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Abstract: The presented paper scientifically discusses the progressive diagnostics of electrical drives
in robots with sensor support. The AI (artificial intelligence) model proposed by the authors contains
the technical conditions of fuzzy inference rule descriptions for the identification of a robot drive’s
technical condition and a source for the description of linguistic variables. The parameter of drive
diagnostics for a robotized workplace that is proposed here is original and composed of the sum of
vibration acceleration amplitudes ranging from a frequency of 6.3 Hz to 1250 Hz of a one-third-octave
filter. Models of systems for the diagnostics of mechatronic objects in the robotized workplace are
developed based on examples of CNC (Computer Numerical Control) machine diagnostics and
mechatronic modules based on the fuzzy inference system, concluding with a solved example of
the multi-criteria optimization of diagnostic systems. Algorithms for CNC machine diagnostics are
implemented and intended only for research into precisely determined procedures for monitoring
the lifetime of the mentioned mechatronic systems. Sensors for measuring the diagnostic parameters
of CNC machines according to precisely determined measuring chains, together with schemes of
hardware diagnostics for mechatronic systems are proposed.

Keywords: sensors; robotized workplace; algorithm; CNC machine; mechatronic modules; fuzzy
inference; diagnostics; optimization

1. Introduction

Electric drives based on induction machines are currently standard devices for CNC (Computer
Numerical Control) machines and robots. The improvement of the reliability of electrical drives in robots
based on induction machines is an important issue which requires resolution for an autonomous system.
For problem solving, the diagnostics systems of electrical drives are often used [1,2]. Methods for
the diagnostics of induction machines have been discussed in many scientific papers [3,4], as well as
progress in the techniques of induction machine diagnosis [5].

Generally, fault diagnosis techniques can be categorized into three main types in accordance with
the diagnostic procedures: model-based, signal-based and data-based [6]. Signal processing is an
indispensable part of these techniques because the purpose of signal processing is to discover fault
signatures from the measured data from machinery in operation [7].

Various IT (information technologies) techniques are increasingly being used for this purpose.
Modern information technologies such as data mining [8,9], machine learning [10,11] or neural
networks [12] are used very intensively in various social areas and industries. In our paper, we use
fuzzy logic techniques from modern IT.

Similarly, the fuzzy method was used by the authors in [13] to diagnose bearings during operation.
They stated that, due to the complicated mechanical assemblies, the diagnosis of progressive failures
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was very difficult. Similarly to our article, these authors introduced the fuzzy rule, which they
based on the classification of bearing failures by the clustering method by fuzzy C-means using
vibration measurements. In order to detect early bearing disturbances, various statistical features
were extracted from this distributed signal of each frequency band. Based on the extracted functions,
the fuzzy C-means clustering (FCM) method of fault classification was developed using appropriate
member functions, and the basis of fuzzy rules was developed for each tired bearing failure using the
marked data.

The diagnosis of rolling bearing failures is considered in [14]. In this paper, a new bearing fault
diagnosis method was proposed based on structural feature selection. In contrast to most common
fault diagnosis methods, the proposed method transfers the problem of fault diagnosis into a new
multi-objective 0–1 programming problem and then uses the MOPSO (multi-objective particle swarm
optimization) algorithm to exploit the structural relationship among heterogeneous fault features.

In [15], the authors presented the machine learning technique as a promising tool for the early
detection of rolling bearing failure. To solve the problems of false alarms and thus increase the reliability
of the detection results, a robust method of early bearing failure detection based on learning of deep
transmission was proposed. By training the classifier of supporting vector machines (SVMs), a detection
model was created. In the online phase, together with a successive batch of data, the properties of the
target deposit were extracted using a common representation obtained in the offline stage and online
detection was performed by inserting them into the SVM model. Experimental results showed that the
proposed approach improves upon several state-of-the-art detection methods in terms of detection
accuracy and false alarm rate.

The authors of the work presented in [16] considered the problem of the left inversion of switched
linear systems from the point of view of diagnostics. They used an integrated fuzzy logic system (FLS)
that is capable of detecting and isolating abrupt faults which occur in the system.

In [17], a supra-system implementation was proposed to generate an optimized fault diagnostic
system. The proposed supra-system is based on the exhaustive comparison of different combinations of
fault diagnostic methods and optimized expert systems. It was applied with success to the generation of
an expert system for the detection of broken bars, both in a steady-state regime and in a transient state.

The application of artificial intelligence is popular in modern electric drive diagnostics [18,19];
neural networks have even been applied in electrical drive diagnostics [20,21]. Fuzzy logic is currently
one of the most popular and progressive techniques for these types of diagnostics and is considered by
the authors in [22]. It is necessary to measure diagnostic parameters by sensors in order to perform
robot drive diagnostics.

Sensors and sensor systems are used in many industries and have many applications. At present,
this does not involve the application of a single sensor but the creation of a system of cooperating
sensors. For accuracy with a specific focus, mathematical representations and models for imaging and
virtualization are created for this kind of sensory system. The authors in [23] presented a new approach
to LiDAR (light detection and ranging) modeling in a virtual test environment, where the sensor was
replaced by a sensor model for the development and validation of reliable environmental perception
systems for automated driving functions. To determine the properties of materials, the authors in [24]
used a shear stress sensor system consisting of distributed embedded piezoelectric polymer films.
The shear stress sensing model was mathematically created. This sensor system could visualize the
shear strain field and was sensitive to different contact conditions. The authors in [25] described a
radar sensor system for automotive vehicles to address the classification of vehicles and pedestrians
with an imbalance class with limited experimental radar data available in an automotive radar
sensor. The authors in [26] highlighted the fact that each sensor can fail, and therefore it is not
recommended to rely on one sensor. The practical solution is to incorporate several competitive and
complementary sensors that work synergistically to overcome their shortcomings. The authors in [27]
discussed a classification system to evaluate the performance of athletes, with the possibility of a
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better understanding of the similarity and difference between sports in the case of wheelchair users,
where several sensors were used, with one on each wheel axle and one on the frame camber bar.

Another example of the use of sensors concerns applications in buildings. In [28], a methodology
was proposed that includes a two-stage approach to improve the use of sensor data for a specific
building. When a certain error is reached, the forecasting algorithm (Artificial Neural Network or K
Nearest Neighbors) is trained with the most recent data instead of training the algorithm every time.
Data collection is provided by a prototype of agent-based sensors.

In [29], the authors stated that inertial motion capture relies on accurate sensor-to-segment
calibration. These are cases in which two segments are connected by a hinge joint—for example,
in human knee or finger joints as well as in many robotic limbs and thus the joint axis vector must be
identified in the intrinsic sensor coordinate systems.

The subject of diagnostics of CNC machines, including robots and their drives, is relevant,
and many works have been devoted to its investigation [30,31].

For the purposes of this research, a logical–linguistic model of electrical drive diagnostics was
developed. The model is based on fuzzy logic, which deals with the technical condition analysis of an
electrical drive. A method for the vibration measurement of an electrical drive was also presented.
The integrated parameter, which is defined as the sum of amplitudes of the vibration acceleration
of an electrical drive in each of the frequency ranges of a one-third-octave filter, was suggested [32].
The results of the experimental case studies of a robotized CNC workplace are also demonstrated.

The scientific novelty of the research lies in the use of a new diagnostic parameter—the amount of
amplitude of vibro-acceleration in the frequency range of 6.3 Hz to 1250 Hz for a one-third-octave
filter, which allows the improvement of the accuracy of diagnosis of electric drives of robots and
CNC machine tools. In addition, the fuzzy logic rules use a technological criterion—the speed of
movement of the robot’s links or machine mechanisms, which also affects the accuracy of the results
of the diagnosis. A new criterion for optimizing the continuous diagnostic process was proposed,
combining the importance (responsibility) of the node in CNC machine tools or robots and the speed
at which degradation processes occur.

2. The Logical–Linguistic Model of Electrical Drive Diagnostics

The control system of the electric drive used in this research is a fuzzy proportional integral
derivative (PID) and is considered to correspond to fuzzy inference. The mentioned inference is based
on the MATLAB Fuzzy Inference System Editor with the Fuzzy Logic Controller toolbox. The control
and diagnostic systems can be integrated by using a unified approach to fuzzy logic. The system for
diagnostics considers the electrical drive’s features, sensors and modes, and the system for control
considers the state of the robot’s drive.

The diagnostics parameters of the robot’s electrical drives acquired by its sensors may include
noise, vibration, temperature, electric current and the electromagnetic field. Experiments led to the
conclusion that noise cannot be used as a diagnostics parameter because of the amount of noise in the
workplace. The temperature of an electrical drive was also not accepted as a diagnostic parameter,
because it strongly depends on the temperature of the surroundings within the workshop and is
therefore different in various seasons of the year. The electromagnetic field was represented by the
sum of the electromagnetic fields of surrounding electrical drives. Thus, the electromagnetic field also
cannot be considered for the diagnostics of electrical drives [33].

In the case of the application of frequency inverters within a power electronic subsystem, negative
effects that are generated in the subsystem need to be considered. The negative effects are generated as
electromagnetic interference, i.e., electromagnetic emissions of low and high frequency.

The monitoring of the technical condition of a robot’s electrical drive is based on a newly
developed logical–linguistic model for the diagnostics of electric drives [34]. Equation (1) represents
the developed model:

Z = F(X, D, T) (1)
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where Z is the actual technical state of a robot’s drive, X is the parameter of integral diagnostics, D is
the trend of integral diagnostic parameters and T is the lifetime of a gear motor.

X =
∑

xi, (2)

where xi represents the vibration acceleration amplitude of an electrical drive including all frequency
bands of the one-third-octave filter.

D = G(∆X, t), (3)

where ∆X represents the change of the integral diagnostic parameter over time t. The diagnostics model
was modeled in the Fuzzy Logic Toolbox package of the MATLAB application. The fuzzy inference
system of the electrical drive‘s technical condition evaluation was implemented during the research
with three linguistic variables input into the base of the Mamdani-type fuzzy knowledge. The variables
are defined as X, D and t. Three terms are applied in every linguistic variable: H—high-value level,
M—medium-value level and L—low-value level.

3. Results

3.1. The Algorithm for the Determination of the Electrical Drives’ Technical State in a Robotized Workplace

Step 1. Set or correct the initial data (matrix R of binary relations between the values of the
output parameters B (diagnostic parameters) and the values of the input parameters A (technical
condition) [35,36]. The diagram of the impact of defects on diagnostic parameters is shown in
Figure 1 [37].

Figure 1. Diagram of the impact of defects on diagnostic parameters.

Step 2. Enter the measured diagnostic parameters—vector B.
Step 3. Find vector “A” (presence of errors) to solve the system of equations B = A◦R, where the

disjunction is replaced by a maximum and the conjunction is replaced by a minimum.
Step 4. Obtain solution “A” in the form of an interval in which the boundaries define the minimum

and maximum solutions.
b1 = (r11 ∧ a1)∨ (r12 ∧ a2)∨ (r1m ∧ am), (4)

bn = (rn1 ∧ a1)∨ (rn2 ∧ a2)∨ (rnm ∧ am) (5)

Step 5. Obtain solution “A” in the form of an interval in which the boundaries define the minimum
and maximum solutions.
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3.2. Diagnostics of Mechatronic Modules in a Robotized Workplace

To research and develop a system for diagnosing mechatronic modules (MMs), MM errors are
detected, and patterns between errors, modes of operation and diagnostic parameters are analyzed.
Based on these laws, the fuzzy logic rules base is established to determine the technical state of the MM.

The allocation of the measured diagnostic parameters ranges in value from −1 to 1. The diagnostic
parameters and movement speed fuzzification are consistently performed using the member function
of the Gaussian curve. Three terms are defined for every value of the diagnostic parameter and speed,
which are equally divided in the range of −1 to 1. The fuzzy rule conclusions are constructed as
conditional operators with weights/scales for every rule. The output quantity is determined by the
numerical integration, where a technical state level of −1 shows a good technical state (without errors),
0 shows small errors and 1 shows significant errors in MM. To create rules for fuzzy inference, a table
is created in which the logical operations between the input parameters are AND operations. Table 1
gives an example of the three diagnostic parameters and speed [38].

Table 1. Defect dependence on MDM (mechatronic dynamic modul) parameters and speed.

No Conditions Temperature Vibration Current Speed Defect Appearance

1. L L L H L
2. M M M M M
3. H H H L H

Terms for the current technical state of mechatronic modules (MMs): L—defect-free; M—with small defects; H—with
significant defects.

Figures 2–4 show the examples of the model and simulation results at various speed limits.

Figure 2. Cont.
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Figure 2. Model of fuzzy inference system for diagnostics and simulation results.

In Figures 2a,b and 3a,b, in the vertical axes, a value of−1 corresponds to the minimum value of the
diagnostic parameter and a value of +1 corresponds to the maximum value of the diagnostic parameter.
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Figure 3. Model of the system for diagnosing fuzzy inference and results of simulation at medium speed.
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Figure 4. Fuzzy derivation of model rules in the absence of defects and with minor defects.

The block diagram of an intelligent MM with a self-diagnostic subsystem is shown in Figure 5.

Figure 5. The block diagram of an intelligent MM with a self-diagnostic subsystem.

If the MM state is defect-free, then the monitoring is performed using the fuzzy PID controller.
The fuzzification is performed for a fuzzy PID controller by the integral, proportional and differential
components of the mismatch error using the fuzzy sets. If the MDM (mechatronic dynamic modul) has
been defected, then during the performance of the operation, the degree of developed errors will be
considered and a forecast of the possibility of meeting the control objective will be created. Information
obtained in our research about defects is transmitted to the operator and to a higher level of control.
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3.3. Hardware for Diagnosing Robotic Mechatronic Systems

Robotic mechatronic systems must be competitive in terms of quality and cost. This imposes certain
limitations on the hardware and software of the diagnostic system. Depending on the organization’s
diagnostic method, hardware diagnostic models for mechatronic systems (MSs) are grouped into three
groups: parallel, sequential and combined. In a parallel array, the collection and processing of sensor
information and the technical state decision of the MS are made in parallel with the computing devices
found in each mechatronic module [39]. The computing devices can be microcontrollers or digital
signal processors that transmit the solution results to the local MS network.

A CNC or PC can be connected to the LAN (local area network). Sensors are located at the point
at which diagnostic signals are generated. Figure 6 describes a scheme of the parallel diagnostic device.
With the MS Diagnostic Sequence Organization, the collection and processing of sensor information and
technical status decisions are made using a single computing device, which may be a microcontroller,
digital signal processor or industrial computer [40,41]. In the research laboratory, the sensors are
located at the point at which diagnostic signals are generated. A scheme of the serial diagnostics of the
device is shown in Figure 7. A scheme of the combined diagnostics of the device is shown in Figure 8.

Figure 6. Parallel diagnosis device scheme for PC or CNC: Computer Numerical Control.
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Figure 7. Serial diagnosis device scheme.

Figure 8. Combined diagnosis device scheme.

The following novel algorithm was designed for the construction of devices for the diagnostics of
mechatronic systems, consisting of a sequence of the following steps:

1. Decomposition of mechatronic systems into modules, nodes and elements;
2. Determination of diagnostic parameters in modules, nodes and elements;
3. Selection of sensors to measure diagnostic parameters;
4. Selection of diagnostic intervals.
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The algorithm for the construction of MS diagnostic systems is considered based on the example
of a researched robotized workplace: a CNC machine. A CNC machine, such as MS, consists of
mechanical, electrical, electromechanical and electronic subsystems and CNC equipment; there are
also hydraulic and pneumatic subsystems [42].

3.4. Decomposition of CNC Machine into Modules, Nodes and Elements

The mechanical subsystem used for the scientific research laboratory consisted of the following
components: bearings, caliper, trolley; ball screws; gears, belt drives; spindle units, drive shafts;
speed and feed boxes; cooling systems, lubricants; bearings; tool changers; cutting tools; and other parts.
The electrical and electromechanical subsystems included the following components: main propulsion
engines, power drives, electrical enclosures with electrical equipment and other subsystem elements.
The CNC included the following components: drive control systems and feedback sensors.

3.5. Definition of Diagnostic Parameters in Modules, Nodes and CNC Machine Elements

Some diagnostic objects are required by CNC lathes and their diagnostic parameters. Table 2
shows some diagnostic parameters given by the research conditions for modules, components and
elements of CNC machines [43].

Table 2. Diagnostic parameters for modules, components and elements of CNC machines.

No Module, Node, CNC
Machine Element Diagnostical Parameters

1. Supporting frame of tools Temperature, motion parameters, power parameters, time intervals,
spatial position accuracy

2. Helical gears Temperature, motion parameters, power parameters
3. Gears Vibration, dynamic parameters
4. Belt drives Vibration, dynamic parameters
5. Spindle units Temperature, vibration, motion parameters, spatial position accuracy
6. Bearings Temperature, vibration, accuracy of spatial positions
7. Tool holder or tool changer Temperature, vibration, motion parameters, spatial position accuracy
8. Cutting tools Temperature, vibration, accuracy of spatial positions, power parameters
9. Electromotor Current, voltage, power, temperature, vibration, movement parameters

10. Drive control systems Current, voltage, power, temperature
11. Sensors Motion parameters, time intervals
12. Poppet head Temperature, spatial accuracy

3.6. Selection of Sensors to Measure Diagnostic Parameters

When selecting a sensor to measure a diagnostic parameter, it is necessary to take into account
the measurement range, the operating conditions of the object during research measurement and
availability of measurement techniques. In this case, the measurement range of the diagnostic
tools should ensure the registration of the minimum and maximum (limit) values of the diagnostic
parameters. The sensor measurement error should be 1–2%. If possible, all sensors—especially
vibration and temperature sensors—should be installed in the immediate vicinity of the diagnosed
object [44]. The presence of embedded sensors in machine elements and components is ideal, such as
position, angular velocity, temperature and vibration sensors; furthermore, a microcontroller is used to
convert information to a digital form and perform processing and transfer to other controllers which
are built into mechatronic bearings. Table 3 provides diagnostic parameters and the sensors used for
their measurement.
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Table 3. Diagnostic parameters for modules, components and elements of CNC machines and sensors
for their measurement.

No Diagnostical Parameters Sensors

1. Electrical current Current sensors up to 50 A, operating frequency 0–25 kHz, Sensor range 0–50 A
2. Electrical voltage Voltage sensors 10–500 V, operating frequency 0–25 kHz, Sensor range 0–500 V
3. Power Power sensors 0.5–20 kW, operating frequency 0–25 kHz, Dynamic range 90 dB
4. Temperature Temperature sensors 0–150 ◦C
5. Motion parameters Accelerometers ± 2 g, encoders 10,000 pulses/rotation, Sensor range 0–10 m/s
6. Performance parameters Tensile force sensors up to 10 Kn, Sensor range 0–10 Kn
7. Time intervals Timers in the controller, Sensor range 0.1 ms–1 s
8. Vibration Accelerometers ± 2 g, operating frequency 1–25 kHz, Sensor range 0–2 g
9. Spatial position accuracy Encoders 10,000 pulses/rotation, Sensor range 1–10,000 pulses/rotation

3.7. Selection of Diagnostic Intervals

The order of analysis of diagnostic parameters depends on the level of responsibility of functional
elements of MS, on the time of their diagnosis and on the probability of the appearance of defects
therein. For example, in practice, the alignment of the functional element diagnostics sequence occurs
in increasing order of the ratio of the time required to diagnose the functional element to the probability
of failure of the functional element. The diagnostics interval of functional elements depends on the
degree of responsibility of the mechatronic module, the node, the MS element and the speed of the
degradation processes. For scientific research and analysis, a general criterion, Ki, is proposed which
refers to the level of responsibility of the i-th mechatronic module, the node, the MS element and the
rate of flow of degradation processes, calculated as

K = Kotv + Kdegr, (6)

where Kotv is the i-th element’s responsibility coefficient, ranging from 0 to 0.5 (0.5 is the maximum
degree of responsibility), and the Kdegr coefficient characterizes the flow rate of degradation processes
of the i-th functional element, which ranges from 0 to 0.5 (0.5 is the maximum flow rate of degradation
processes). A high Ki value means that more critical modules, nodes and elements with a high degree
of degradation processes should be diagnosed more frequently. The above factors are determined
by the expert estimation method. The approximate values of the coefficients are shown in matrix K.
The columns in the matrix are arranged in order of increasing rate of the degradation of functional
elements (the first column corresponds to a slow degradation rate of the object of diagnosis, while the
third column is high). The rows in the matrix are arranged to increase the responsibility of the
functional elements:

K =

0.1 . . . 0.3 0.4 . . . 0.6 0.7 . . . 1.0
0.2 . . . 0.4 0.4 . . . 0.6 0.6 . . . 0.8
0.4 . . . 0.6 0.6 . . . 0.8 0.8 . . . 1.0

, (7)

The diagnostic interval T is calculated according to the formula:

T =
TC
Ki

, (8)

where TC is the time of the diagnostic cycle determined by the hardware and software capabilities
of the diagnostic equipment and Ki is a common criterion. Table 4 lists the diagnostic criteria and
intervals for modules, components and elements of CNC machines.



Sensors 2020, 20, 4429 13 of 19

Table 4. Criteria and intervals for diagnostics of modules, nodes and elements of CNC machines.

No Module, Node, Element Kotv Kdegr Ki Ti k × Tmin

1. Setting and wiring 0.5 0.1 0.6 1.67 1.5Tmin
2. Ball helix 0.4 0.2 0.6 1.67 1.5Tmin
3. Cog-wheel 0.2 0.3 0.5 2.00 1.8Tmin
4. Belt gears 0.2 0.3 0.5 2.00 1.8Tmin
5. Spindle units 0.4 0.3 0.7 1.43 1.3Tmin
6. Bearing 0.3 0.3 0.6 1.67 1.5Tmin
7. Tool holder or tool changer 0.2 0.2 0.4 2.50 2.3Tmin
8. Cutting tool 0.4 0.5 0.9 1.11 1.00Tmin
9. Electric motors 0.2 0.3 0.5 2.00 1.8Tmin
10 Drive control systems 0.2 0.2 0.4 2.50 2.3Tmin
11 Sensors 0.5 0.3 0.8 1.25 1.1Tmin
12. Poppet head 0.1 0.2 0.3 3.33 3.0Tmin

Diagnostic intervals are calculated in the last column of Table 4, where Tmin is the minimum
diagnostic interval. We calculated the sum of diagnostic intervals for modules, components,
and elements of CNC machines. According to our original methodology for this research in our
example, the sum of diagnostic intervals is 20.9Tmin. The multiplicity of the diagnostic intervals is
then calculated by dividing the sum by k × Tmin. The minimum multiplicity is 7.0 and the relative
multiplicity is calculated; all values are divided by the minimum multiplicity of 7.0. For practical
implementation, the relative multiplicity is rounded to integers. Table 5 shows the frequency of
intervals for diagnostics of modules, nodes and elements of CNC machines [45].

Table 5. Frequency of intervals for diagnostics of modules, nodes and elements of CNC machines.

No Module, Node, Element Failure
Rate

Relative
Failure Rate

Average
Failure Rate

1. Setting, slide 13.9 2.0 2
2. Ball helix 13.9 2.0 2
3. Cog-wheel 11.6 1.7 2
4. Belt gears 11.6 1.7 2
5. Spindle units 16.1 2.3 2
6. Bearing 13.9 2.0 2
7. Tool holder or tool changer 9.1 1.3 1
8. Cutting tool 20.9 3.0 3
9. Electric motors 11.6 1.7 2

10. Drive control systems 9.1 1.3 1
11. Sensors 19.0 2.7 3
12. Poppet head 7.0 1.0 1

For one diagnostic cycle, it is therefore necessary to diagnose, for example, the setting and slides
twice, the cutting tool three times and the poppet head once. As an example, we propose a sequence of
diagnostic modules, components and elements of CNC machines as follows: 8, 11, 1, 2, 3, 4, 5, 8, 11, 6,
7, 9, 1, 2, 3, 8, 11, 4, 5, 6, 9, 10, and 12.

3.8. Multicriterial Optimization of Diagnostic Systems

To solve the optimization of the MS diagnosticsS process problem, the selection of criteria
for optimizing the MS diagnostic devices is necessary. This selection is a relatively complex task,
given the need to take into account many factors with varying degrees of significance at the same time.
A generalized criterion of the optimality of MS diagnostic equipment is defined as the functionality of
economic, organizational, technological and technical criteria:

Y = (XE, XOT, XT), (9)



Sensors 2020, 20, 4429 14 of 19

where Y is the general optimality criterion of MC, XE is the economic criteria, XOT is the organizational
and technical criteria and XT is the technical criteria.

Economic criteria include accident losses, maintenance and repair costs, scrap volume especially
in the manufacture of expensive products use of working time (readiness factor), diagnostic costs, etc.
It is clear that the above economic criteria should be optimized.

Optimization according to economic criteria is therefore also multi-criteria-based. In the presented
research, the economic criterion of optimality—the economic efficiency of using a diagnostic system is
defined as the functionality of private economic criteria:

XE = F(X1, X2, . . . , XN), (10)

where Xi is the subjective economic criteria.
The economic criteria are calculated as the difference in costs of operating the MS without using

diagnostic equipment and for operating MS using diagnostic equipment. For example, the economic
results of the use of diagnostic systems can be determined by the capital investment efficiency ratio,
which expresses the annual savings from the use of diagnostics:

E =
C1 −C2

(K1 −K2)
(11)

where C1 and C2 are the primary costs of annual production without the diagnosis and with the
diagnosis of the MS condition, and K1 and K2 are the capital expenditures for the production of the
annual production of components without the use of the diagnostic system and with diagnostics of the
MS condition.

As an example of the selection of organizational and technical criteria, the definition of the
time interval is considered for the diagnosis of functional elements depending on the degree of
responsibility of the mechatronic module, the node, the MS element and the rate of degradation
processes [46,47]. The degradation process refers to depreciation and element destruction, the loss of
precision, performance degradation, accumulation of defects, etc. Table 6 shows the feasibility of using
diagnostic systems.

Table 6. Possibility of using diagnostic systems.

Accident Cost
(Destruction)

Slow Rate of Degradation
Object of Diagnosis

Average Rate of
Degradation Object of
Diagnosis

High Degree of
Degradation or Sudden
Departure of the Subject of
Diagnosis

Significant
accident costs
(destruction)

Portable diagnostic devices
Kotv = 0.1,
Kdegr = 0.1

Portable diagnostic devices
Kotv = 0.1,
Kdegr = 0.5

Stationary diagnostic devices
Kotv = 0.1,
Kdegr = 0.9

Average cost of
accident
consequences
(destruction)

Portable diagnostic devices
Kotv = 0.5,
Kdegr = 0.1

Stationary diagnostic
systems
Kotv = 0.5,
Kdegr = 0.5

Continuous protection and
diagnostics systems
Kotv = 0.5,
Kdegr = 0.9

High accident
costs
(destruction)

Stationary diagnostic systems
Kotv = 0.9,
Kdegr = 0.1

Continuous protection and
diagnostics systems
Kotv = 0.9,
Kdegr = 0.5

Continuous protection and
diagnostics systems
Kotv = 0.9,
Kdegr = 0.9

A slow rate of degradation of the object of diagnosis is determined by a slow process that causes
damage over months or years. The average rate of degradation of an object of diagnosis is determined
by processes that cause damage in minutes or hours [48]. During our research, it was found that a
high speed or sudden departure of the object of diagnosis is determined by rapid processes that cause
damage in seconds or a fraction of a second.
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Table 7 shows the feasibility of using diagnostic systems and types of MS maintenance depending
on the type of equipment.

Table 7. Possibility of using diagnostic systems and types of mechatronic system (MS) maintenance.

Type of Device Possibility of using MS
Diagnostic Systems Types of MS Service Type of Device

Auxiliary, duplicated,
periodically
used equipment

Diagnostic and periodic
diagnostics are not required
for portable diagnostic devices

Repairs
Auxiliary, duplicated,
periodically
used equipment

Relevant main equipment Portable diagnostic equipment,
stationary diagnostic systems

Service according to
the
technical condition

Relevant
main equipment

One highly
responsible device

System of continuous
protection and diagnostics

Maintenance,
continuous
protection

One highly
responsible device

The consequences of an accident (destruction) are the main factor determining the feasibility of
the use, form and content of the diagnostic system. Another factor is the downtime or availability of
spare parts.

4. Discussion

The most important prospects for the development of automated technology systems are as follows:

• Intellectualization;
• Increased reliability;
• Modular design.

Through our scientific research methodology, and after many analyses, it was revealed that
the diagnostics of technological systems, such as robotized workplaces, increases their level of
intellectualization and reliability. The current states of algorithms and software products for automated
diagnostic systems reveal a tendency to create diagnostic programs based on modular artificial
intelligence methods. The analysis of diagnostic equipment for technology systems has shown
that, in the development of small diagnostic devices based on a microcontroller or processor for
processing digital signals with excellent computational capabilities and a standard operating system for
express-diagnostics that have a connection to an in-depth diagnostics server, the trends in diagnostics
are calculated as parameters, the residual lifetime of mechatronic systems and data archiving [49,50].

The research in this field has focused on the spectrum of rolling bearing signals with artificially
created damage to the outer ring in the form of transverse grooves. Defects of this type are reflected
in the spectrum as peaks in the high-frequency region. When comparing the spectrum of a bearing
without a defect and with a defect, it can be observed that the spectrum of a bearing with a defect
increases the total vibration level by 0.7–0.8 V, while there are wide peaks at 250 Hz, which correspond
to the rolling frequency of rolling elements on the outside ring, and 340 Hz, which correspond to the
rolling frequency of the rolling elements on the inner ring.

The presence of errors increases the amplitude by an average of 0.75 V across the frequency
spectrum. The vibration level increases by 1.5–2 V at the rotational frequencies of the rolling elements
on both the outer ring and the inner ring, while under radial loading, the amplitude increases at
the rotor speed. The generated vibration peaks appear even at the frequency of a 50 Hz rotation of
the separator.

In our research, neural network modeling was performed in the MATLAB software product (by
MathWorks, Natick, USA). The input data in all examples are presented in the form of a two-dimensional
vector, including the frequency and the corresponding amplitude:
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• The rotational frequencies of the monitored mechatronic system,
• The frequency of the noise of the balls on the outer ring,
• The noise frequency on the inner ring,
• The frequency of rotation of the bearing rolling elements.

In this work, we used a new diagnostic parameter, which was calculated as the sum of the
amplitude of the vibrating range from a frequency of 6.3 Hz to 1250 Hz for a one-third-octave filter.
As a result, the accuracy of diagnosing the robot’s electric drives and machines was improved. Based on
the rules of fuzzy logic, a technological criterion was used, such as the speed of movement of the robot’s
links or machine mechanisms, which also led to an increase in the accuracy of the diagnostic results.
The continuous process of diagnosing a machine or robot was optimized on the basis of a criterion
combining the responsibility of the units and the speed at which the degradation processes occurred.

Continuous diagnostic systems are recommended for diagnosing the critical propulsion of
technological systems, accidents that can lead to human casualties, technological disasters or significant
economic damage. It should be noted that diagnosis is conditional on the use of types of sensors that
are capable of measuring both electrical and non-electrical quantities.

The article also presents electric drives based on induction machine one of the types of electric
motors. During the development of a logical–linguistic model for the diagnostics of electric drivers
with sensor support, it was also confirmed that, thanks to its good performance and the development
of microprocessor control, this method will quickly gain popularity. The article discusses the strategy
of using sensors for tracking diagnostics with the aim of phasifying torque irregularities in the electrical
drives of CNC machines and robots. The sensor system works based on the position of the robot rotor
or CNC machine. Thus, engine failures and diagnostic parameters are analyzed from the point of view
of the programmed technological process. A mathematic model for electric engine diagnostics and its
implementation in MATLAB software based on fuzzy logic is presented.

5. Conclusions

The following conclusions can be drawn from our work:

(1) A new diagnostic parameter has been used, which was calculated as the sum of the amplitude of
a vibrating range from a frequency of 6.3 Hz to 1250 Hz for a one-third-octave filter;

(2) Technological criteria for fuzzy logic rules were used, such as the speed of movement of the
robot’s links or machine mechanisms;

(3) Both new approaches have led to improved accuracy regarding the results of the diagnosis of
electric drives for robots and CNC machines;

(4) The continuous process of diagnosing a machine or robot was optimized on the basis of a criterion
combining the responsibility of the units and the speed at which the degradation processes occur.

In future, it will be necessary to expand our research with practical measurements oriented on the
multi-criterial optimization of diagnostic systems.

Author Contributions: Y.N.: conceptualization, data curation, methodology, resources, software, validation,
writing—original draft preparation, visualization. P.B.: conceptualization, data curation, methodology, resources,
software, validation, formal analysis, investigation, writing—original draft preparation, writing—review
and editing, visualization, project administration, funding acquisition. J.P.: methodology, formal analysis,
writing—review and editing, visualization, supervision, project administration, funding acquisition. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by research project VEGA 1/0019/20 “Accurate calculations, modeling and
simulation of new surfaces based on physical causes of machined surfaces and additive technology surfaces in
machinery and robotic machining conditions”.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2020, 20, 4429 17 of 19

References

1. Gandhi, A.; Corrigan, T.; Parsa, L. Recent advances in modeling and online detection of stator interturn
faults in electrical motors. IEEE Trans. Ind. Electron. 2011, 58, 1564–1575. [CrossRef]

2. Henao, H. Trends in fault diagnosis for electrical machines. IEEE Ind. Electron. Mag. 2014, 8, 31–42. [CrossRef]
3. Riera-Guasp, M.; Antonino-Daviu, J.A.; Capolino, G.A. Advances in Electrical Machine, Power Electronic,

and Drive Condition Monitoring and Fault Detection: State of the Art. IEEE Trans. Ind. Electron. 2015,
62, 1746–1759. [CrossRef]

4. Filippetti, F.; Bellini, A.; Capolino, A. Condition monitoring and diagnosis of rotor faults in induction
machines: State of art and future perspectives. In Proceedings of the 2013 IEEE Workshop on Electrical
Machines Design, Control and Diagnosis (WEMDCD), Paris, France, 11–12 March 2013; pp. 196–209.

5. Capolino, A.; Antonino-Daviu, J.A.; Riera-Guasp, M. Modern Diagnostics Techniques for Electrical Machines,
Power Electronics, and Drives. Ind. Electron. 2015, 62, 1738–1745. [CrossRef]

6. Bellini, A.; Filippetti, F.; Tassoni, C.; Capolino, G.-A. Advances in diagnostic techniques for induction
machines. IEEE Trans. Ind. Electron. 2008, 55, 4109–4126. [CrossRef]

7. Han, H.; Cho, S.; Kwon, S.; Cho, S.-B. Fault Diagnosis Using Improved Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise and Power-Based Intrinsic Mode Function Selection Algorithm.
Electronics 2018, 7, 16. [CrossRef]

8. Peterkova, A.; Michalconok, G.; Nemeth, M.; Bohm, A. Using data mining methods for identification
relationships between medical parameter. In Proceedings of the 2017 IEEE 21st International Conference on
Intelligent Engineering Systems (INES), Larnaca, Cyprus, 20–23 October 2017; pp. 49–54.

9. Nemeth, M.; Peterkova, A. Proposal of data acquisition method for industrial processes in automotive
industry for data analysis according to Industry 4.0. In Proceedings of the 2018 IEEE 22nd International
Conference on Intelligent Engineering Systems (INES), Las Palmas de Gran Canaria, Spain, 21–23 June 2018;
pp. 157–161.

10. Peterkova, A.; Nemeth, M.; Bohm, A. Overview and comparison of machine learning methods to build
classification model for prediction of categorical outcome based on medical data. Adv. Intell. Syst. Comput.
2018, 661, 216–224.

11. Peterkova, A.; Nemeth, M.; Michalconok, G.; Bohm, A. Computing importance value of medical data
parameters in classification tasks and its evaluation using machine learning methods. In Computer Science
On-line Conference; Springer: Cham, Switzerland, 2019; Volume 763, pp. 397–405.

12. Peterkova, A.; Nemeth, M.; Bohm, A. Computing missing values using neural networks in medical field.
In Proceedings of the 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES),
Las Palmas de Gran Canaria, Spain, 21–23 June 2018; pp. 151–154.

13. Anbu, S.; Thangavelu, A.; Ashok, D. Fuzzy C-Means Based Clustering and Rule Formation Approach for
Classification of Bearing Faults Using Discrete Wavelet Transform. Computation 2019, 7, 54. [CrossRef]

14. Mao, W.; Wang, L.; Feng, N. A New Fault Diagnosis Method of Bearings Based on Structural Feature Selection.
Electronics 2019, 8, 1406. [CrossRef]

15. Mao, W.; Zhang, D.; Tian, S.; Tang, J. Robust Detection of Bearing Early Fault Based on Deep Transfer
Learning. Electronics 2020, 9, 323. [CrossRef]

16. Silveira, A.-M.; Araújo, R.-E. Inversion-Based Approach for Detection and Isolation of Faults in Switched
Linear Systems. Electronics 2020, 9, 561. [CrossRef]

17. Burriel-Valencia, J.; Puche-Panadero, R.; Martinez-Roman, J.; Sapena-Bano, A.; Pineda-Sanchez, M.;
Perez-Cruz, J.; Riera-Guasp, M. Automatic Fault Diagnostic System for Induction Motors under Transient
Regime Optimized with Expert Systems. Electronics 2019, 8, 6. [CrossRef]

18. Karvelis, P. An intelligent icons approach for rotor bar fault detections. In Proceedings of the IECON
2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November
2013; pp. 5526–5531.

19. Stepanov, P.; Nikitin, Y. Diagnostics of Mechatronic Systems on the Basis of Neural Networks with
High-Performance Data Collection. In Mechatronics 2013: Recent Technology and Science Advances; Springer:
Cham, Switzerland, 2013; pp. 433–440.

http://dx.doi.org/10.1109/TIE.2010.2089937
http://dx.doi.org/10.1109/MIE.2013.2287651
http://dx.doi.org/10.1109/TIE.2014.2375853
http://dx.doi.org/10.1109/TIE.2015.2391186
http://dx.doi.org/10.1109/TIE.2008.2007527
http://dx.doi.org/10.3390/electronics7020016
http://dx.doi.org/10.3390/computation7040054
http://dx.doi.org/10.3390/electronics8121406
http://dx.doi.org/10.3390/electronics9020323
http://dx.doi.org/10.3390/electronics9040561
http://dx.doi.org/10.3390/electronics8010006


Sensors 2020, 20, 4429 18 of 19

20. Abramov, I.; Bozek, P.; Abramov, A.; Sosnovich, E.; Nikitin, Y. Diagnostics brushless DC motors.
In Proceedings of the EAN 2017—55th Conference on Experimental Stress Analysis, Nový Smokovec,
Slovakia, 30 May–1 June 2017; pp. 156–164.

21. Abramov, I.; Bozek, P.; Nikitin, Y.; Abramov, A.; Sosnovich, E.; Stollmann, V. Diagnostics of electrical drives.
In Proceedings of the International Conference on Electrical Drivers and Power Electronics, Tatranska
Lomnica, Slovakia, 21–23 September 2015; pp. 364–367.

22. Abramov, I.; Nikitin, Y.; Abramov, A.; Sosnovich, E.; Bozek, P.; Stollmann, V. Diagnosis of rolling mill line
gear-motors. In Proceedings of the International Conference on Innovative Technologies, Shenyang, China,
3–5 July 2014.

23. Muckenhuber, S.; Holzer, H.; Bockaj, Z. Automotive lidar modelling approach based on material properties
and lidar capabilities. Sensors 2020, 20, 3309. [CrossRef] [PubMed]

24. Li, F.; Akiyama, Y.; Wan, X.; Okamoto, S.; Yamada, Y. Measurement of shear strain field in a soft material
using a sensor system consisting of distributed piezoelectric polymer film. Sensors 2020, 20, 3484. [CrossRef]

25. Wu, Q.; Gao, T.; Lai, Z.; Li, D. Hybrid SVM-CNN classification technique for human–vehicle targets in an
automotive LFMCW radar. Sensors 2020, 20, 3504. [CrossRef]

26. Fayyad, J.; Jaradat, M.A.; Gruyer, D.; Najjaran, H. Deep learning sensor fusion for autonomous 3 vehicles
perception and localization: A Review. Sensors 2020, 20, 4220. [CrossRef]

27. van der Slikke, R.; Berger, M.A.; Bregman, D.J.; Veeger, D.H. Wearable Wheelchair mobility performance
measurement in basketball, rugby, and tennis: Lessons for classification and training. Sensors 2020, 20, 3518.
[CrossRef]

28. Ramos, D.; Teixeira, B.; Faria, P.; Gomes, L.; Abrishambaf, O.; Vale, Z. Use of sensors and analyzers data for
load forecasting: A two stage approach. Sensors 2020, 20, 3524. [CrossRef]

29. Olsson, F.; Kok, M.; Seel, T.; Halvorsen, K. Robust plug-and-play joint axis estimation using inertial sensors.
Sensors 2020, 20, 3534. [CrossRef]

30. Abramov, I.V.; Nikitin, Y.R.; Abramov, A.I.; Sosnovich, E.V.; Bozek, P. Control and diagnostic model of
brushless DC motor. J. Electr. Eng. 2014, 65, 277–282. [CrossRef]

31. Jablonski, R.; Brezina, T. Advanced Mechatronics Solutions; Springer: New York, NY, USA, 2016.
32. Elbakian, A.; Sentyakov, B.; Božek, P.; Kuric, I.; Sentyakov, K. Automated Separation of Basalt Fiber and

Other Earth Resources by the Means of Acoustic Vibrations. Acta Montan. Slovaca 2018, 23, 271–281.
33. Basseville, M.; Nikiforov, I.V. Detection of Abrupt Changes: Theory and Application; Prentice Hall information

and System Sciences Series; Prentice Hall: Englewood Cliffs, NJ, USA, 1993.
34. Cowan, R.S.; Winer, W.O. Handbook of Technical Diagnostics: Fundamentals and Application to Structures and

Systems. Machinery Diagnostics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 387–410.
35. Zhang, W. Fault Detection; In-Tech: London, UK, 2010; 504p, ISBN1 978-953-307-037-7. Available online:

https://www.intechopen.com/books/fault-detection (accessed on 1 March 2010)ISBN2 978-953-307-037-7.
36. Frank, P.M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey

and some new results. Automatica 1990, 26, 459–474. [CrossRef]
37. Hammer, M.; Šimková, M.; Ministr, M. Artificial Intelligence in Diagnostics of Electric Machines. In Recent

Advances in Mechatronics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 139–144.
38. Isermann, R. Fault-Diagnosis Systems: An. Introduction from Fault Detection to Fault Tolerance; Springer:

Berlin/Heidelberg, Germany, 2006.
39. Lee, Y.S.; Kim, Y.W. Condition Monitoring of Induction Motors for Vertical Pumps with the Current and Vibration

Signature Analysis. Experimental Analysis of nano and Engineering Materials and Structures; Springer: Dordrecht,
The Netherlands, 2007; pp. 419–420.

40. Luo, H. Plug-and-Play Monitoring and Performance Optimization for Industrial Automation Processes; Springer:
Wiesbaden, Germany, 2017.

41. Nikitin, Y.R.; Abramov, I.V. CNC machines diagnostics. In Proceedings of the 13-th International Symposium
on Mechatronics, Trencinske Teplice, Slovakia, 2–4 June 2010.

42. Rosich, A.; Sarrate, R.; Puig, V.; Escobet, T. Efficient optimal sensor placement for model-based FDI using
an incremental algorithm. In Proceedings of the 2007 46th IEEE Conference on Decision and Control,
New Orleans, LA, USA, 12–14 December 2007; pp. 2590–2595.

43. Rostek, K. Measure of fault isolability of diagnostic system. In Proceedings of the 25th International Workshop
on Principles of Diagnosis (DX), Gratz, Austria, 8–11 September 2014.

http://dx.doi.org/10.3390/s20113309
http://www.ncbi.nlm.nih.gov/pubmed/32532072
http://dx.doi.org/10.3390/s20123484
http://dx.doi.org/10.3390/s20123504
http://dx.doi.org/10.3390/s20154220
http://dx.doi.org/10.3390/s20123518
http://dx.doi.org/10.3390/s20123524
http://dx.doi.org/10.3390/s20123534
http://dx.doi.org/10.2478/jee-2014-0044
https://www.intechopen.com/books/fault-detection
http://dx.doi.org/10.1016/0005-1098(90)90018-D


Sensors 2020, 20, 4429 19 of 19

44. Rotating Machinery and Signal Processing. In Proceedings of the First Workshop on Signal Processing
Applied to Rotating Machinery Diagnostics, SIGPROMD’2017, Setif, Algeria, 9–11 April 2017.

45. Saitaev, D.V.; Nikitin, Y.R. Development of the Device Diagnostics of Electric Drives Fourth Forum of
Young Researchers. In the framework of International Forum Education Quality—2014. Available online:
https://elibrary.ru/item.asp?id=21609264 (accessed on 23 February 2014).

46. Stepanov, P.; Lagutkin, S. Research of Electric and Mechanical Diagnostic Parameters of Drive Equipment.
Appl. Mech. Mater. 2014, 683, 177–281. [CrossRef]

47. Stepanov, P.; Lagutkin, S.; Božek, P.; Nikitin, Y. Comprehensive approach to technical conditions of
electromechanical units in mechatronic systems. Am. J. Mech. Eng. 2014, 2, 278–281.

48. Turygin, Y.; Bozek, P.; Nikitin, Y.; Sosnovich, E.; Abramov, A. Enhancing the reliability of mobile robots
control process via reverse validation. IJARS 2016, 1–8. [CrossRef]

49. Trefilov, S.A.; Nikitin, Y.R. Robot drives diagnostics by identifiability criterion based on state matrix.
In Proceedings of the Instrumentation Engineering, Electronics and Telecommunications—2019: Proceedings
of the V International Forum, Izhevsk, Russia, 20–22 November 2019.

50. Turygin, Y.; Božek, P.; Abramov, I.; Nikitin, Y. Reliability Determination and Diagnostics of a Mechatronic
System. Adv. Sci. Technol. 2018, 12, 274–290. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://elibrary.ru/item.asp?id=21609264
http://dx.doi.org/10.4028/www.scientific.net/AMM.683.177
http://dx.doi.org/10.1177/1729881416680521
http://dx.doi.org/10.12913/22998624/92298
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Logical–Linguistic Model of Electrical Drive Diagnostics 
	Results 
	The Algorithm for the Determination of the Electrical Drives’ Technical State in a Robotized Workplace 
	Diagnostics of Mechatronic Modules in a Robotized Workplace 
	Hardware for Diagnosing Robotic Mechatronic Systems 
	Decomposition of CNC Machine into Modules, Nodes and Elements 
	Definition of Diagnostic Parameters in Modules, Nodes and CNC Machine Elements 
	Selection of Sensors to Measure Diagnostic Parameters 
	Selection of Diagnostic Intervals 
	Multicriterial Optimization of Diagnostic Systems 

	Discussion 
	Conclusions 
	References

