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Backgrounds: Glucagon-like peptide-1 receptor agonist (GLP-1 RA) is probably one of
more effective antidiabetic agents in treatment of type 2 diabetes mellitus (T2D). However,
the heterogenicity in responses to GLP-1 RA may be potentially related to gut microbiota,
although no human evidence has been published. This pilot study aims to identify
microbial signatures associated with glycemic responses to GLP-1 RA.

Materials and Methods:Microbial compositions of 52 patients with T2D receiving GLP-
1 RA were determined by 16S rRNA amplicon sequencing. Bacterial biodiversity was
compared between responders versus non-responders. Pearson’s correlation and
random forest tree algorithm were used to identify microbial features of glycemic
responses in T2D patients and multivariable linear regression models were used to
validate clinical relevance.

Results: Beta diversity significantly differed between GLP-1 RA responders (n = 34) and
non-responders (n = 18) (ADONIS, P = 0.004). The top 17 features associated with
glycohemoglobin reduction had a 0.96 diagnostic ability, based on area under the ROC
curve: Bacteroides dorei and Roseburia inulinivorans, the two microbes having
immunomodulation effects, along with Lachnoclostridium sp. and Butyricicoccus sp.,
were positively correlated with glycemic reduction; Prevotella copri, the microbe related to
insulin resistance, together with Ruminococcaceae sp., Bacteroidales sp., Eubacterium
coprostanoligenes sp., Dialister succinatiphilus, Alistipes obesi, Mitsuokella spp.,
Butyricimonas virosa, Moryella sp., and Lactobacillus mucosae had negative
correlation. Furthermore, Bacteroides dorei, Lachnoclostridium sp. and Mitsuokella
multacida were significant after adjusting for baseline glycohemoglobin and C-peptide
concentrations, two clinical confounders.
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Conclusions: Unique gut microbial signatures are associated with glycemic responses to
GLP-RA treatment and reflect degrees of dysbiosis in T2D patients.
Keywords: gut microbiota, GLP-1 receptor agonists, type 2 diabetes mellitus, glycemic response, dysbiosis, GLP-
1 resistance
INTRODUCTION

An increasing incidence of type 2 diabetes mellitus (T2D) is a
severe health issue worldwide, causing high morbidity and
mortality with resulting healthcare costs expected to reach US
$825B annually by 2030 (1). Therefore, glycemic control in T2D
patients is critical to reduce diabetic complications, cardiovascular
consequences, and costs (2).

Glucagon-like peptide-1 receptor agonist (GLP-1 RA) has
pleotropic effects on pancreas, brain, and other target organs,
acting through systemic or enteric neuroendocrine cell pathways
(3). Augmented GLP-1 actions include anti-inflammatory,
potent glycemic and body weight reduction effects (4);
therefore, GLP-1 RA is highly recommended for T2D patients
with cardiovascular risk factors (5). However, responses to GLP-
1 RA are heterogeneous, with ~ 30 to 50% of patients having an
inadequate response or treatment failure (6, 7), representing both
a treatment barrier and an economic burden (8). Perhaps loss of
efficacy is due to target cells becoming resistant to GLP-1 (9).
Risk factors for development of GLP-1 RA treatment failure are
prolonged disease duration, previous insulin use, lower C-
peptide concentrations or positive islet autoantibodies, partially
implicating b-cell failure (10, 11). Regardless, apart from insulin
deficiency, GLP-1 resistance has no specific marker.

Gut microbiota is increasingly implicated in the pathogenesis
of T2D. Based on metagenome-wide association studies, there
were decreased abundances of some butyrate-producing bacteria
and increased opportunistic pathogens in patients with T2D (12).
Gut microbial dysbiosis could impair gut barriers and cause
endotoxemia, insulin resistance and hyperglycemia (13). For
T2D patients with different degrees of severity, gut microbiota
could serve as an indicator. Furthermore, there is an interplay
between gut microbiota and some antidiabetic agents. Metformin
is the first example showing that T2D patients with different
microbiota may have diverse treatment efficacy (14). As a novel
biomarker, gut microbiota may be implicated in responses to
GLP-1 RA treatment as well, but there is no human evidence.

Interactions between gut microbiota and GLP-1 RA have been
investigated in few animal models (15, 16). In a study of diabetic
mice, microbiota-induced vagal afferent neural impairment
decreased incretin effects, implying gut dysbiosis may cause
GLP-1 resistance via a gut-brain axis (17). As GLP-1 resistance
is relatively common and gut microbiota composition varies
widely among populations (18), perhaps specific gut microbial
signatures determine responses to GLP-1 RA treatment. However,
there are insufficient data to access relationships between gut
microbiota composition and GLP-1 RA treatment efficacy (19,
20). Therefore, in the pilot study, we analyzed gut microbiota of
T2D patients treated with GLP-1 RA and determined clinical
implications of gut microbiota in patients with distinct responses.
n.org 2
MATERIALS AND METHODS

Participants’ Enrollment and Clinical Data
Collection
All participants (n = 52) were enrolled from outpatient
departments at the Taipei, Linkou and Taoyuan branches of
Chang Gung Memorial Hospital, certified Diabetes Health
Promotion Centers in Taiwan. Individualized management was
performed by diabetes care teams. Main inclusion criteria included
diagnosis of T2D, age > 20 years and currently on GLP-1 RA
(liraglutide or dulaglutide) treatments with successful adherence.
Main exclusion criteria included recent gastrointestinal discomfort
(e.g., abdominal pain or diarrhea) within the previous month,
recent use of antibiotics, use of probiotics or prebiotics within the
previous month, and advanced chronic kidney disease or other
metabolic disorders (thyroid dysfunction, Cushing syndrome,
acromegaly, and pheochromocytoma). An informed consent
form approved by the Institutional Review Board of Chang
Gung Memorial Hospital was signed by each participant
(certificate number: 201900467B0).

Baseline characteristics before GLP-1 RA treatment including
age, gender, duration of diabetes mellitus, body mass index
(BMI), serum creatinine, alanine aminotransferase, fasting
plasma glucose, glycohemoglobin (HbA1c), C-peptide, lipid
profiles, urine albumin-to-creatinine ratio (UACR) and
concurrent antidiabetic medication use were recorded. Kidney
function, as assessed with eGFR (estimated glomerular filtration
rate), was calculated with the IDMS traceable MDRD-study
equation. A validated 45-item food frequency questionnaire
designed for T2D patients of Han Chinese descent was used to
evaluate habitual dietary contents (21). Each participant
completed the questionnaire with assistance from a certified
dietician. Raw data was transformed into daily dietary fiber
intake and estimated daily calorie intake, apportioned among
protein, fat, and carbohydrate.

Changes in HbA1c and BMI from the baseline to week 12 were
reviewed. To adjust the impact of baseline HbA1c concentration
on decreased blood glucose concentrations, GLP-1 RA responders
were defined as an HbA1c reduction ratio [(HbA1c level at week
12) – (HbA1c level at baseline)/(HbA1c level at baseline)] ≥ 0.12,
whereas GLP-1 RA non-responders were defined as an HbA1c
reduction ratio < 0.12. This cut-off ratio was adopted from
approximate HbA1c concentrations associated with a 1% change
from an 8% HbA1c baseline (22, 23).

To have enough responders and non-responders to identify
the relationships between their gut microbiota and treatment
effects of GLP-1 RA, we used information from a Taiwan cohort
study to estimate sample sizes (24). A sample size of 45 patients
with 2:1 ratio of responders (n = 30) and non-responders (n =
15) was calculated, based on 70% power to detect superiority of
January 2022 | Volume 12 | Article 814770
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responders versus non-responders on the 12% reduction HbA1c
ratio from baseline (mean = 9.6 with a standard deviation of 1.6)
and a one-sided a of 0.05.

Stool Collection and DNA Extraction
A stool sample (0.5 to 3 g) was collected from each participant
using a Longsee Profecal kit (Longsee Biomedical Corporation,
Guangzhou, China) and processed and stored in accordance with
the manufacturer’s protocol. Non-human DNAwas extracted from
the stool with a QIAamp® DNA Stool Mini Kit (Qiagen, Hilden,
Germany), according to manufacturer’s recommendations. The
suspension was heated (5 min at 95°C) to lyse Gram positive
bacteria, followed by a beads-beating process with Roche
MagNALyser (6500 rpm, 30 seconds, 3 times, with 60 seconds
cooling on ice). Final DNA products were stored at −20°C.

16S rRNA Gene Amplicon Sequencing
Library preparation for 16s rRNA gene V3 and V4 regions
amplicon sequencing was done according to the Illumina
protocol (25). Microbial genomic DNA samples (8 to 15 ng)
were prepared. A two-step polymerase chain reaction (PCR)
workflow of amplicon PCR, first PCR clean-up, index PCR,
second PCR clean-up and library validation, was done. Pooled
libraries were sequenced on the Illumina Miseq platform
(Illumina, San Diego, CA, USA) with v3 reagents for paired-
end sequencing (2 × 300 bps). All 16S library preparation and
sequencing were done and validated by the Genomic Medicine
Core Laboratory, Chang Gung Memorial Hospital at Linkou.

Processing Sequence Reads
Raw sequence reads were acquired from libraries and processed
with QIIME 2 version 2020.2, following the Amplicon SOP v2 of
microbiome helper (26, 27). Raw paired-end demultiplexed reads
were first trimmed using Cutadapt QIIME 2 plugin to remove
primer sequences from reads and from those that did not begin
with a primer sequence (28), followed by denoising into
amplicon sequence variants (ASVs) using DADA2 to exclude
low-quality reads. Taxonomy was assigned to the representative
ASV sequences using the Naïve Bayesian classifier against the
SILVA database (v. 132) (29, 30). In total, 5,503,725 high quality
paired-end sequence reads were obtained after filtering out rare,
contaminant and unclassified ASVs, ranging from 48,155 to
205,487 per sample. Then, the filtered table was rarefied to
minimum sample-length of reads per sample. After QIIME 2
pipeline processing, 1,553 ASVs shared among 52 subjects were
identified for analysis.

Microbiota and Statistical Analyses
R software and packages were used for subsequent microbiota
analyses on the final filtered table obtained from the QIIME 2
pipeline (31). The R package vegan was used to calculate alpha
and beta diversities (32). Observed ASV numbers and Shannon
index were used to calculate alpha diversity and a Wilcoxon rank
sum test was done to detect differences (a = 0.05) between
responders and non-responders. Principal coordinate analysis
(PCoA) with Bray-Curtis dissimilarity of each sample was
performed to compare, between the two groups, beta diversity
Frontiers in Endocrinology | www.frontiersin.org 3
of gut microbiota; these were compared using an ADONIS
(permutational multivariate analysis of variance using distance
matrices) method (33). The Firmicutes/Bacteroidetes ratio and
relative abundances of bacterial genera known for association
with T2D (Bacteroides, Faecalibacterium, Roseburia,
Bifidobacterium, and Akkermansia) were also compared
between the two groups (34, 35).

Pearson’s correlation between the HbA1c reduction ratio and
the log-transformed abundance of each ASV was calculated. A
prevalence of 10% was applied to exclude rare ASVs which were
either with positive correlation, but present in < 10% of
responders, or with negative correlation, but present in < 10%
of non-responders. A random forest algorithm was further
applied to filtered ASVs to select the most important features
that distinguished responders versus non-responders. Receiver-
operating characteristic (ROC) analysis was used to evaluate the
performance of selected features and significant clinical variables
as classifiers. The dataset was divided into training and validation
sets in an 80:20 ratio.

The Basic Local Alignment Search Tool (BLAST) was used to
verify the scientific names of ASVs selected as most important
features by searching against NCBI non-redundant (nr) and
rRNA databases with parameters: query coverage = 100%,
percent identity > 99% and E value = 0 (access date: Jan 23,
2021) (36). R package igraph and SpiecEasi were used for
construction of the co-occurrence network with SparCC
correlation coefficients (37–39). Correlation coefficients were
calculated by bootstrapping 99 repetitions with a defined
significance (a = 0.05). Edges with coefficients > |0.2| were
plotted. The R codes for plots of alpha and beta diversity,
random forest, ROC analysis and network were modified from
the MARco website (40).

The mean and standard error of the mean of continuous
clinical variables were calculated. Wilcoxon rank sum test was
applied for assessing differences (a = 0.05) between the two
groups. Wilcoxon singed rank test was used to test the significant
difference of paired samples, Pearson’s correlation was used to
determine linear relationships between two variables and two-
tailed Fisher’s Exact Test was used for testing significant
differences (a = 0.05) in categorical variables between two
groups. Multivariable linear regression analysis of HbA1c
reduction was done. Selected microbial features and important
clinical variables (P < 0.2) were used for model building. All
variables were checked with diagnostic tests to avoid
multicollinearity. Backward variable elimination was used to
obtain explanatory variables in regression models.
RESULTS

Clinical Characteristics and Treatment
Results
A total of 52 T2D patients treated with either liraglutide (n = 22)
or dulaglutide (n = 30) were enrolled in this study from June, 2019
to Dec, 2020 (Table 1, Supplementary Figure 1), with 34 and 18
patients defined as responders and non-responders, respectively.
January 2022 | Volume 12 | Article 814770

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Tsai et al. Gut Microbiota and GLP-1 Responses
Baseline HbA1c differed between groups (9.9 ± 0.2 and 8.9 ± 0.5%
for responders versus non-responders, respectively; P = 0.012), as
did triglyceride concentrations (356.6 ± 66.3 versus 145.8 ± 14mg/
ml, P = 0.003). Compared to baseline values, HbA1c and BMI
were decreased at week 12 in responders (HbA1c: P < 0.001, BMI:
P = 0.041), whereas in non-responders, there was no change in
these two variables over time (HbA1c: P = 0.267, BMI: P = 0.078)
(Figures 1A, B). Furthermore, at week 12, HbA1c differed in
responders versus non-responders (7.5 ± 0.2 versus 9.1 ± 0.4%, P <
0.001). There were no significant correlations for change of HbA1c
level from baseline and change of BMI for either responders (r =
0.06, P = 0.665) or non-responders (r = 0.31, P = 0.201;
Figure 1C). Estimated calorie intake, macro-nutrients intake
proportion, dulaglutide or liraglutide use, and concurrent
medication were not different between groups (Table 1).

Analysis of Biodiversity and Similarity of
Gut Microbiota Between Groups
Alpha diversity did not differ between responders versus non-
responders, based on observed ASV numbers (P = 0.376)
(Figure 1D) and Shannan index (P = 0.832) (Figure 1E).
However, microbiota composition differed between groups (P =
0.004), with responders and non-responders slightly separated in
the PCoA plot (Figure 1F). The most abundant phylum was
Bacteroidetes (48.1 ± 1.5%); it was the dominant taxa at the
phylum level in most samples (74% in responders and 56% in
non-responders), whereas phylum Firmicutes dominated in other
samples (Figure 2A). The Firmicutes/Bacteroidetes ratio, a
hallmark of obesity, was not different between groups
Frontiers in Endocrinology | www.frontiersin.org 4
(responders: 0.83 ± 0.06, non-responder: 1.07 ± 0.19, P = 0.272;
Figure 2B). Beta diversity was the only macro-metric marker of
microbiota composition that differed between the two groups.

The relative abundance of Bacteroides was profoundly higher
in responders than non-responders (28.5 ± 2.2 and 16.9 ± 2.8%,
respectively; P = 0.003; Figure 2C). However, relative abundance
of other genera known for negative association with T2D were
not significantly different between groups (Faecalibacterium: P =
0.376, Roseburia: P = 0.063, Bifidobacterium: P = 0.563 and
Akkermansia: P = 0.696; Figures 2D–G). At the bacterial genus
level, Bacteroides was the taxa that was both dominant in
abundance and had good discrimination between the
two groups.

Associations Between Gut Microbiota and
Treatment Glycemic Responses
To address the gut microbiota and glycemic control in T2D
patients, the 65 ASVs with differential abundance across subjects
were significantly correlated with their HbA1c reduction ratios.
After applying the random forest algorithm, 17 distinct features
were selected (Figures 3A, B). The 6 updated scientific names
that were adopted for 7 of the distinct features were: Bacteroides
dorei (accession number: NR_041351.1), Roseburia inulinivorans
(accession number: NR_042007.1), Dialister succinatiphilus
(accession number: NR_041666.1), Prevotella copri DSM
18205 (accession number: NR_113411.1), Butyricimonas virosa
(accession number: NR_041691.1) and Mitsuokella multacida
(accession number: NR_027596.1). Among the 17 distinct
features, we identified 9 species, 6 genera, 1 family
TABLE 1 | Clinical characteristics of type 2 diabetic patients receiving GLP-1 RA (baseline).

Responder (n = 34) Non-responder (n = 18) P value

Age (years) 53.8 ± 2.1 51.2 ± 2.8 0.564
Gender (male/female) 22/12 8/10 0.239
Duration of diabetes (years) 10.4 ± 1.0 11.2 ± 1.2 0.589
BMI 30.4 ± 0.8 30.0 ± 1.3 0.570
Fasting plasma glucose (mg/dL) 182.8 ± 11.1 162.7 ± 14.6 0.223
HbA1c (%) 9.9 ± 0.2 8.9 ± 0.5 0.012*
eGFR (mL/min/1.73 m²) 81.0 ± 5.9 97.5 ± 13.7 0.436
UACR 749 ± 337 663 ± 442 0.129
ALT (U/L) 39.8 ± 4.9 37.5 ± 7.8 0.496
Total cholesterol (mg/dL) 191.6 ± 11.7 160.4 ± 7.6 0.100
LDL-cholesterol (mg/dL) 98.3 ± 7.4 94.7 ± 6.5 0.953
HDL-cholesterol (mg/dL) 38.4 ± 2.0 41.6 ± 2.4 0.385
Triglyceride (mg/dL) 356.6 ± 66.3 145.8 ± 14 0.003**
C-peptide (ng/mL) 3.7 ± 0.3 2.7 ± 0.4 0.091
Estimated calorie intake (Kcal/day) 1627 ± 108 1634 ± 135 0.992
Protein (%) 17.7 ± 0.7 17.1 ± 0.8 0.615
Fat (%) 32.4 ± 1.8 31.8 ± 1.7 0.893
Carbohydrate (%) 50.0 ± 2.3 51.1 ± 2.4 0.916
Dietary fiber intake (g/day) 15.8 ± 1 15.3 ± 2 0.435
Dulaglutide/liraglutide 23/11 7/11 0.076
Concurrent medication (use/no-use):
Metformin 30/4 17/1 0.648
Sulphonylurea 14/20 6/12 0.766
Pioglitazone 5/29 1/17 0.412
Insulin 12/22 11/7 0.088
January 2022 | Volume 12 | Article
BMI, body mass index; HbA1c, glycohemoglobin; eGFR, estimated glomerular filtration rate; UACR, urine albumin-to-creatinine ratio; ALT, alanine transaminase; LDL, low-density
lipoprotein; HDL, high-density lipoprotein. Continuous data are shown as mean ± standard error of the mean. Wilcoxon rank sum test/Fisher’s Exact Test, *P < 0.05; **P < 0.01.
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(Ruminococcaceae) and 1 order (Bacteroidales) of taxonomy
levels. The 4 distinct features in positive correlation with
HbA1c reduction were defined as positive microbial signatures,
whereas the 13 distinct features in negative correlation were
defined as negative microbial signatures in GLP-1 RA treatment
of T2D patients. The area under the receiver-operating
characteristic curve (AUROC) of this microbiota-based
classification was 0.96 (Figure 3C). In addition, the discrimination
of traditional predictors including baseline HbA1c and C-peptide
concentrations were also evaluated (AUROC were 0.71 and 0.66,
respectively). Therefore, the significance of the distinct 17 microbial
signatures to indicate a GLP-1 RA glycemic responder or non-
responder was demonstrated.

Prediction Models of GLP-1 RA Glycemic
Responses
A linear regression model of HbA1c reduction was built with the
17 microbial signatures (Model 1) (Table 2). Five ASVs
(Eubacterium coprostanoligenes sp., Dialister succinatiphilus.1,
Mitsuokella sp.2, Ruminococcaceae sp., and Dialister
succinatiphilus.2) were excluded due to high degrees of
collinearity. This model was further adjusted with important
clinical variables including baseline HbA1c concentration,
UACR, total cholesterol and C-peptide (Model 2). Triglyceride
concentration, dulaglutide or liraglutide user and concurrent use
of insulin were excluded due to high degrees of collinearity.
Frontiers in Endocrinology | www.frontiersin.org 5
Model 2 revealed that Bacteroides dorei, Lachnoclostridium sp.,
Mitsuokella multacida in gut microbiota and baseline of HbA1c
in patients were significant indicators for reductions in HbA1c in
T2D patients treated with GLP-1 RA.

Finally, relationships among the 17 microbial signatures were
plotted in a network (Figure 4). Positive microbial signatures had
close and positive interactions, whereas negative microbial
signatures had relatively loose connections in small clusters. In
conclusion, by adjusting for confounding effects of baseline HbA1c
and b-cell function, Bacteroides dorei and Lachnoclostridium sp.
served as representative positive signatures for GLP-1 RA
glycemic responses, whereas Mitsuokella multacida served as a
negative signature.
DISCUSSION

The gut microbiota was investigated in a cohort of T2D patients
with poor glycemic control, features of diabesity, and at risk for
cardiovascular diseases. Participants were regarded as a
population that would benefit from GLP-1 RA therapy;
nevertheless, glycemic responses to treatment were
heterogeneous. Beta diversity in gut microbiota significantly
differed between GLP-1 RA responders and non-responders.
The top 17 microbial signatures correlated to HbA1c reductions
in T2D patients treated with GLP-1 RA were identified and
A B

D E F

C

FIGURE 1 | Therapeutic outcomes and microbiota biodiversity of type 2 diabetic patients receiving GLP-1 RA treatment. (A, B) Responders had significant reductions in
both HbA1c and BMI (P < 0.001 and P = 0.041 respectively, Wilcoxon signed rank tests), whereas non-responders had insignificant changes. Responders had a higher
HbA1c than non-responders at baseline and a lower HbA1c at week 12 (P = 0.012 and P < 0.001 respectively, Wilcoxon rank sum tests). (C) Correlations between the
change from the baseline of HbA1c and BMI in the two groups were not significant (P > 0.05, Pearson’s correlation). (D, E) Similar alpha diversity of the bacterial
microbiota in the two groups, based on observed ASV numbers and Shannon index (P = 0.376 and P = 0.832 respectively, Wilcoxon rank sum tests). The mean
observed ASVs are shown as additional thin lines in boxes. (F) There was a difference in beta diversity between the two groups by PCoA (P = 0.004, ADONIS). Each
point represented each individual, colored according to treatment responses. In all panels: *P < 0.05; **P < 0.01; ***P < 0.001. Groups are responders (R) and non-
responders (Non-R). HbA1c, glycohemoglobin; BMI, body mass index; ASV, amplicon sequence variant; PCoA, principal coordinate analysis.
January 2022 | Volume 12 | Article 814770
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Bacteroides dorei, Lachnoclostridium sp., Mitsuokella multacida
and Prevotella copri were all still remarkable after adjustment with
clinical variables by linear regression model. This was apparently
the first study characterizing impacts of gut microbiota
composition on treatment efficacy of GLP-1 RA.

To analyze gut microbiota in our T2D cases with mild to
moderate gut microbial dysbiosis, Bacteroidetes and Firmicutes
were the dominant phyla, similar to healthy populations (41).
The Firmicutes/Bacteroidetes ratio and alpha diversity were not
associated with drug responsiveness in our T2D patients. These
macro-metric tools often failed to differentiate T2D from healthy
controls, perhaps due to the population heterogenicity of
diabesity (35). The BMI of our cohort was overweight in both
responders and non-responders. Nonetheless, microbial
compositions had significantly different beta diversity,
according to drug responsiveness. As a prominent genus
within the Bacteroidetes phylum, Bacteroides has an important
role in maintaining a healthy gut ecosystem (42) and in this
study, relative abundance of Bacteroides was higher in GLP-1 RA
responders. Conversely, a decrease of genera Bacteroides was a
major observation associated with T2D (18). We inferred that a
GLP-1 RA non-responder with lower relative Bacteroides
abundance may indicate microbial dysbiosis.

Bacteroides dorei and Roseburia inulinivorans, the 2 identified
positive microbial signatures at a species level, may cause
Frontiers in Endocrinology | www.frontiersin.org 6
immunomodulation (43, 44). Bacteroides dorei upregulated
expression of tight junction genes in the colon and reduced
microbial lipopolysaccharide production, thereby reducing gut
permeability, and ameliorating endotoxemia (45). In contrast to
healthy controls, there was a lower abundance of Bacteroides
dorei in patients with coronary artery diseases (46). Roseburia
inulinivorans had butyrate-producing and anti-inflammatory
properties. Butyrate may modulate host energy expenditure by
activating expression of peptide YY and GLP-1 in colonic
epithelial cells (43). Roseburia inulinivorans has also been
reported as a biomarker to discriminate healthy people from
pulmonary tuberculosis patients and to predict remission of
inflammatory bowel diseases (47, 48). In addition, Bacteroides,
Roseburia and Butyricicoccus were reported as genera negatively
associated with obesity and dyslipidemia (49). These findings
were consistent with positive roles of Bacteroides dorei, Roseburia
inulinivorans and Butyricicoccus sp. in GLP-1 RA treatment of
T2D patients in our study.

The genus Prevotella is usually negatively correlated to genus
Bacteroides within the Bacteroidetes phylum (42). Prevotella copri
induces insulin resistance by augmenting circulating
concentrations of branched-chain amino acids (50). The
abundance of Prevotella copri was positively correlated to blood
concentrations of interferon gamma and lipopolysaccharide in
T2D patients (51). Interestingly, Mitsuokella was reported in
A

B D E F GC

FIGURE 2 | Microbiota composition of type 2 diabetic patients receiving GLP-1 RA treatment: responders and non-responders. (A) The barplot is relative
abundance of bacteria at the phylum level. Samples are in a sequence of HbA1c reduction across the x-axis. Bacteroidetes was the dominant taxa in most samples.
(B) The Firmicutes/Bacteroidetes ratio (F/B) was not different between groups. (C) The relative abundance of Bacteroides was higher in responders than non-
responders (**P < 0.01, Wilcoxon rank sum tests). (D, E) No significant difference in relative abundance of Faecalibacterium and Roseburia in both groups. (F, G)
Bifidobacterium and Akkermansia were scarce in both groups. Groups are responders (R) and non-responders (Non-R). HbA1c, glycohemoglobin.
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association with dental infections (52). In a recent large cross-
sectional analysis, both genera Prevotella and Mitsuokella were
reported as trimethylamine-producing bacteria taxa (53).
Trimethylamine N-oxide is closely linked to cardiometabolic
diseases, including atherosclerosis and T2D (54). Therefore,
Prevotella copri and Mitsuokella may be related to pathogenesis
of T2D and its complications.

Some of the negative microbial signatures for GLP-1 RA
treatment in T2D patients might be related to diseases. Four of
six species of the Dialister genus were isolated from oral cavities,
nasopharyngeal secretions and clinical samples and associated
Frontiers in Endocrinology | www.frontiersin.org 7
with dental infections or gastric carcinogenesis (55). Dialister
succinatiphilusis was the first species isolated from human feces,
but the clinical significance remains unclear (56). The Alistipes
genus is isolated primarily from clinical samples and may be
relevant to inflammation and cancer (57). Alistipes obesi was
isolated from the fecal microbiota of an obese French patient
(58). Butyricimonas virosa has caused bacteremia (59), the
Moryella genus may be a biomarker for cervical intraepithelial
lesions (60), and Dialister, Alistipes, Butyricimonas virosa and
Moryella shared common features of pro-inflammatory or
neoplastic diseases.
A

B C

FIGURE 3 | Identification of glycemic response-associated microbial signatures for GLP-1 RA treatment. (A) Based on the heatmap, the log-transformed
abundance of 17 microbial features were significantly correlated with blood glucose reductions. Samples are in a sequence of the HbA1c reduction levels across the
x-axis and 17 microbial features are in a sequence of their correlation coefficient values (P < 0.05, Pearson’s correlation) in the y-axis. Purple grading in a cell
represents the log-transformed abundance of the microbial feature. Responders (R) and non-responders (Non-R) are colored in blue and red, respectively. (B) The
selected 17 distinct features were plotted by their mean decrease accuracy scores, based on random forest model. The higher the value of mean decrease accuracy
score was, the higher importance of the microbial features in the model ranked. (C) The ROC curves illustrate the diagnostic ability of the microbial signatures,
baseline HbA1c and C-peptide (areas under the ROC curves equal to 0.96, 0.71 and 0.66, respectively). HbA1c, glycohemoglobin; ROC, receiver-operating
characteristic.
TABLE 2 | Prediction of HbA1c reductions in type 2 diabetic patients receiving GLP-1 RA.

Model 1 Model 2
B SE P value B SE P value

Bacteroides dorei 0.431 0.125 0.001** 0.397 0.119 0.002**
Lachnoclostridium sp. 0.870 0.228 <0.001*** 0.647 0.202 0.003**
Butyricoccus sp. 1.037 0.456 0.028* NA NA NA
Prevotella copri DSM 18205 -0.566 0.155 0.001** -0.318 0.180 0.086
Bacteroidales sp. -1.184 0.257 <0.001*** NA NA NA
Mitsuokella multacida NA NA NA -0.755 0.264 0.007**
C-peptide NA NA NA 0.151 0.086 0.088
Baseline HbA1c NA NA NA 0.540 0.099 <0.001***
January 202
2 | Volume 12 | Artic
Model 1: microbial signatures only (R square = 0.593); Model 2: adjustment with clinical variables (R square = 0.724). B, regression coefficient; SE, standard error; NA, not applicable;
HbA1c, glycohemoglobin. *P < 0.05; **P < 0.01; ***P < 0.001.
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The increased relative abundance of Bacteroides dorei and
Roseburia inulinivorans may indicate a lower inflammatory
status of GLP-1 RA responders. Fermentation of indigestible
polysaccharides by Roseburia may augment endogenous GLP-1
secretions that promote an incretin effect, and responders might
harbor a favorable environment for GLP-1 action. Conversely,
Prevotella copri, Butyricimonas virosa, Mitsuokella, Dialister,
Alistipes or Moryella may indicate a profound inflammatory
status of non-responders. The microbiota composition directly
reflects human host health and determines therapeutic
efficiency. GLP-1 RA modulates enteric immune responses as
well as gut microbiota in murine models (61). Although humans
have more heterogeneous microbial biodiversity, we inferred
that the beneficial effects of GLP-1 action may have been
obscured in non-responders due to profound dysbiosis and
GLP-1 resistance.

In this study, microbial signatures had potential to serve as
biomarkers for GLP-1 RA treatment response. However, there
were some important limitations: this pilot study was cross-
sectional with a limited scale and clinical confounders were not
perfectly controlled. The early prescription of GLP-1 RA was
restricted by regulations of National Health Insurance in Taiwan,
probably due to the high medical cost. Thus, a small number of
cases were enrolled in this study. Mean serum triglyceride
concentration of responders was affected by outliers in
thousand-level. Users of dulaglutide and liraglutide were
analyzed together because the two agents had similarity in
clinical indication and efficacy, and both were available for
participants to choose. Nonetheless, clinical characteristics and
beta diversity were different between the two subgroups
(Supplementary Table 1 , Supplementary Figure 2).
Dulaglutide users were mostly injection-naïve, whereas nearly
all liraglutide users had used insulin therapy before initiation of
GLP-1 RA. Autoinjector pen or weekly injection might be more
preferred for an injection-naïve patient during a process of
Frontiers in Endocrinology | www.frontiersin.org 8
shared decision making. Dulaglutide users had less severity in
T2D, better glycemic responses, and lower abundances in some
negative microbial signatures (Supplementary Figure 3). In
addition, paired stool samples were collected in another cohort
study to investigate the associations of GLP-1 RA effects and
change of microbiota composition. Preliminary analysis detected
no difference in beta diversity between baseline versus post-
treatment (Supplementary Figure 4) and distinct microbial
features between two drug users (Supplementary Figure 5),
but more data are needed for further interpretation. Because
metformin is known for modulating effects on microbiota, an
analysis with exclusion of non-metformin users was performed.
Most of the distinct microbial features could still be identified in
top 17 rankings (Supplementary Figure 6). Besides, 16S
amplicon rRNA sequencing for bacterial identification has
detection limitations at species or strain levels and some key
microbial features remained unclassified. Furthermore, gut
microbiota may differ across ethnicity and habitat, making our
results unreliable in every population. Nonetheless, gut microbial
signatures for functional phenotyping in T2D patients has merit.
Further prospective trials with shot-gun sequencing should
be done.

In summary, gut microbiota was closely related to
pathophysiology of T2D and GLP-1 resistance in this pilot
study. Microbial compositions of T2D patients were
heterogeneous among individuals. The HbA1c reduction
following GLP-1 RA treatment was related to the gradient of
the gut microbial dysbiosis, as confirmed in our study. The
positive microbial signatures with immunomodulation effects
were dominant in responders, whereas negative microbial
signatures with pro-inflammatory properties were dominant in
non-responders. Gut microbial signatures may not only predict
GLP-1 RA efficacy but also reflect severity of T2D. Therefore,
T2D management should emphasize promotion and
maintenance of gut health.
FIGURE 4 | SparCC network of glycemic response-associated microbial signatures for GLP-1 RA treatment. The 17 distinct features with either positive correlation
(green nodes) or negative correlation (orange nodes) to blood glucose reduction show co-occurrence (blue edges) or co-exclusion (red edges) between others in
relationships. The 6 features remained in linear regression (LR) models are shown as deep color nodes. The size of a node is directly correlated to the respective
abundance of microbial feature. The magnitude of the correlation is expressed as the inverse length of the respective edge. An absolute correlation magnitude < 0.2
(SparCC correlation) is presented in dotted edges.
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