasets in the 30 data partitions: (a) optimizing
F1-score (b) optimizing sensitivity. For each optimization criteria and metric, the significant differences (p < 0.05) for each
input dataset are marked with Il 10th-90th percentiles of EHG parameters + obstetric input data; Bl 50th percentile of

EHG + obstetric input data; Bl 10th-90th percentiles of EHG parameters;

50th percentile of EHG parameters. Significant

differences between the two optimization criteria for the same input dataset are marked with *.

As regards the influence of the classifier input dataset on their performance, KNNg; 3
did not present statistically significant differences in any of its metrics with respect to
KNNF¥j 1. The same occurred with KNNp; 5 vs. KNNygy 4. That is, having added obstetric
inputs did not improve KNN classifier metrics. However, using the 50th or 10th-90th
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percentiles of EHG gave significant differences in all KNN metrics for the validation dataset.
For instance, KNNE; ; showed statistically higher specificity than KNNg; 5 (96.45 £ 3.99%
vs. 61.89 £ 12.02%) and lower sensitivity (66.77 £ 13.85% vs. 91.53 & 7.92%). This also
occurred in KNNp; 3 and KNNp; 4. It should be noted that the highest mean sensitivity
was reached by KNNp; 4 (92.83 + 6.11%) without significant differences with KNNp; »
(91.53 £ 7.92%) but at the cost of a considerable reduction in specificity, with corresponding
values of 63.58 £ 10.57% and 61.89 & 12.02%. As previously mentioned, the same behavior
was observed in KNNg.pg classifiers: the use of 10th-90th or 50th percentiles of EHG
parameters modified KNNggns performance with significant differences in all metrics (see
Figure 4). Sensitivity is greater when using the 50th percentile and F1-score, and specificity
when using the 10th-90th percentiles. The inclusion of obstetric inputs did not improve
KNNggng metrics either.

Mean values for the KNN metrics for test dataset are summarized in Table 5 and
are consistent with those from the validation dataset: in this case, the optimization crite-
ria caused noticeable differences in classifier metric values for the same data input, but
with similar tendencies. For F1-score optimization, the highest F1-score corresponded to
KNNF; 3 (84.67 = 8.46%) and was similar to that of KNNp 1 (84.18 & 9.47%), associated
with high specificity metrics (93.42 £ 6.34% and 92.7 + 8.81%) and moderate sensitivities
(79.33 4 13.23% and 80.56 + 12.57%). For sensitivity optimization, the highest Fl-score
corresponded to KNNggns 1 (79.8 &= 8.29%), similar to that of KNNggns 3 (78.63 £ 8.6%)
and was lower than that of F1-score optimization criteria. In this case, for the test group
the greatest variability in Fl-score and sensitivity are associated with classifiers with input
parameters that use the P10-90 percentiles of the EHG parameters, while in the case of
specificity it is for those that use the 50th percentile as inputs. Indeed, for the test dataset,
the use of the 50th percentile of EHG parameters improved sensitivity for the test dataset
while dramatically reducing specificity when using sensitivity optimization criteria.

Table 5. Mean =+ standard deviation and coefficient of variation (in brackets) of KNN classifier performance metrics in test

dataset for predicting imminent birth (TTD < 7 days) in women with TPL using EHG characteristics or a combination

of EHG and obstetric data. The maximum value for each metric and optimization criterion is in bold. F1: F1-score, Sens:

Sensitivity, Spec: Specificity.

Opt. Criterion Inputs Classifier Test_F1 Test_Sens Test_Spec
EHGp1-pgo + Obs KNNF 1 84.18 + 9.47% (11.2%) 79.33 £ 13.23% (16.7%) 93.42 =+ 6.34% (6.8%)
Floscore EHGps) + Obs KNNF¥; 2 74.16 £ 5.07% (6.8%) 93.33 £ 6.37% (6.8%) 52.43 + 9.59% (18.3%)
EHGp10-roo KNNF; 3 84.67 £ 8.46% (10.0%)  80.56 + 12.57% (15.6%) 92.70+ 8.81% (9.5%)
EHGps KNNFE 4 74.13 £ 4.57% (6.2%) 90.89 =+ 6.55% (7.2%) 55.77 £ 9.67% (17.3%)
EHGp1-poo + Obs KNNggN 1 79.8 £ 8.29% (10.4%) 82.78 + 12.13% (14.7%) 80.36 1= 9.76% (12.1%)
Sensitivity EHGps) + Obs KNNgeN 2 72.98 + 4.00% (5.5%) 94.22 + 5.67% (6.0%) 47.93 £ 8.98% (18.7%)
EHGp10-poo KNNGggN 3 78.63 + 8.60% (10.9%) 83.56 + 12.47% (14.9%) 76.58 £ 14.2% (18.5%)
EHGps) KNNgeN 4 73.19 £ 4.31% (5.9%) 91.78 £ 7.15% (7.8%) 52.07 £ 9.39% (18.0%)

3.4. Comparison of Classifiers

The metrics for RE, ELM and KNN classifiers with the best performance (best F1-score
in validation dataset) are shown in Figure 5. All of them corresponded to Fl-score opti-
mization criteria. ELMp; » achieved the highest F1-score (90.2 £ 4.43%) with statistically
significant differences with KNNp; 3 (83.88 & 10.31%) but not with RFp; » (88.17 £ 8.34%).
RFp1 2 and ELMF;_; presented statistically significant differences in terms of sensitivity and
specificity, the sensitivity being highest for ELMp; 5 (95.5 &+ 4.61% vs. 81.83 £ 12.9%) and
the specificity for RFp; 5 (97.78 &+ 4.2% vs. 86.8 £ 7.14%). Apart from having shown the
lowest F1-score, KNNF; 3 showed the lowest sensitivity (80.17 & 15.17%) and statistically
lower specificity (92.96 & 5.86%) than RFg; ».
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Figure 5. Mean values of different classifier metrics for validation datasets in the 30 data partitions
obtained for the best RF, ELM and KNN classifiers. Significant differences (p < 0.05) of the classifiers
and metrics with the others are marked with Bl RFg; »; Bl ELMp; o; B8 KNNg ».

Bearing in mind that in the clinical scenario for the application of these classifiers, the
prediction of preterm delivery, a false positive diagnosis is preferable to stopping treating a
false negative (premature that has been identified as a false threat), the classifier with the
best performance was the ELMF; 5, that is the one that makes a combined use of obstetric
and the 50th percentile of EHG parameters. Figure 6 shows the average ROC curves for
the ELMp; ; classifier, with an AUC of 93.1% for the validation dataset and 91.0% for the
test dataset.

ROC CURVE
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|
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|

Average True Positive Rate

——  TRAIN AUC=100%
— VALIDATION AUC=93.1%
TEST AUC=91%

T T T T T T
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Average False Positive Rate

Figure 6. Average receiver operating curves (ROCs) for training, validation and test datasets for
the ELMFl_z.

4. Discussion

Although several studies deal with the use of EHG for preterm labor prediction in women
recorded during regular checkups in a drug-free physiological state [21,22,31,32,34,37,52], the
literature is scarce on preterm labor predictive systems in women with TPL under the effect
of tocolytic drugs [20], even though tocolytic drugs are usually clinically administered
at the first signs of TPL. These drugs were found to modify the EHG characteristics
and these changes are dependent on the phase of the drug administration in which the
recordings were made [25,26]. Despite this, the usefulness of EHG for the prediction
of imminent delivery in women with TPL under tocolytic treatment has already been
checked in a previous study using ANN [27]. In the present work we aimed to overcome
some limitations of that study, such as the low learning speed associated with ANN
backpropagation, by using computationally efficient algorithms such as RE, ELM and KNN.
We selected a random forest algorithm, which uses an ensemble of decision tree classifiers,
because it is easy to implement and there are reports that it provides a better performance
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than other classification algorithms, such as ANN [53]. The ELM, a feedforward neural
network with a single-hidden layer, accelerates the running speed of the identification
model. ELM has been shown to be more stable than ANN, with lower variance of its
metrics, and is more suitable for real-time applications in situations that require rapid
reactions [54]. ELM has been used in obstetrics to identify labor and nonlabor contractions
from EHG recordings [28]. Finally, KNN, a nonparametric and therefore low complex
algorithm previously used in EHG classification [55,56], was also assessed in the present
work. We studied how the optimization criteria used for the classifiers affected their
performance, which has not been clearly indicated in most published studies, regardless of
the classification algorithm employed [24,29,31]. We proposed two optimization criteria: F1-
score and sensitivity. It is noteworthy that when using sensitivity as optimization criterion
the optimal hyperparameters were considered those that provided the best average F1-
score in the validation dataset so as to reach a trade-off between sensitivity and specificity.
Otherwise, the option is to consider that all women with TPL will deliver prematurely
and will therefore require tocolytic drugs and lung maturation corticosteroids, which is a
widespread clinical practice nowadays.

Analyzing the influence of the two optimization criteria proposed—F1-score and
sensitivity—RF resulted in a unique optimal RF structure, which did not occur for ELM and
KNN classifiers, which could have been caused by the nonlinear hyperparameters involved
as activation functions and kernels in ELM and KNN classifiers. For ELM, classifiers
designed to optimize sensitivity achieved a slight improvement in their sensitivity metrics
compared to optimizing the Fl-score, at the cost of a decreasing specificity and F1-score.
Indeed, in the case of ELM, for both optimization criteria (F1-score and sensitivity) the
sensitivity metrics always exceed those of specificity, with values over 90% in validation
and 86% in test. This behavior, not observed in KNN, is especially appropriate in the design
of imminent labor predictive systems in women with TPL. On the other hand, the KNN
metrics did not show statistically significant differences between both optimization criteria
for the same input dataset.

The highest F1-score value in validation dataset were obtained for RFp; ; (88.17 & 8.34%)
and ELMg 5 (90.2 &+ 4.43%), both with the 50th percentile of EHG and obstetric data in-
puts. They also showed the highest sensitivity (81.83 & 12.9% and 95.5 & 4.61%). The
good performance of RF metrics agrees with previous studies. Idowu et al. analyzed the
performance of several machine learning algorithms for preterm labor detection using the
TPEHG database from Physionet and found that random forest performed the best, with a
specificity of 86%, sensitivity of 97%, and AUROC of 94% compared with penalized logistic
regression and a rule-based classifier [57]. Ren et al. compared the performance of several
classifiers based on EHG signals from the TPEHG Physionet database (routine checkups)
to differentiate term and preterm deliveries. They used empirical mode decomposition to
obtain Intrinsic Mode Functions and then entropy values, and found that RF and AdaBoost
outperformed support vector machine, multilayer perceptron, Bayesian network, and
simple logistic regression [31].

We consider that ELME; » provides a better performance than RFg; » due to its higher
sensitivity, which is decisive in this application, as previously mentioned. In this regard,
Chen and Hao developed an ELM classifier based on EHG to differentiate labor and
nonlabor contractions, manually segmented from the PhysioNet Icelandic 16-electrode
Electrohysterogram Database, also reporting high sensitivity metrics [28]. Chen et al. as-
sessed the performance of stacked sparse autoencoder (SSAE), SVM and ELM to identify
labor contractions using the Icelandic Database [30], obtaining a slightly better performance
for SSAE but without carrying out statistical tests. ELMp; » metrics are slightly higher than
those previously obtained using the same EHG recording database with an ANN classifier,
for both validation and test groups (F1-score of 84.3 & 5.0%, sensitivity of 86.5 £ 7.4% and
specificity of 81.5 & 7.3 for the validation dataset with ANN and F1-score of 80.3 & 5.5%,
sensitivity of 81.6 £ 9.4% and specificity of 78.8 &+ 5.8% for the test dataset) [27]. Indeed,
AUC values for ELMp » in validation and test were over 93%, similar to those reported in
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the literature for preterm labor predictive systems based on EHG recordings during regu-
lar checkups [12,21,22,31,37,55,58], and slightly higher than those achieved in imminent
labor prediction in women with TPL using ANN (AUC validation 91.8 &+ 3.2%, AUC test
87.1 & 4.3%) [27]. This could be due to the fact that in order to avoid overfitting, the two
optimization criteria were applied to the validation dataset, whereas in our previous work
the square root of the training and validation F1-score was optimized [27].

The Fl-score and sensitivity metrics of the KNN classifiers underperformed RF and
ELM in the validation dataset. These results are consistent with those obtained by Fergus
et al. when using different classifiers to distinguish between preterm and term birth with
the TPEHG database, without a test group but with cross validation [55]. KNN provided
worse results than decision trees and polynomial classifiers. Indeed KNN is greatly reliant
on the input features” dimensionality and the training dataset [40,43], resulting in lower
values for its metrics [59,60]. However, in the present study KNN classifiers showed a high
generalization capability with very similar metrics between validation and test.

With reference to the discriminatory capacity of the classifiers depending on the
four different input data sets, the 50th or 10th-90th percentiles of EHG parameters with
or without obstetric parameters, different outcomes were observed. In general, the RF
classifier metrics were little influenced by the input dataset, although the use of obstetric
parameters seems to slightly improve their specificity. This is in agreement with previous
studies: Obstetric parameters such as cervical length or fetal fibronectin show high negative
predictive but low positive predictive capabilities [8,61]. ELM algorithms also presented
very similar metrics for the four sets of proposed input parameters when using the same
optimization criterion. In fact, when only EHG characteristics were used, there were
no differences in any of the ELM classifier metrics and adding obstetric data improved
specificity. On the other hand, the KNN classifier metrics were highly dependent on
the input dataset. The best Fl-score in the validation dataset for KNN was obtained
for KNNpj 3 and KNNsgeng 3 (83.88 £ 10.31% and 79.9 + 9.72%, respectively) for both
optimization criteria, with the 10th-90th percentiles of EHG and obstetric data inputs.
These results agree with Mas-Cabo et al., who obtained a higher discrimination capability
between term and preterm births in the 10th and 90th percentiles of EHG parameters in
women recorded during routine checkups [20].

Despite the good results obtained, the present study still has certain shortcomings.
Firstly, a larger database would be more representative of the target population and would
further corroborate the performance of this imminent labor prediction system. Increasing
the database would also allow contextualization of the EHG records, allowing the phase of
tocolytic treatment in which they were obtained to be considered, since previous works
revealed a significant effect of this drug on the EHG parameters, especially on spectral
and nonlinear ones [25]. Secondly, even with a larger database we would have to deal
with inter-class data imbalance. In the present work there were about 25% fewer women
delivering <7 days than >7 days, which is in agreement with preterm prevalence in
women with TPL [62]. The SMOTE oversampling technique was used here to tackle this
problem. Weighted classifiers or boosting ensemble learning could bring about more
reliable prediction systems. Thirdly, the use of PCA to reduce the input parameters’
dimensionality makes it difficult to discern which of them are the best to discriminate
imminent labor in women with TPL without considering nonlinear relationships, which
are often present in biological systems [63]. In future work we aim to use other feature
selection techniques that will allow us to determine an optimized feature subset, such
as random forest or particle swarm optimization, among others [64,65], to develop low
complexity classifiers that are easy to understand with improved metrics. Finally, a robust
algorithm to automatically remove artefacted EHG signals or identify EHG-Bursts before
feature extraction would help the development of imminent labor prediction systems for
clinical practice. Even though some studies have already been carried out on this [66-69],
it is still one of the main obstacles that prevents the clinical use of EHG.
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5. Conclusions

The present work confirms that it is possible to predict imminent labor in women
with TPL undertaking tocolytic treatment by computationally efficient algorithms based on
EHG and obstetric parameters. RF and ELM with the 50th percentile of EHG and obstetric
input parameters provided the highest Fl1-score values for the validation dataset, but ELM
outperformed RF sensitivity metrics. The use of the 10th-90th percentiles did not result in
a significant improvement of these classifier metrics over the 50th percentile. As for the
two optimization criteria analyzed for classifiers” design (F1-score and sensitivity), RFs and
KNN were barely affected, but for ELM optimizing sensitivity slightly increases sensitivity
compared to optimizing F1-score, but seriously reduces specificity and therefore F1-score.
KNN classifier performance was highly sensitive to the input dataset and the test metrics
revealed a high generalization capability.
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Appendix A
Table A1l. Hyperparameters optimized for each classifier and gridsearch carried out (in brackets).
RF ELM KNN
Hyperparameters Hyperparameters Hyperparameters
Number of trees Number of neurons in the hidden layer .
(100, 200, 500, and 750) (100, 500, 750, 1000, 2000, and 30,000); Number of neighbors (1, 3, 5, and 7)
Maximum depth of these trees Activation function Kernel used for weighting the distances
(6, 10, and unlimited) (hyperbolic tangent and sigmoid). (triangular, Biweight and Epanechnikov).

Cost of division based on the criterion of
gain of information were optimized
(0.001, 0.2, and 0.5)

Table A2. Hyperparameters’ combination for the optimal RF classifiers in validation.

Opt. Criterion Inputs Classifier Number of Neurons Activation Function
EHGplo_Pgo + Obs ELMFLl 500 Sigmoid
F1 EHGp5( + Obs ELMF]_Z 500 Sigmoid
-score EHGp10_poo ELMg; 3 500 Sigmoid
EHGP50 ELMF174 500 Sigmoid
EHGPlO—P9O + Obs ELMSENJ 750 Sigmoid
e . EHGp5g + Obs ELMSEN,Z 1000 Slngld
SenSItIVIty EHGPlU,pgo ELMSEN_3 750 Sigmoid

EHGpso ELMseN 4 500 Sigmoid
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Table A3. Hyperparameters’ combination for the optimal ELM classifiers in validation.

Opt. Criterion Inputs Classifier Number of Neurons Activation Function
EHGplo_Pgo + Obs ELMFLl 500 Sigmoid
F1 EHGP50 + Obs ELMF1_2 500 Sigmoid
-score EHGPlU—P90 ELMF173 500 Slngld
EHGP50 ELMF1_4 500 Sigmoid
EHGPlO—P% + Obs ELMSENJ 750 Sigmoid
PO EHGp5g + Obs ELMSENJ 1000 Sigmoid
SenSItIVIty EHGplg,pgo ELMSEN_?, 750 sigmoid
EHGpsg ELMggN 4 500 Sigmoid

Table A4. Hyperparameters” combination for the optimal KNN classifiers in validation.

Opt. Criterion Inputs Classifier Number of Neighbors Kernel
EHGplo,Pgo + Obs KNNF1_1 2 Triangular
EHGps5) + Obs KNNE; » 7 Biweight
F1-score - .
EHGp10-poo KNNFE_3 2 Triangular
EHGP50 KNNF174 7 Blwelght
EHGp1-_pgg + Obs KNNsgN 1 7 Triangular
e EHGps5) + Obs KNNGggN 2 7 Epanechnikov
Sensitivity EHGp19-p9o KNNsEgN 3 5 Triangular
EHGpsp KNNsgN_4 7 Triangular

References

1. Behrman, R.E.; Butler, A.S. Preterm Birth: Causes, Consequences, and Prevention. Preterm Birth: Causes, Consequences, and Prevention;
National Academies Press: Washington, DC, USA, 2007. [CrossRef]

2. Levels and Trends in Child Mortality Report 2019. United Nations Children’s Fund; UN Inter-agency group for child mortality
estimation.United Nations Children’s. Available online: https://www.unicef.org/media/79371/file/ UN-IGME-child-mortality-
report-2020.pdf.pdf (accessed on 1 April 2021).

3. Howson, C.P; Kinney, M.V.; McDougall, L.; Lawn, J.E.; Born Too Soon Preterm Birth Action Group. Born too soon: Preterm birth
matters. Reprod. Health 2013, 10 (Suppl. 1), S1. [CrossRef] [PubMed]

4. Godeluck, A.; Godeluck, A.; Gérardin, P.; Lenclume, V.; Mussard, C.; Robillard, P.Y.; Sampériz, S.; Benhammou, V.; Truffert, P;
Ancel, PY,; et al. Mortality and severe morbidity of very preterm infants: Comparison of two French cohort studies. BMC Pediatr.
2019, 19, 360. [CrossRef] [PubMed]

5. Roberts, D.; Brown, J.; Medley, N.; Dalziel, S.R. Antenatal Corticosteroids for Accelerating Fetal Lung Maturation for Women at Risk
of Preterm Birth. Cochrane Database of Systematic Reviews; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2017; Volume 2017.
[CrossRef]

6. Garfield, R.E.; Maner, W.L. Physiology and electrical activity of uterine contractions. Semin. Dev. Biol. 2007, 18, 289-295.
[CrossRef] [PubMed]

7. E Esplin, M.S; Elovitz, M.A ; Iams, ].D.; Parker, C.B.; Wapner, R.J.; Grobman, W.A.; Simhan, H.N.; Wing, D.A.; Haas, D.M.;
Silver, R.M.; et al. Predictive accuracy of serial transvaginal cervical lengths and quantitative vaginal fetal fibronectin levels for
spontaneous preterm birth among nulliparous women. JAMA . Am. Med. Assoc. 2017, 317, 1047-1056. [CrossRef] [PubMed]

8.  Berghella, V,; Hayes, E.; Visintine, J.; Baxter, ].K. Fetal Fibronectin Testing for Reducing the Risk of Preterm Birth. Cochrane Database of
Systematic Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008. [CrossRef]

9.  Lucovnik, M.; Chambliss, L.R.; Garfield, R.E. Costs of unnecessary admissions and treatments for ‘threatened preterm labor’. Am.
J. Obstet. Gynecol. 2013, 209, 217.e1-217.e3. [CrossRef]

10.  Grover, C.M.; Posner, S.; Kupperman, M.; Washington, E.A. Term delivery after hospitalization for preterm labor: Incidence and
costs in california. Prim. Care Update Ob Gyns 1998, 5, 178. [CrossRef]

11.  Most, O.; Langer, O.; Kerner, R.; Ben David, G.; Calderon, I. Can myometrial electrical activity identify patients in preterm labor?
Am. J. Obstet. Gynecol. 2008, 199, 378. [CrossRef]

12. Maner, W.L.; Garfield, R.E. Identification of human term and preterm labor using artificial neural networks on uterine electromyo-
graphy data. Ann. Biomed. Eng. 2007, 35, 465-473. [CrossRef]

13. Devedeux, D.; Marque, C.; Mansour, S.; Germain, G.; Duchéne, J. Uterine electromyography: A critical review. Am. J. Obstet.
Gynecol. 1993, 169, 1636-1653. [CrossRef]

14.  Chkeir, A.; Fleury, M.].; Karlsson, B.; Hassan, M.; Marque, C. Patterns of electrical activity synchronization in the pregnant rat

uterus. BioMedicine 2013, 3, 140-144. [CrossRef]


http://doi.org/10.17226/11622
https://www.unicef.org/media/79371/file/UN-IGME-child-mortality-report-2020.pdf.pdf
https://www.unicef.org/media/79371/file/UN-IGME-child-mortality-report-2020.pdf.pdf
http://doi.org/10.1186/1742-4755-10-S1-S1
http://www.ncbi.nlm.nih.gov/pubmed/24625113
http://doi.org/10.1186/s12887-019-1700-7
http://www.ncbi.nlm.nih.gov/pubmed/31623604
http://doi.org/10.1002/14651858.CD004454.pub3
http://doi.org/10.1016/j.semcdb.2007.05.004
http://www.ncbi.nlm.nih.gov/pubmed/17659954
http://doi.org/10.1001/jama.2017.1373
http://www.ncbi.nlm.nih.gov/pubmed/28291893
http://doi.org/10.1002/14651858.CD006843.pub3
http://doi.org/10.1016/j.ajog.2013.06.046
http://doi.org/10.1016/S1068-607X(98)00086-9
http://doi.org/10.1016/j.ajog.2008.08.003
http://doi.org/10.1007/s10439-006-9248-8
http://doi.org/10.1016/0002-9378(93)90456-S
http://doi.org/10.1016/j.biomed.2013.04.007

Sensors 2021, 21, 2496 16 of 18

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Mas-Cabo, J.; Ye-Lin, Y.; Garcia-Casado, J.; Alberola-Rubio, J.; Perales, A.; Prats-Boluda, G. Uterine contractile efficiency indexes
for labor prediction: A bivariate approach from multichannel electrohysterographic records. Biomed. Signal Process. Control 2018,
46, 238-248. [CrossRef]

Vinken, M.P.G.C.; Rabotti, C.; Mischi, M.; Oei, S.G. Accuracy of frequency-related parameters of the electrohysterogram for
predicting preterm delivery: A review of the literature. Obs. Gynecol. Surv. 2009, 64, 529-541. [CrossRef]

Horoba, K.; Jezewski, J.; Matonia, A.; Wrobel, J.; Czabanski, R.; Jezewski, M. Early predicting a risk of preterm labour by analysis
of antepartum electrohysterographic signals. Biocybern. Biomed. Eng. 2016, 36, 574-583. [CrossRef]

Mischi, M.; Chen, C.; Ignatenko, T.; de Lau, H.; Ding, B.; Oei, 5.G.G.; Rabotti, C. Dedicated Entropy Measures for Early Assessment
of Pregnancy Progression From Single-Channel Electrohysterography. IEEE Trans. Biomed. Eng. 2018, 65, 875-884. [CrossRef]
Fele-Zorz, G.; Kavsek, G.; Novak-Antolic, Z.; Jager, E; Fele-Zorz, G.; Kavsek, G.; Novak-Antoli¢, Z.; Jager, E; Fele-Zorz, G,;
Kavsek, G.; et al. A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of
term and pre-term delivery groups. Med. Biol. Eng. Comput. 2008, 46, 911-922. [CrossRef]

Mas-Cabo, J.; Ye-Lin, Y.; Garcia-Casado, J.; Diaz-Martinez, A.; Perales-Marin, A.; Monfort-Ortiz, R.; Roca-Prats, A.; Lopez-Corral,
A.; Prats-Boluda, G.; Diaz-Martinez, A.; et al. Robust Characterization of the Uterine Myoelectrical Activity in Different Obstetric
Scenarios. Entropy 2020, 22, 743. [CrossRef]

Fergus, P; Idowu, I.; Hussain, A.; Dobbins, C. Advanced artificial neural network classification for detecting preterm births using
EHG records. Neurocomputing 2016, 188, 42—49. [CrossRef]

Acharya, U.R,; Sudarshan, VK.; Rong, 5.Q.; Tan, Z.; Lim, CM.; Koh, J.E.; Nayak, S.; Bhandary, S.V.; Qing, S.; Tan, Z.; et al.
Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine
electromyogram signals. Comput. Biol. Med. 2017, 85, 33—42. [CrossRef]

Borowska, M.; Brzozowska, E.; Ku¢, P.; Oczeretko, E.; Mosdorf, R.; Laudariski, P. Identification of preterm birth based on RQA
analysis of electrohysterograms. Comput. Methods Programs Biomed. 2018, 153, 227-236. [CrossRef]

Degbedzui, D.K.; Yiiksel, M.E. Accurate diagnosis of term—preterm births by spectral analysis of electrohysterography signals.
Comput. Biol. Med. 2020, 119, 1-8. [CrossRef]

Mas-Cabo, J.; Prats-Boluda, G.; Perales, A.; Garcia-Casado, J.; Alberola-Rubio, J.; Ye-Lin, Y. Uterine electromyography for
discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Med. Biol. Eng. Comput.
2019, 57, 401-411. [CrossRef] [PubMed]

Mas-Cabo, J.; Prats-Boluda, G.; Ye-Lin, Y.; Alberola-Rubio, J.; Perales, A.; Garcia-Casado, ]J. Characterization of the effects of
Atosiban on uterine electromyograms recorded in women with threatened preterm labor. Biomed. Signal Process. Control 2019, 52,
198-205. [CrossRef]

Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Alberola-Rubio, J.; Monfort-Ortiz, R.; Martinez-Saez, C.; Perales, A.; Ye-Lin, Y.
Electrohysterogram for ann-based prediction of imminent labor in women with threatened preterm labor undergoing tocolytic
therapy. Sensors 2020, 20, 2681. [CrossRef] [PubMed]

Chen, L.; Hao, Y. Feature Extraction and Classification of EHG between Pregnancy and Labour Group Using Hilbert-Huang
Transform and Extreme Learning Machine. Comput. Math. Methods Med. 2017, 1-9. [CrossRef]

Peng, J.; Hao, D.; Yang, L.; Du, M,; Song, X,; Jiang, H.; Zhang, Y.; Zheng, D. Evaluation of electrohysterogram measured from
different gestational weeks for recognizing preterm delivery: A preliminary study using random Forest. Biocybern. Biomed. Eng.
2020, 40, 352-362. [CrossRef]

Chen, L.; Hao, Y.; Hu, X. Detection of preterm birth in electrohysterogram signals based on wavelet transform and stacked sparse
autoencoder. PLoS ONE 2019, 14, 1-16. [CrossRef]

Ren, P; Yao, S.; Li, J.; Valdes-Sosa, P.A.; Kendrick, K.M. Improved Prediction of Preterm Delivery Using Empirical Mode
Decomposition Analysis of Uterine Electromyography Signals. PLoS ONE 2015, 10, 1-16. [CrossRef]

Mas-Cabo, ].; Prats-Boluda, G.; Garcia-Casado, ].; Alberola Rubio, J.; Perales Marin, A.J.; Ye Lin, Y. Design and Assessment of a
Robust and Generalizable ANN-Based Classifier for the Prediction of Premature Birth by means of Multichannel Electrohystero-
graphic Records. J. Sens. 2019, 1-13. [CrossRef]

Terrien, J.; Marque, C.; Karlsson, B. Spectral characterization of human EHG frequency components based on the extraction and
reconstruction of the ridges in the scalogram. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 2007, 1872-1875.

Alamedine, D.; Diab, A.; Muszynski, C.; Karlsson, B.; Khalil, M.; Marque, C. Selection algorithm for parameters to characterize
uterine EHG signals for the detection of preterm labor. Signal Image Video Process. 2014, 8, 1169-1178. [CrossRef]

Lemancewicz, A.; Borowska, M.; Ku¢, P,; Jasiriska, E.; Laudanski, P.; Laudanski, T.; Oczeretko, E.; Kuc, P.; Jasinska, E.; Laudanski,
P; et al. Early diagnosis of threatened premature labor by electrohysterographic recordings—The use of digital signal processing.
Biocybern. Biomed. Eng. 2016, 36, 302-307. [CrossRef]

Vrhoveg, J.; Macek-Lebar, A.; Rudel, D. Evaluating Uterine Electrohysterogram with Entropy. In 11th Mediterranean Conference on
Medical and Biomedical Engineering and Computing; Springer: Berlin/Heidelberg, Germany, 2007; Volume 16, pp. 144-147.
Ahmed, M.U.; Chanwimalueang, T.; Thayyil, S.; Mandic, D.P. A multi variate multiscale fuzzy entropy algorithm with application
to uterine EMG complexity analysis. Entropy 2017, 19, 1-18.

Zhang, X.S.X.S.; Roy, R].; Jensen, E.W. EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans. Biomed. Eng.
2001, 48, 1424-1433. [CrossRef]


http://doi.org/10.1016/j.bspc.2018.07.018
http://doi.org/10.1097/OGX.0b013e3181a8c6b1
http://doi.org/10.1016/j.bbe.2016.06.004
http://doi.org/10.1109/TBME.2017.2723933
http://doi.org/10.1007/s11517-008-0350-y
http://doi.org/10.3390/e22070743
http://doi.org/10.1016/j.neucom.2015.01.107
http://doi.org/10.1016/j.compbiomed.2017.04.013
http://doi.org/10.1016/j.cmpb.2017.10.018
http://doi.org/10.1016/j.compbiomed.2020.103677
http://doi.org/10.1007/s11517-018-1888-y
http://www.ncbi.nlm.nih.gov/pubmed/30159659
http://doi.org/10.1016/j.bspc.2019.04.001
http://doi.org/10.3390/s20092681
http://www.ncbi.nlm.nih.gov/pubmed/32397177
http://doi.org/10.1155/2017/7949507
http://doi.org/10.1016/j.bbe.2019.12.003
http://doi.org/10.1371/journal.pone.0214712
http://doi.org/10.1371/journal.pone.0132116
http://doi.org/10.1155/2019/5373810
http://doi.org/10.1007/s11760-014-0655-2
http://doi.org/10.1016/j.bbe.2015.11.005
http://doi.org/10.1109/10.966601

Sensors 2021, 21, 2496 17 of 18

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
57.

58.

59.

60.

61.
62.

63.

64.

65.

66.

Moslem, B.; Hassan, M.; Khalil, M.; Marque, C.; Diab, M.O. Monitoring the progress of pregnancy and detecting labor using
uterine electromyography. In Proceedings of the 2009 International Symposium On Bioelectronics; Bioinformatics; RMIT University:
Melbourne, Australia, 2009; pp. 160-163.

Diab, A.; Hassan, M.; Marque, C.; Karlsson, B. Performance analysis of four nonlinearity analysis methods using a model with
variable complexity and application to uterine EMG signals. Med. Eng. Phys. 2014, 36, 761-767. [CrossRef]

Karmakar, C.K.; Khandoker, A.H.; Gubbi, J.; Palaniswami, M. Complex correlation measure: A novel descriptor for Poincaré plot.
Biomed. Eng. Online 2009, 8, 1-12. [CrossRef]

Roy, B.; Ghatak, S. Nonlinear Methods to Assess Changes in Heart Rate Variability in Type 2 Diabetic Patients. Arq. Bras. Cardiol.
2013, 10, 317-327. [CrossRef]

Naeem, S.M.; Seddik, A.F,; Eldosoky, M.A. New technique based on uterine electromyography nonlinearity for preterm delivery
detection New technique based on uterine electromyography nonlinearity for preterm delivery detection. . Eng. Technol. Res.
2014, 6, 107-114.

Chawla, N.V.; Bowyer, KW.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. . Artif. Intell.
Res. 2002, 16, 321-357. [CrossRef]

Smrdel, A.; Jager, F. Separating sets of term and pre-term uterine EMG records. Physiol. Meas. 2015, 36, 341-355. [CrossRef]
Naeem, S.M.; Ali, A.F; Eldosok Mohamed, M.A. Comparison between Using Linear and Non-linear Features to classify Uterine
Electromyography Signals of Term and Preterm Deliveries. In Proceedings of the National Radio Science Conference, NRSC,
Cairo, Egypt, 16-18 April 2013; pp. 1-11.

Bekkar, M.; Akrouf Alitouche, T. Imbalanced Data Learning Approaches Review. Int. |. Data Min. Knowl. Manag. Process. 2013, 3,
15-33. [CrossRef]

Wright, M.N.; Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw.
2017, 77, 1-17. [CrossRef]

Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489-501.
[CrossRef]

Hechenbichler, K.; Schliep, K. Weighted k-Nearest-Neighbor Techniques and Ordinal Classification Projektpartner Weighted k-Nearest-
Neighbor Techniques and Ordinal Classification; 2004 Discussion Paper 399, SFB 386, Ludwig-Maximilians-Universitat Miinchen:
Miinchen, Germany, 2004. [CrossRef]

Flach, P.A.; Kull, M. Precision-Recall-Gain Curves: PR Analysis Done Right. Adv. Neural Inf. Process. Syst. 2015, 28, 1-9.
Alamedine, D.; Khalil, M.; Marque, C. Comparison of different EHG feature selection methods for the detection of preterm labor.
Comput. Med. 2013, 2013, 1-9. [CrossRef]

Esteves, G.; Mendes-Moreira, ]. Churn perdiction in the telecom business. In Proceedings of the 11th International Conference on
Digital Information Management, ICDIM 2016, Porto, Portugal, 19-21 September 2016; pp. 254-259.

Kayabasi, A.; Yildiz, B.; Aslan, M.F; Durdu, A. Comparison of ELM and ANN on EMG Signals Obtained for Control of Robotic-
Hand. In Proceedings of the 10th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2018, Iasi,
Romania, 28-30 June 2018; pp. 1-5.

Fergus, P.; Cheung, P.; Hussain, A.; Al-Jumeily, D.; Dobbins, C.; Iram, S. Prediction of preterm deliveries from EHG signals using
machine learning. PLoS ONE 2013, 8, €77154. [CrossRef]

Mohamed Bedeeuzzaman, A.S. Preterm Birth Prediction Using EHG Signals. Int. |. Sci. Res. Eng. Trends 2019, 5, 2395-2566.
Idowu, I.O.; Fergus, P.; Hussain, A.; Dobbins, C.; Khalaf, M.; Casana Eslava, R.V.; Keight, R. Artificial Intelligence for Detecting
Preterm Uterine Activity in Gynacology and Obstertric Care. In Proceedings of the 2015 IEEE International Conference on
Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure
Computing; Pervasive Intelligence and Computing, Liverpool, UK, 26-28 October 2015; pp. 215-220. [CrossRef]

You, J.; Kim, Y.; Seok, W.; Lee, S.; Sim, D.; Suk, K.P,; Park, C. Multivariate Time-Frequency Analysis of Electrohysterogram for
Classification of Term and Preterm Labor. J. Electr. Eng. Technol. 2019, 14, 897-916. [CrossRef]

Murthy, H.S.N.; Meenakshi, D.M. ANN, SVM and KNN Classifiers for Prognosis of Cardiac Ischemia—A Comparison. Bonfring
Int. J. Res. Commun. Eng. 2015, 5, 7-11. [CrossRef]

Aditya, S.; Tibarewala, D.N. Comparing ANN, LDA, QDA, KNN and SVM algorithms in classifying relaxed and stressful mental
state from two-channel prefrontal EEG data. Int. J. Artif. Intell. Soft Comput. 2012, 3, 143. [CrossRef]

Pandey, M.; Chauhan, M.; Awasthi, S. Interplay of cytokines in preterm birth. Indian ]. Med. Res. 2017, 146, 316-327.

Van Zijl, M.D.; Koullali, B.; Mol, B.W.J.; Pajkrt, E.; Oudijk, M.A. Prevention of preterm delivery: Current challenges and future
prospects. Int. |. Womens Health 2016, 8, 633-645. [CrossRef] [PubMed]

Hira, Z.M.; Gillies, D.F. A review of feature selection and feature extraction methods applied on microarray data. Adv. Bioinform.
2015, 2015, 198363. [CrossRef] [PubMed]

Chen, R.C.; Dewi, C.; Huang, S.W.; Caraka, R.E. Selecting critical features for data classification based on machine learning
methods. J. Big Data 2020, 7, 1-26. [CrossRef]

Rostami, M.; Forouzandeh, S.; Berahmand, K.; Soltani, M. Integration of multi-objective PSO based feature selection and node
centrality for medical datasets. Genomics 2020, 112, 4370-4384. [CrossRef]

Ye-Lin, Y.; Garcia-Casado, J.; Prats-Boluda, G.; Alberola-Rubio, J.; Perales, A. Automatic Identification of Motion Artifacts in EHG
Recording for Robust Analysis of Uterine Contractions. Comput. Math. Methods Med. 2014, 2014, 1-11. [CrossRef]


http://doi.org/10.1016/j.medengphy.2014.01.009
http://doi.org/10.1186/1475-925X-8-17
http://doi.org/10.5935/abc.20130181
http://doi.org/10.1613/jair.953
http://doi.org/10.1088/0967-3334/36/2/341
http://doi.org/10.5121/ijdkp.2013.3402
http://doi.org/10.18637/jss.v077.i01
http://doi.org/10.1016/j.neucom.2005.12.126
http://doi.org/10.5282/ubm/epub.1769
http://doi.org/10.1155/2013/485684
http://doi.org/10.1371/journal.pone.0077154
http://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.31
http://doi.org/10.1007/s42835-019-00118-9
http://doi.org/10.9756/BIJRCE.8030
http://doi.org/10.1504/IJAISC.2012.049010
http://doi.org/10.2147/IJWH.S89317
http://www.ncbi.nlm.nih.gov/pubmed/27843353
http://doi.org/10.1155/2015/198363
http://www.ncbi.nlm.nih.gov/pubmed/26170834
http://doi.org/10.1186/s40537-020-00327-4
http://doi.org/10.1016/j.ygeno.2020.07.027
http://doi.org/10.1155/2014/470786

Sensors 2021, 21, 2496 18 of 18

67. Happillon, T.; Muszynski, C.; Zhang, F.; Marque, C.; Istrate, D. Detection of Movement Artefacts and Contraction Bursts Using
Accelerometer and Electrohysterograms for Home Monitoring of Pregnancy. IRBM 2018, 39, 379-385. [CrossRef]

68. Hao, D.; Peng, J.; Wang, Y,; Liu, J.; Zhou, X.; Zheng, D. Evaluation of convolutional neural network for recognizing uterine
contractions with electrohysterogram. Comput. Biol. Med. 2019, 113, 1-8. [CrossRef]

69. Muszynski, C.; Happillon, T.; Azudin, K,; Tylcz, J.-B.; Istrate, D.; Marque, C. Automated electrohysterographic detection of
uterine contractions for monitoring of pregnancy: Feasibility and prospects. BMC Pregnancy Childbirth 2018, 18, 1-8. [CrossRef]


http://doi.org/10.1016/j.irbm.2018.10.008
http://doi.org/10.1016/j.compbiomed.2019.103394
http://doi.org/10.1186/s12884-018-1778-1

	Introduction 
	Materials and Methods 
	EHG Database and Characterization 
	Classifiers Design and Assessment 

	Results 
	Random Forest (RF) 
	Extreme Learning Machine (ELM) 
	K-Nearest Neighbors (KNN) 
	Comparison of Classifiers 

	Discussion 
	Conclusions 
	
	References

