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Retrotransposons constitute a major-
ity of mammalian DNA, but their

role in the cell is still poorly understood.
Long thought to be useless, new evidence
links retrotransposon expression to a vari-
ety of negative consequences. Further-
more, through interactions with steroid
hormone receptors, retrotransposons are
proposed to play a role in the pathology of
psychological stress.

In a recent paper, Hunter at al.1 pro-
pose a functional role for retrotransposons
in the brain and mammalian stress
response. In contrast to the predominant
paradigm of “junk” DNA or parasitic left-
overs,2 they hypothesize that these mobile
genetic elements have been co-opted by
cells to regulate the expression of protein-
encoding genes in response to environ-
mental insults. Retrotransposons were
thought to be “controlling elements” of
gene expression by their discoverer,3 but
this view was not widely shared until
recently and remains controversial.4 Due
to the advent of next-generation sequenc-
ing, it is now possible to answer questions
about their evolutionary role and effects
on complex behaviors, such as psychologi-
cal stress, that had been impossible to
address even a few years ago.

The prevailing assumption is that ret-
rotransposons are leftover from viral
inserts, duplication errors, or runaway
transposition—and functionally useless.5

This negative hypothesis is difficult to
demonstrate, and also hard to accept
based on the principal of parsimony: bio-
logical systems do not waste energy need-
lessly, or are replaced by others that can
do the same thing more efficiently.
Because of the unbalanced ratio of

retrotransposons to protein-encoding
genes, if the “junk” hypothesis was correct,
the trillions of cells present in a single
organism would be spending 10 times the
energy needed to replicate. The cost is
even higher when the negative effects of
errant retrotransposon transcription are
taken into account. In the long evolution
of eukaryotes, it is unlikely that this would
not have been selected against. Thus, the
simplest solution is that the vast regions of
non-protein coding DNA, including ret-
rotransposons, do something biologically
relevant, even if the purpose is poorly
understood at present.

Just as many genes were discovered
through malfunctions leading to disease,
several disorders show some level of trans-
poson dysregulation. Retrotransposons
have been implicated in schizophrenia,
addiction, and post-traumatic stress disor-
der, among others.6,7 Their unwanted
overexpression can even lead to physical
degeneration of the nervous system.8 It is
possible that loss of control of retrotrans-
poson expression could be either a cause
or a predictive biomarker of other psycho-
logical disorders.

The brain must be malleable in order
to adapt to environmental stresses, includ-
ing psychological stress.9 Because a large
number of brain cells are post-mitotic,
and persist from birth until death, fine-
tuned control of the genome is paramount
if the organism is to survive. The dynamic
nature of neuronal DNA has been the tar-
get of intense research into how neuronal
structure and function are affected by
varying the likelihood that certain genes
will be expressed through changes in his-
tone and DNA marks. The portion of the
genome consisting of retrotransposons
appears to be inversely correlated with the
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availability for horizontal gene transfer
from the environment. As most neurons
are post-mitotic their need to adjust to
new stimuli and deal with complex com-
putations makes them likely to benefit
from the genomic and transcriptional
diversity that retrotransposons have the
potential to provide. This has already
been established to be the case in the
mammalian immune system, where the
retrotransposons derived V(D)J recombi-
nation system is vital to generating anti-
body diversity.10

A single stressor can induce immediate
changes in gene expression in the brain.
The effects are context and tissue depen-
dent, with a high degree of individual vari-
ation. Furthermore, stress history also
affects the response to both repeat and
novel stressors.11,12 These intracellular
changes may even serve as a sort of
“memory” of previous stressful condi-
tions.13 Changes induced by stressful
events can have lifelong effects, and have
even been shown to influence the stress
reactivity of subsequent generations
through epigenetic means14 — a putative
source of the “missing heredity” that has
exacerbated the search for biological
causes of many psychological disorders.15

It is worth noting in this context that ret-
rotransposons represent the single largest
source of individual variation in the
genome: it is estimated that each of us has
at least one “private” or utterly unique ret-
rotransposon variant in our genome.16

In addition to epigenetic control of
protein-encoding genes, acute stress
reduces the expression of retrotransposons
in the hippocampus via stress induced
increase in levels of the histone H3 Lysine
9 trimethyl mark, which is involved in
silencing gene expression. This appears to
represent a genomic stress response
designed to control retrotransposon
expression.17,18 Structural changes accom-
pany epigenetic changes on the brain,
notably in the hippocampus. Hunter et al.
posit that control of retrotransposon activ-
ity in the brain may be yet another mecha-
nism of plasticity.

Evidence points to mammals having
evolved a complex system of fine-tuned
control over retrotransposons.19 In con-
trast to the aforementioned H3K9me3-
mediated short interspersed element

(SINE) repression in rats, mice have been
shown to upregulate SINE retrotranspo-
sons in response to heat shock stress.17

The B2 SINEs inhibit transcription,
which could be beneficial to an organism
by reducing the amount of misfolded pro-
teins due to the denaturing effects of
hyperthermia. A reduction in the expres-
sion of transposons seen in the hippocam-
pus18 fits with this hypothesis, as making
a memory of the stressful event—in order
to avoid the same circumstances again—
requires protein synthesis.

Steroid receptors have co-evolved in
the presence of retrotransposons, and
some are known to bind within special
regions of ALUs—a subclass of SINEs—
and affect transcription of genes far down-
stream.20 SINEs are associated with gluco-
corticoid binding,21 and long interspersed
elements (LINEs) with androgen recep-
tors.22 Reciprocally, polypeptides trans-
lated from LINEs act as an androgen
receptor coactivator.23 Tissues producing
high levels of steroids, like the brain, adre-
nals and placenta, also seem to be hot
beds for the transcription of retrotranspo-
sons. This considerable interplay raises the
possibility that fluctuating levels of steroid
hormones during development and
between males and females may affect the
levels of retrotransposon expression,
accounting for the pronounced age and
sex differences in some psychological
disorders.

Many simple questions still remain
unanswered about the role of retrotrans-
posons in mammalian behavior. While
experimental data is currently scarce, what
we do know suggests rapid-acting and
important regulatory controls in response
to stress, which may ultimately have an
influence on physical and mental health.
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