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An in silico approach to study 
the role of epitope order 
in the multi‑epitope‑based peptide 
(MEBP) vaccine design
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With different countries facing multiple waves, with some SARS-CoV-2 variants more deadly and 
virulent, the COVID-19 pandemic is becoming more dangerous by the day and the world is facing 
an even more dreadful extended pandemic with exponential positive cases and increasing death 
rates. There is an urgent need for more efficient and faster methods of vaccine development 
against SARS-CoV-2. Compared to experimental protocols, the opportunities to innovate are 
very high in immunoinformatics/in silico approaches, especially with the recent adoption of 
structural bioinformatics in peptide vaccine design. In recent times, multi-epitope-based peptide 
vaccine candidates (MEBPVCs) have shown extraordinarily high humoral and cellular responses to 
immunization. Most of the publications claim that respective reported MEBPVC(s) assembled using 
a set of in silico predicted epitopes, to be the computationally validated potent vaccine candidate(s) 
ready for experimental validation. However, in this article, for a given set of predicted epitopes, 
it is shown that the published MEBPVC is one among the many possible variants and there is high 
likelihood of finding more potent MEBPVCs than the published candidates. To test the same, a 
methodology is developed where novel MEBP variants are derived by changing the epitope order 
of the published MEBPVC. Further, to overcome the limitations of current qualitative methods of 
assessment of MEBPVC, to enable quantitative comparison and ranking for the discovery of more 
potent MEBPVCs, novel predictors, Percent Epitope Accessibility (PEA), Receptor specific MEBP 
vaccine potency (RMVP), MEBP vaccine potency (MVP) are introduced. The MEBP variants indeed 
showed varied MVP scores indicating varied immunogenicity. Further, the MEBP variants with IDs, 
SPVC_446 and SPVC_537, had the highest MVP scores indicating these variants to be more potent 
MEBPVCs than the published MEBPVC and hence should be preferred candidates for immediate 
experimental testing and validation. The method enables quicker selection and high throughput 
experimental validation of vaccine candidates. This study also opens the opportunity to develop new 
software tools for designing more potent MEBPVCs in less time.

The World Health Organization (WHO) announced SARS-CoV-2 as a pandemic in January 2020. Globally, as of 
date, there have been over 159 million confirmed cases of COVID-19 with the second COVID-19 wave kicking 
in around the 1st week of March 2021 and registering over 3.3 million deaths. According to a report, preventive 
and treatment options is one of the top two scenarios, the other being digitalization drive, which needs global 
adoption by the post-COVID-19 world to bounce back and get on to the revival path1. Since December 2019 the 
global COVID-19 pandemic has reached unprecedented deaths and death rates, currently continuing its more 
dreaded second wave. The world has called for preparedness for COVID-19 third wave as well. As of date, 475 
COVID19 vaccine candidates are currently undergoing trials belonging to at least one of the fourteen different 
vaccine platforms2–4. Among them, 166 (34.9%) candidates are undergoing clinical trials, 251 (52.8%) candidates 
are undergoing the preclinical trials, 42 (8.8%) are in the Discovery phase and the remaining 16 (3.4%) have been 
discontinued. Currently, 34.9% (166) vaccine candidates belong to the protein subunit platform which emphasizes 
the importance and future potential of peptide-based vaccine candidates. There are 94 protein subunit-based vac-
cine candidates (~ 56.6%) that are under preclinical trials indicating there is a huge opportunity for peptide-based 

OPEN

Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F University, Vaddeswaram, 
Andhra Pradesh 522 502, India. *email: dr.prasad.bvls@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-16445-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12584  | https://doi.org/10.1038/s41598-022-16445-3

www.nature.com/scientificreports/

vaccine candidates4. As can be observed from the current vaccine approval statistics, protein subunit vaccine 
candidates have the highest approvals. Currently, out of 36 vaccines approved by at least one national regulatory 
authority(NRA) in the world, 12 belong to protein subunit platform as compared to the approval status eight 
months ago, where only one protein subunit vaccine: EpiVacCorona (Russia NRA), had the approval which is a 
peptide-antigen-based vaccine5. There are ten vaccines currently approved and listed under the WHO Emergency 
Use Listing (EUL) and among them two of the vaccines (COVOVAX™ and NUVAXOVID™) listed belong to the 
protein subunit platform where the same list did not have any Protein subunit platform based vaccines before 
the last revised list6,7. One of the first efforts of in silico vaccine design was published in 1999, formally launching 
immunoinformatics8–10. One of the first attempts to use multi-epitope-based polypeptides (MEBPs) for HIV-1 
vaccine development dates back to 199911. In recent times MEBPVCs have shown extraordinarily high humoral 
and cellular responses to immunization. One of the first computational methods for designing MEBP vaccine 
constructs was published in 201012,13. Since then numerous articles related to in silico design of MEBP vaccine 
development have been published addressing vaccines against cancer, Chagas disease, filarial diseases, multi-
drug resistance, Malaria, TB, and others14–21. MEBPVCs are gaining preference as they provide better control 
over the immunogenic components of the pathogen responsible for causing diseases, better reproducibility, and 
experimental control22. A recent article compiles all the interacting regions of the spike proteins from different 
pathogenic coronaviruses with human immune sensors like Toll-Like Receptors (TLRs), derives the epitopes 
specific to the interacting regions and designs MEBP. This methodology is claimed to provide a more compre-
hensive way to fight COVID-19 infection23.

Recently, many novel multi-epitope-based peptide (MEBP) vaccine constructs (MEBPVCs) against Spike 
Protein and or multi-targets of SARS-CoV-2 that causes COVID-19 disease have been designed using in silico 
approaches. Rahmani et. al., 2021, proposed a trivalent (multi-target) MEBPVC that contains new components 
such as an intracellular delivery agent (TAT) and synthetic epitope (PADRE) in addition to conventional compo-
nents such as adjuvants (β-defensin 2), the predicted epitopes, and linkers to boost the immune response24. The 
novelty in Saha et. al., 2021 publication is dual-purpose epitopes i.e., each epitope predicted is a B-Cell derived 
T-cell epitope with a fixed size of ten amino acids. In other words, each predicted epitope triggers a response from 
both B-Cells and T-Cells simultaneously. This approach keeps the size of MEBPVC small yet efficient, keeping 
the titers high from both B-cells and T-cells25. Similarly, Khairkhah et. al., 2020, in their design, have not used 
any adjuvants26. Table 1 gives a detailed summary of the most recent in silico approaches in MEBPVCs against 
spike protein or multi-targets of SARS-CoV-2.

It is a fundamental and proven fact in molecular biology that a change (modification/mutation) in the com-
position and or order of an individual or a group of amino/nucleic acids in the protein/DNA/RNA sequence 
could bring substantial change to the fold/3D structure and hence alter the function. In the context of peptide 
subunit vaccine platforms, this would mean that any change in the order or composition of amino acids of 
the peptide-based immunogen (especially large sized immunogens), may undergo changes in the fold and 3D 
structure. This in turn is expected to alter the biophysical and immunological properties of the MEBPVC such 
as surface accessibility of the epitopes in the MEBP. Any change in the epitope accessibility to the host immune 
system influences the immunogenicity/antigenicity of the MEBPVCs.

With increasing adoption, strong interdependence of structural biology and immunoinformatics, and with 
a trend for designing bigger and larger vaccines with sizes ranging from 10 to 100 kDa, the emphasis should be 
to utilize the protein structural biology knowledge for effective vaccine design. The opportunity for structure-
based vaccine design leads to next-generation immunogen development30,31. In this article, we present a novel 
methodology to computationally design and validate MEBPVCs. This study indeed provided interesting insights 
that will help in developing novel MEBP specific design tools and also speedup and improve the current vaccine 
design methodologies and protocols which is not only the need of the hour but also a need for global prepared-
ness for the future pandemics supporting novel platforms32.

Table 1.   The common components, i.e., adjuvants, linkers and predicted epitopes specific to various targets 
of SARS-CoV-2 are used in a MEBPV construction. The data provides the components which are commonly 
used in the design of MEBPVCs with relevant references.

S.no
Molecular weight 
(kDa) Sequence length VCs

Epitope size 
(fixed(F)/varying 
(V)) Adjuvants Linkers Special motifs TLRs Targets References

1 75 700 1 V β-defensin 2 GPGPG, EAAAK, 
AAY, GGGS, KK PADRE, TAT, TLR3,4,8 S, M, N, E, Nsp8, 

Nsp3
24

2 20 183 1 F β-defensin 2 EAAAK,AAY, 
GPGPG – TLR8 S 25

3 50 460 5 V HSP70, TR-433, 
RS09

GPGPG, EAAAK, 
AAY​ – TLR4 S 27

4 17 146 1 V HBD-2 EAAAK, AAY​ – TLR-2,3,4 S 28

5 30, 37, 50 254, 330, 475 3 V – KK, AA, GPGPG – TLR-2,3,4 S, M, N 26

6 50 485 1 F HP-91, HBD-3 – – TLR3,5,8 S, N, M, E 29
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Results
The purpose of a vaccine (MEBPVC in the current context) is to elicit a strong response from the host immune 
system against a disease (COVID-19) releasing various neutralizing antibodies which continue to stay in the 
body to protect the host from any repeat infection thenceforth. Toll-like receptors (TLRs) are the common 
receptors that interact with the immunogen (MEBPVC) and trigger the downstream response and release of 
neutralizing antibodies. From the informatics point of view, to correlate the properties, to derive relationship 
with immunogenicity and changed epitope positions of the MEBPVC, the necessary data was generated at four 
levels: (a) sequence level, (b) 3D structure level, (c) receptor-ligand interaction level and (d) dosage versus 
immune response level. The data generated thus, are analysed to understand if the changed epitope positions 
influenced the various properties and eventually the immunogenicity. Prior to the analysis, to establish the fact 
that the change in the order/positions of the epitopes in a MEBPVC changes the immunogenicity, one has to 
first assess the diversity among the MEBP variants. To assess the same, pairwise alignment, multiple sequence 
alignment (MSA), and structure alignment were performed on the ten variants. The results are discussed below. 
Table 2 provides the percent sequence identity (Lower triangle) and root mean square deviation (RMSD) (upper 
triangle) as a ready reference.

Sequence & structural similarities between the MEBP variants.  The average sequence iden-
tity between the variants is around 49% which is understandable considering the common adjuvants (45AA), 
linkers(AAY:3 × 5(copies) = 15AA, GPGPG:5 × 5(copies) = 25AA), and HIS tags(6AA) which make up to 49% 
(91AA) of the 183 AA long MEBPVC. Interestingly, the MEBP variants with IDs, SPVC_214 and SPVC_383, 
have 73.51% (highest) sequence identity (Fig. 1a).

When the epitope positions between SPVC_214 and SPVC_383 were studied, the same epitopes were present 
at the 2nd, 6th, 8th, 9th and 10th positions (Table 3).

Further, at the 7th position, almost identical epitopes, VLSFELLHA, VVVLSFELL were present in SPVC_214 
and SPVC_383 respectively which clearly justifies the 73.51% sequence identity (Table 2). However, their RMSD 
is one among the highest, i.e. 16.60Å (Table 2) indicating very dissimilar structures which is contrary to the 
notion in homology modeling that is, high sequence identity (> 30%) indicates high structural similarity and 
same function.

The pair with the least sequence identity (39.13%) is SPVC_214 and SPVC_387 (Fig. 1b). Their RMSD is 4.92 
Å indicating reasonable structural similarity though sequences are not very similar. The pair with the highest 
RMSD i.e.17.3 Å are REF_SEQ and SPVC_214. With such high RMSD, it is commonly expected to have very 

Table 2.   For ready comparison between the MEBP variants, the data is presented as percent sequence identity 
(lower triangle: below 100.00 diagonal) and root mean square deviation (RMSD) (upper triangle: above 100.00 
diagonal). Lighter shades of a color indicate lower RMSD (higher structural similarity) and lower sequence 
identity whereas darker shades of the colors indicate higher RMSD (lower structural similarity) and higher 
sequence identity.

SPVC_R
EF

SPVC_2
06

SPVC_2
14

SPVC_3
2

SPVC_3
57

SPVC_5
37

SPVC_3
83

SPVC_5
65

SPVC_4
46

SPVC_3
87

SPVC_R
EF 100.00 13.83 17.30 13.30 6.01 14.48 16.20 13.34 7.14 12.60

SPVC_2
06 46.24 100.00 16.32 10.27 14.01 8.75 12.88 8.82 13.15 14.79

SPVC_2
14 64.32 56.28 100.00 11.77 14.87 13.07 16.60 11.79 7.90 4.92

SPVC_3
2 54.10 49.47 57.30 100.00 7.19 13.24 15.21 12.75 3.38 15.08

SPVC_3
57 59.89 49.47 50.27 49.20 100.00 16.06 6.67 13.95 6.38 15.52

SPVC_5
37 55.68 43.09 51.34 70.27 50.81 100.00 11.60 14.23 3.72 7.18

SPVC_3
83 57.30 60.64 73.51 53.55 48.13 52.97 100.00 13.77 4.04 15.76

SPVC_5
65 50.54 49.47 53.19 71.89 51.35 65.95 52.97 100.00 13.63 13.66

SPVC_4
46 46.77 54.64 46.24 46.28 41.08 48.68 47.59 47.85 100.00 15.51

SPVC_3
87 58.12 54.64 39.13 47.06 56.15 42.47 50.27 50.27 55.14 100.00
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little sequence similarity between the two sequences. However, they have a sequence identity of around 65%. 
Further analysis revealed that the same epitopes were seen at 2nd, 3rd, and 4th positions in the two MEBP con-
structs (REF_SEQ and SPVC_214) (Table 2) justifying the above-average sequence identity. Similarly, the pair 
with the lowest RMSD i.e. 3.38 Å are SPVC_32 and SPVC_446 with their sequence identity of only 46.24% only. 
Figure 1c,d show structure alignments of the MEBP variant-pair with lowest (3.38Å, SPVC_32 and SPVC_446) 
and highest (17.3Å, REF_SEQ and SPVC_214) RMSDs. These typical cases are clearly indicating that there 
are changes in the 3D structures of the MEBP variants on changing the positions/order of the epitopes in the 
MEBPVCs.

Immunological and biophysical properties of the MEBP dataset.  Immunological properties.  Anti-
genicity, allergenicity.  The antigenicity scores from Vaxijen 2.0 server indicate that all the MEBPVCs are prob-
able antigens with a range between 0.62 to 0.78 (Table 4). The sequence, SPVC_446 has the highest antigenic-
ity(0.78) and SPVC_214 (0.62) has the lowest antigenicity. All the allergenicity scores predicted using AllerTop 
v2.0 and AllergenFP v1.0 servers indicate that all the variants are non-allergens hence the allergen column was 
omitted from (Table 4).

Biophysical properties.  Stability.  The stability scores of MEBPVC variants fall between 73.17 to 76.97 which is 
the first parameter used as a filter. As a rule, all the MEBPVC variants must be predicted as stable which is found 
to be true for all the variants in the dataset. SPVC_214 is predicted to have the lowest and SPVC_537, to have the 
highest stability scores. The variations in the stability scores, though not very dispersed, indicate that change in 
the order of epitopes influenced the stability of the vaccine construct.

Solubility.  The next biophysical property considered is solubility. Less soluble proteins are a major concern 
since the proteins synthesized may not fold to the right structure and hence lose the activity and function and 
are observed to precipitate out or form inclusion bodies leading to various disease states33. The solubility scores 
range from 0 to 1.0 where > 0.5 score indicates soluble and < 0.5 indicates insoluble peptide. In our case, all the 
MEBP variants had solubility scores ranging from 0.73 to 0.83 indicating all are soluble. The SPVC_446 variant 
has the lowest solubility and the SPVC_32 variant has the highest solubility. These solubility scores also indicate 
that the order of epitopes in the MEBPVC is important and crucial in the design of a good vaccine candidate.

Figure 1.   Structure alignment: (a) SPVC_214 (yellow) and SPVC_383 (green), 73.51% (SeqId), (b) SPVC_214 
(yellow) and SPVC_387 (green), 39.13%, (c) REF_SEQ (yellow) and SPVC_214 (green), 17.3Å, (d) SPVC_32 
(yellow) and SPVC_446 (green) 3.38 Å.
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Table 3.   Comparative epitope positions in the ten MEBP variants with % identity and RMSD with reference to 
REF_SEQ MEBPVC. Three comparisons are highlighted in this table (1) REF_SEQ vs SPVC_383, (2) REF_SEQ 
vs SPVC_214 and (3) SPVC_383 vs SPVC_214. Epitopes that are found at same position across the variants are 
highlighted (same color indicates same epitopes found at same position).

Epitope Position NumberMEBP 
Varia
nt ID

% 
iden
tity

RMS
D 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

REF_
SEQ

100 0 TLDSK
TQSL-
AAY

GKQGN
FKNL-
AAY

CYGVS
PTKL-
AAY

KIADYN
YKL-
AAY

VVVLSF
ELL-
GPGPG

IGINITR
FQ-
GPGPG

YGFQPT
NGV-
GPGPG

VLSFEL
LHA-
GPGPG

LQIPFA
MQM-
GPGPG

IAIVM
VTIM

SPVC
_357

59.8
9

6.01 TLDSK
TQSL-
AAY

YGFQPT
NGV-
GPGPG

CYGVS
PTKL-
AAY

VVVLSF
ELL-
GPGPG

IAIVMV
TIM-
GPGPG

IGINITR
FQ-
GPGPG

KIADYN
YKL-
AAY

GKQGN
FKNL-
AAY

VLSFEL
LHA-
GPGPG

LQIPF
AMQ
M

SPVC
_446

46.7
7

7.14 YGFQP
TNGV-
GPGPG

VVVLSF
ELL-
GPGPG

GKQGN
FKNL-
AAY

IAIVMVT
IM-
GPGPG

CYGVS
PTKL-
AAY

TLDSKT
QSL-
AAY

LQIPFA
MQM-
GPGPG

VLSFEL
LHA-
GPGPG

KIADYN
YKL-
AAY

IGINIT
RFQ

SPVC
_387

58.1
2

12.60 GKQGN
FKNL-
AAY

VLSFELL
HA-
GPGPG

IGINITR
FQ-
GPGPG

VVVLSF
ELL-
GPGPG

CYGVS
PTKL-
AAY

TLDSKT
QSL-
AAY

KIADYN
YKL-
AAY

YGFQP
TNGV-
GPGPG

LQIPFA
MQM-
GPGPG

IAIVM
VTIM

SPVC
_32

54.1
0

13.3 CYGVS
PTKL-
AAY

KIADYN
YKL-AAY

TLDSK
TQSL-
AAY

YGFQP
TNGV-
GPGPG

GKQGN
FKNL-
AAY

IGINITR
FQ-
GPGPG

VVVLSF
ELL-
GPGPG

LQIPFA
MQM-
GPGPG

IAIVMVT
IM-
GPGPG

VLSF
ELLH
A

SPVC
_565

50.5
4

13.34 CYGVS
PTKL-
AAY

KIADYN
YKL-AAY

YGFQP
TNGV-
GPGPG

VVVLSF
ELL-
GPGPG

TLDSKT
QSL-
AAY

IGINITR
FQ-
GPGPG

IAIVMVT
IM-
GPGPG

LQIPFA
MQM-
GPGPG

GKQGN
FKNL-
AAY

VLSF
ELLH
A

SPVC
_206

46.2
4

13.83 YGFQP
TNGV-
GPGPG

GKQGN
FKNL-
AAY

VLSFEL
LHA-
GPGPG

IGINITR
FQ-
GPGPG

KIADYN
YKL-
AAY

TLDSKT
QSL-
AAY

CYGVSP
TKL-AAY

IAIVMVT
IM-
GPGPG

VVVLSF
ELL-
GPGPG

LQIPF
AMQ
M

SPVC
_537

55.6
8

14.48 CYGVS
PTKL-
AAY

KIADYN
YKL-AAY

GKQGN
FKNL-
AAY

YGFQP
TNGV-
GPGPG

VVVLSF
ELL-
GPGPG

LQIPFA
MQM-
GPGPG

IAIVMVT
IM-
GPGPG

TLDSKT
QSL-
AAY

IGINITR
FQ-
GPGPG

VLSF
ELLH
A

SPVC
_383

57.3
0

16.20 KIADYN
YKL-
AAY

GKQGN
FKNL-
AAY

VVVLS
FELL-
GPGPG

TLDSKT
QSL-
AAY

CYGVS
PTKL-
AAY

YGFQP
TNGV-
GPGPG

VLSFEL
LHA-
GPGPG

IAIVMVT
IM-
GPGPG

IGINITR
FQ-
GPGPG

LQIPF
AMQ
M

SPVC
_214

64.3
2

17.3 VLSFEL
LHA-
GPGPG

GKQGN
FKNL-
AAY

CYGVS
PTKL-
AAY

KIADYN
YKL-
AAY

TLDSKT
QSL-
AAY

YGFQP
TNGV-
GPGPG

VVVLSF
ELL-
GPGPG

IAIVMVT
IM-
GPGPG

IGINITR
FQ-
GPGPG

LQIPF
AMQ
M

Table 4.   The raw data of the Immuno- and Biophysical properties of the ten MEBP variants for ready 
reference.

MEBP variant ID Stability Accessibility solubility Disorder Aggregation Hydrophobicity Antigenicity Sequence identity (%)
RMSD (str. similarity 
score)

REF_SEQ 74.52 36.36 0.82 0.17 3.30 0.20 0.62 0.00 0.00

SPVC_206 73.38 35.87 0.82 0.17 2.80 0.22 0.65 55.60 13.83 (0.31)

SPVC_214 73.17 36.56 0.82 0.15 2.80 0.19 0.62 64.70 17.3 (0.14)

SPVC_32 75.83 35.87 0.83 0.16 2.70 0.21 0.66 61.10 13.3 (0.34)

SPVC_357 73.84 35.79 0.82 0.17 2.80 0.22 0.63 64.10 6.01 (0.70)

SPVC_537 76.97 36.84 0.82 0.16 2.70 0.21 0.68 58.20 14.48 (0.28)

SPVC_383 73.84 37.23 0.82 0.16 2.80 0.22 0.65 60.00 16.20 (0.19)

SPVC_565 75.83 35.79 0.82 0.17 2.70 0.21 0.66 57.90 13.34 (0.33)

SPVC_446 76.05 36.56 0.73 0.16 3.10 0.24 0.78 50.70 7.14 (0.64)

SPVC_387 73.84 35.63 0.81 0.15 3.30 0.22 0.67 55.70 12.60 (0.37)
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Accessibility.  Solvent accessibility is an important feature which, in the current context, has direct implications 
in eliciting the immune response in the host. The higher the epitope accessibility the more immunogenic the 
vaccine candidate. For the MEBP variants, the percent epitope accessibility (PEA) ranged between 35 to 37. The 
variant SPVC_387 has the lowest accessibility and SPVC_383 has the highest accessibility.

Disorder.  In our MEBP variants disorder ranges between 0.15 to 0.16 and hence all variants are considered 
ordered. The MEBPVC sequence SPVC_357 has high disorder and SPVC_387 has low disorder among the vari-
ants. Low disorder is considered favorable for better vaccine design.

Aggregation.  The predicted aggregation propensities ranged from 2.7 to 3.3 with lower values considered 
favorable. The sequences REF_SEQ and SPVC_387 have the highest aggregation propensity and SPVC_32, 
SPVC_565, SPVC_537 have the lowest propensity. Table 4 furnishes further details.

Hydrophobicity.  Higher hydrophobicity shows better globularity, better accessible surface residues, and rigid 
3D structure. The predicted hydrophobicity values ranged from 0.194 to 0.239, where higher hydrophobicity 
values are considered more favorable. The sequence SPVC_446 has the highest hydrophobicity and SPVC_214 
has the lowest hydrophobicity.

Positive/negative influencers.  Protein Stability Index, Surface Accessibility, Solubility, Sequence Identity & 
Sequence Alignments, Hydrophobicity, Docking (Z Rank) Score and Binding Affinity were categorized as posi-
tive influencers. Intrinsic Disorder, Protein Aggregation Propensity, RMSD and root mean square fluctuations 
(RMSF) were categorized as negative influencers.

Comparative docking analysis of MEBP variants.  The properties compared in the previous sections 
were sequence-based. The analysis proved that the order of the epitopes indeed influenced the stability, solubil-
ity, accessibility, disorder, and aggregation properties. To make the analysis more complete and comprehensive, 
the following sections explore the docking and MD simulation studies using the ab initio modeled 3D structures 
of the MEBP variants. In the previous section, the MEBP models (variants) and their RMS deviations were 
discussed.

Among the family of Toll-Like Receptors (TLRs), the innate immune sensors, TLR8 and TLR4 are the most 
common receptors interacting with antigens/immunogens triggering an immune response from the host sys-
tem to fight the immunogen. TLR8 plays an important role in the generation of effective immune responses in 
humans. TLR8 also senses the single-stranded RNA of viruses in the endosome and is predominantly expressed 
in the lungs. TLR4, plays an important role in the regulation of myocardial function, fibroblast activation, and 
acute inflammation by immune cells. Both the receptors are implicated in COVID-19. TLR4, is one of the ‘fate-
deciding’ regulators of immunity and COVID-19 immunopathogenesis34. Table 5 shows the docking scores, bind-
ing affinities, minimization energies for both the receptors (TLR8 and TLR4) in complex with the MEBP variants.

ZRank Score is used to assess the quality of protein-protein docking. A more negative ZRank score indicates 
better docking. As can be seen from the tables, the ZRank scores are varying from (−100) to (−150) for the avail-
able MEBP variants. With TLR8, SPVC_537 has a better ZRank Score but an unfavorable binding affinity (11.92). 
With TLR4, SPVC_565 is showing favorable ZRank Score and acceptable binding affinity. It is interesting to note 
that there are at least four different MEBP variants having better ZRank scores when compared to REF_SEQ 
within a dataset size of ten variants. This definitely proves that changing the order of epitopes influences the 3D 
structure, which in turn influences the binding with immune machinery (TLRs) indicating the effectiveness of 
the immunogen (MEBPVC). Fig. 2 shows the docked MEBP variants with TLR4.

Simulation analysis of MEBPVC variants complexed with TLRs.  The molecular dynamic simula-
tion production run for 100 ns yielded a center projected trajectory in which the MEBP vaccine complexes were 
centered along the system in order to calculate the relative RMSD and RMSF for the MEBP vaccine complexes. 
The calculated RMSD for all the MEBP-TLR complexes were interpreted as maximum deviation data points and 
the average deviation data points to arrive at a holistic conclusion. Normalizing the data points and considering 
average deviation data points will provide us with much more stable MEBP-TLR complexes. Considering only 
the maximum deviation data points and neglecting the rest of the stable data points of the MEBP vaccine com-
plex simulation over a 100 ns span will not be feasible for a simulation of this larger time span. The RMSF calcu-
lations were also performed similarly (RMSD calculation). The obtained total RMSD/RMSF calculations of ten 
MEBP vaccine candidates are represented in Table 5. The maximum and average RMSD of the REF_SEQ vaccine 
candidate is 0.53 nm and 0.45 nm for the TLR4 complex and 0.62 nm and 0.48 nm for the TLR8 complex.

The maximum and average RMSF of the REF_SEQ is 0.54 nm and 0.19 nm for the TLR4 complex and 0.71 nm 
and 0.18 nm for the TLR8 complex respectively. Considering REF_SEQ complex as the reference, all the other 
MEBP vaccine complexes were screened accordingly. Combinatorial approach of considering both the vaccine 
potency score and stability will help us arrive at the most potent of the MEBP vaccine candidates. The combined 
MVP is calculated with our scoring algorithm based on various physicochemical parameters. The MVP score is 
observed to be relatively higher for SPVC_446 and SPVC_537 with a score of 8.858 and 8.899 respectively, when 
compared to the REF_SEQ with an MVP score of 8.595. Both SPVC_446 and SPVC_537 prove to be promising 
vaccine candidates with high potency scores. The maximum/average RMSD of SPVC_446 is 0.4 nm/0.39 nm and 
SPVC_537 is 0.43 nm/0.35 nm for TLR4. The maximum/average RMSF of SPVC_446 is 0.36 nm/0.32 nm and 
SPVC_537 is 0.49nm/0.4 nm for TLR8. Figure 3 represents all the RMSD and RMSF calculations and respective 
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plots. The RMSD plots show that the SPVCs are more stable when in complex with both TLR4 and TLR8. It can 
be observed that REF_SEQ is relatively less stable when compared to SPVC_446 and SPVC_537. RMSF plots of 
SPVC_446 and SPVC_537 indicate better interactions and higher stability, when in complex with TLR4 (Fig.3e). 
However, all the three SPVCs show similar high stability when in complex with TLR8 without a clear distinction 
as seen in TLR4 complexes (Fig. 3f).

Taking the stability of the complexes of MEBP vaccine candidates into consideration to derive a conclusion 
to select the best of the vaccine candidates, the SPVC_446 proves to be the best among the vaccine candidates. 
In spite of SPVC_537 having higher MVP score, the complex falls short in the stability parameter which is an 
important property to be looked into for biological activity.

Dosage versus immune response simulation analysis.  As the last of the in silico tasks, we performed 
dosage vs immune response simulation for the ten vaccine constructs (MEBP variants) using the C-IMMSIM 
server with the same objective, to see if the variants trigger different responses than REF_SEQ, if so will the 
response indicate more potency or less. Two simulation experiments were done: (a) with adjuvant and HIS-tag 
and (b) without adjuvant and HIS-tag. The MEBPVC variants had all the parameters within the optimal and 
recommended ranges for them to be considered as a potent vaccine candidate individually with the excep-
tion of SPVC_387 (Supp. 2 Fig. S19) (without adjuvants + HIS-tag). A common observation has been that a 
repeated exposure led to an overall increase in the immune response and a decrease in the antigenic load (Supp. 
2 Fig. S1–20).

Few observations are presented here. When compared to REF_SEQ, all other variants trigger strong antibody 
(especially IgM or IgM + IgG) responses with their 1st dose (exposure). Of all the variants, SPVC_214 is seen 
to trigger the highest titers of IgG + IgM. Of all the constructs, REF_SEQ triggers the weakest. The titers reach 
~650,000 counts per ml for SPVC_214 and others but only ~580,000 counts per ml for REF_SEQ.

It is interesting to note that variants without adjuvants + HIS-tag seem to trigger more strongly than with 
adjuvants + HIS-tag. The antibody titers reach 90,000 counts per ml without adjuvants + HIS-tag as compared 
to only 20,000 counts per ml with adjuvants + HIS-tag on exposure to 1st dose of SPVC_214. The IgM + IgG 
titers reach ~760,000 counts per ml on the last (third) exposure. A similar trend is seen for all other variants 
as well, where without adjuvants + HIS-tag are triggering a better immune response. Figs. 4a–c and 5a–c show 
the level of immunoglobulins (with and without adjuvant + HIS-tag) at two different doses (1st, 2nd, and 3rd).

It is also observed that some variants such as SPVC_383 trigger high TH cell populations per state with counts 
reaching around 8200 per mm3 with an average antibody (IgG + IgM) response of around 570,000 counts. When 

Table 5.   Minimization energies, Docking scores, binding affinities (MMGBSA), RMSD and RMSF of MEBP 
variants with both the receptors (TLR4 and TLR8).

Receptor: TLR4

MEBP variant ID
Ligand (MEBP variant) 
minimization (kcal/mol)

Complex minimization 
(kcal/mol) Z rank score

Binding affinity 
(MMGBSA)
ΔG(kcal/mol)

Max. RMSD of 
vaccine complex (nm) 
TLR4

Max. RMSF of 
vaccine complex 
(nm) TLR4

REF_SEQ −8897.360 −49,810.762 −117.004 −76.85 0.53 0.54

SPVC_206 −9050.086 −49,328.161 −107.88 −87.25 0.41 0.53

SPVC_214 −8860.793 −49,637.407 −127.058 −54.61 5.13 2.75

SPVC_32 −8762.506 −49,244.125 −106.228 −97.5 0.45 0.58

SPVC_357 −8768.899 −48,041.522 −109.683 −78.16 0.59 0.75

SPVC_383 −9081.057 −49,148.629 −130.189 −74.5 0.42 0.47

SPVC_387 −9302.765 −49,276.327 −112.027 −81.84 0.48 0.75

SPVC_446 −8784.142 −48,974.441 −142.458 −88.09 0.48 0.45

SPVC_537 −8901.443 −48,695.629 −115.899 −91.22 0.43 0.72

SPVC_565 −9366.776 −49,240.549 −125.234 −77.85 4.45 2.67

Receptor: TLR8

MEBP variant ID
Ligand (MEBP variant) 
minimization (kcal/mol)

Complex minimization 
(kcal/mol) Z rank score:

Binding affinity 
(MMGBSA)
ΔG (kcal/mol)

Max. RMSD of 
vaccine complex(nm) 
TLR8

Max. RMSF of 
vaccine complex 
(nm) TLR8

REF_SEQ −8897.360 −59,185.545 −133.564 −117.14 0.62 0.71

SPVC_206 −9050.086 −59,388.441 −128.738 −53.78 0.39 0.67

SPVC_214 −8860.793 −59,004.133 −129.108 −72.06 0.55 0.91

SPVC_32 −8762.506 −58,969.654 −121.058 −38.62 0.78 0.93

SPVC_357 −8768.899 −59,208.700 −120.129 −36.01 0.84 1.28

SPVC_383 −9081.057 −59,568.962 −150.21 −62.54 3.98 2.34

SPVC_387 −9302.765 −59,425.876 −114.922 −80.93 4.21 1.25

SPVC_446 −8784.142 −59,213.308 −115.699 −56.48 0.36 0.67

SPVC_537 −8901.443 −59,614.015 −119.375 −56.37 0.49 0.685

SPVC_565 −9366.776 −59,603.462 −133.233 −66.48 0.45 1.03
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compared to others, the same variant also shows the best B cell population counts (800 per mm3). According to 
the MEBP dose versus IFN-γ response simulation, it is interesting to note that variants with adjuvant + HIS-tag 
and without adjuvant + HIS-tag have totally different trends as seen in Fig. 6a,b. For example, SPVC_446 (with 
adjuvant+HIS-tag) triggers the highest concentration of IFN-γ and REF_SEQ has the lowest concentration of 
IFN-γ in the first dose. These above observations clearly demonstrate that change in the epitope order in a MEBP 
vaccine candidate influences immunogenicity.

Ranking the ten variants and identifying the most potent MEBPVC.  Table  6 summarizes the 
receptor specific scores (RMVPs) and final MVP score for each variant. From the MVP score, SPVC_446 is 
predicted to be the most potent MEBPVC followed by SPVC_537. As can be seen, the least potent is REF_SEQ 
clearly proving that better and more potent MEBPVCs are possible by changing the epitope order and that 
epitope order influences immunogenicity (details about the normalized data are provided in Supp. 3).

Discussion
Vaccine development typically takes 10 years. In the pre-COVID-19 world, the fastest vaccine development time 
recorded was four years against mumps. It is no small feat to develop a vaccine against COVID-19 in a span of 
9–10 months and vaccinate nearly 1.5 billion people. This shall be the new benchmark and reference for future 
vaccine development strategies and preparedness for future pandemics. This has become possible because of 
global cooperation for vaccine research and distribution35.

The current COVID-19 vaccines listed under EUL have respective advantages and disadvantages36. The major 
disadvantage of Pfizer/BioNtech Comirnaty vaccine is its stringent cold chain requirement though it has shown 
very good titers37. The adenovector-based vaccines show relatively less effective neutralizing antibody response38. 
Inactivated vaccines seem to show inferior immunogenicity and low T Cell response, though have shown lower 
adverse reactions39. Similar to inactivated vaccines, the protein subunit vaccines show low immunogenicity. 
However, the possible advantages and potential benefits attracted the pharma companies to invest in protein 
subunit platforms. More than 30% of the total COVID-19 vaccine candidates undergoing trials are protein 
subunit vaccines with 65% under preclinical trials. Peptide-based vaccines have many unique benefits such as 

Figure 2.   Docked ligand of (a) SPVC_32, (b) SPVC_214, (c) SPVC_565, (d) REF_SEQ (yellow) with TLR4 
(green).
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(1) fully defined composition, (2) affordable large scale production, (3) stable in storage and freeze-dryable, 
(4) absence of biological contamination, (5) minimum allergic and autoimmune responses, (6) customizable 
multipurpose therapeutic, and (7) standard rDNA technology-based production and manufacturing protocols 

Figure 3.   Molecular dynamic simulation studies of each SPVC interactions with TLR4 and TLR8. (a) RMSD 
plot of REF_SEQ, REF_SEQ-TLR4 and REF_SEQ-TLR8 complexes (b) RMSD of SPVC_446, (c) RMSD of 
SPVC_537, (d) RMSF plot of REF_SEQ, SPVC_446 and SPVC_537, (e) RMSF plot of TLR4 in complex with 
REF_SEQ, SPVC_446 and SPVC_537, (f) RMSF plot of TLR8 in complex with REF_SEQ, SPVC_446 and 
SPVC_537.
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in place. MEBPVC has further advantages in designing multi-epitope, multi-target, multi-copy, multi-disease, 
and custom-size (molecular weight) vaccine constructs. The MEBP subunit vaccine platforms are in the initial 
phases of development.

Applications of in silico approach to design a MEBP vaccine is one of the pragmatic opportunities that can 
reduce the time in developing vaccines and reach the market in shorter time duration. The in silico methodol-
ogy presented in this article shall further reduce the time to identify potential new vaccine candidates under the 
protein subunit vaccine platform.

It is known that peptide vaccines are weakly immunogenic. Considering the advantages offered by peptide-
based vaccines that include MEBP vaccines, it is worth addressing the peptide vaccine-specific issues, where 
the major issue seems to be lower immunogenicity. This limitation is being effectively addressed through (a) 
combining with adjuvants such as β-defensin 2, HSP70, HBD-2, Matrix-M1, nanoparticles, (b) altering the 
size (molecular weight), and others. Adjuvants have shown to significantly boost immunogenicity but have 
not matched the current platforms such as RNA, adenovirus vector, and inactivated virus-based platforms40–42.

It is the fundamental phenomenon that changes in the amino acid order change the structure and function, 
giving the clue that the earlier reported MEBPVC (REF_SEQ) could have variants if the epitope order changed. A 
set of ten variants were generated manually to explore if the variants thus generated have altered immunogenicity.

The variants were analyzed at the sequence, structure, interaction and dosage levels. In homology modeling, 
it is a common rule of thumb that for any two sequences, if the sequence identity is > 30%, it is assumed that 
their 3D structures shall be similar and likely to have identical function43. Further, it is also believed that with 

Figure 4.   Immunoglobulin counts of MEBP variants (with adjuvants + HIS-tag) after (a) 1st dose, (b) 2nd dose, 
(c) 3rd dose (X axis—vaccine constructs, Y axis—counts per ml).
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the increase in the sequence identity, the structural similarity also increases, i.e., RMSD decreases. However, it 
is interesting to note that the variants show deviations from the rule of thumb. As can be seen from Table 2 and 
Table 3, there are many pairs that show deviations. There have been studies that proved that 3D structures of 
100% identical sequences were having natural conformations that have RMSDs as large as 24Å44. There have been 
studies where an all-α helix protein (Protein G) was engineered and transformed into an all-β protein(Protein 
Rop) by changing only 50% of the amino acid composition45–47. There is a need to experimentally verify the 
MEBP variant 3D structures through experimental structure determination techniques such as X-Ray Crystal-
lography, NMR and or Electron microscopy.

The analysis, indeed, strongly suggests that changing the epitope order in MEBPVC changes the structure 
and hence the various associated properties resulting in the alteration of immunogenicity of the variant. Hence 
more potent MEBPVCs can be identified if the protocol described in this article is followed. The step to generate 
a dataset of shuffled variants is key in the analysis as this step enables the comparative study which otherwise has 
not been reported till now in MEBP vaccine design protocols. MVP score has also been developed which provides 
an opportunity to rank and identify the most potent MEBPVC from the dataset. Further, the data generated 
becomes the necessary input for developing better scoring schemes and algorithms.

The MVP scores were calculated through summing the individual RMVP scores of TLR4/8. The RMVP scores 
had two influencers: positive and negative. The positive influencers majorly indicate the physicochemical param-
eters, stability parameters and binding affinity of the protein complex. It also gives an overall insight about the 
functional ability of the MEBP-TLR complex. Likewise negative influencers were also taken into consideration: 

Figure 5.   Immunoglobulin counts of MEBP variants (without adjuvants + HIS-tag) after (a) 1st dose, (b) 2nd 
dose, (c) 3rd dose (X axis—vaccine constructs, Y axis—counts per ml).
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disorderness, aggregation, RMSD and RMSF. The negative influencers directly incorporate the instability aspect of 
the MEBP-TLR complex to the MVP score. The RMSD and RMSF in depth analysis through molecular dynamic 
simulation provided data about the interaction stability and residue fluctuation (OPLS all atom forces fields and 
SPCE water model were used). SPVC_446 and SPVC_537 showed the highest MVP score and hence, are the 
most potential MEBPVCs from among the variant dataset. The normalized positive influencer scores of these 
two MEBPVCs were higher as it had positive influence over the stability and binding interactions. The normal-
ized negative influencer scores of these two MEBPVCs were lower as it inversely influenced the disorderness and 
binding affinity of the MEBPVCs. The RMSD and RMSF tend to be higher for highly disordered or misfolded 
proteins48. Hence the RMSD and RMSF were considered as the negative influencers while calculating the MVP 
score. Lower the RMSD and RMSF of the MEBPVCs, higher the stability. The lower RMSD and RMSF indicates 
higher stability and lower misfolding candidates i.e. SPVC_446 and SPVC_537.

Figure 6.   Concentration of IFN-γ for all MEBP variants ‘(a) with adjuvant + HIS-tag, (b) without 
adjuvant + HIS-tag) after the 1st, 2nd, and 3rd doses (X axis—vaccine constructs, Y axis—ng/ml).

Table 6.   MVP of each variant is calculated by adding receptor associated MVP (RMVP)s. RMVPs were 
calculated for the two receptors, TLR4 and TLR8 using the normalized values as described in the “Methods” 
section. Significant values are in bold.

MEBP vaccine potency (MVP)

MEBP variant ID RMVP(TLR4) RMVP(TLR8) MVP (TLR4 + TLR8)

REF_SEQ 3.933 4.662 8.595

SPVC_206 4.313 4.044 8.357

SPVC_214 0.366 3.995 4.361

SPVC_32 4.479 3.457 7.936

SPVC_357 3.914 2.916 6.830

SPVC_383 4.353 1.197 5.550

SPVC_387 4.119 2.444 6.563

SPVC_446 4.642 4.216 8.858

SPVC_537 4.529 4.371 8.899

SPVC_565 1.153 3.806 4.958
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Compared to REF_SEQ, all other variants trigger strong antibody responses. SPVC_537 is seen to trigger the 
higher titers of IgG + IgM. Of all the constructs, REF_SEQ triggers the weakest. IFN-γ is secreted by natural killer 
(NK) cells, which is activated through cell damage signals from infected or damaged cells through Cytotoxic T 
cells (CTLs). IFN-γ plays a major role in activation of macrophages, dendritic cells and T cells to curb the further 
downstream infection49. According to the MEBP dose versus IFN-γ response simulation, SPVC_446 triggers the 
highest concentration of IFN-γ and REF_SEQ has the lowest concentration of IFN-γ in the first dose. All the 
other higher responsive SPVCs were rejected based on the lower MVP score and stability. Similarly, the SPVCs 
that triggered higher antibody responses were also ignored, and more stable complexes were chosen to avoid 
possibility of protein aggregation and complications caused through misfolded proteins50.

It is pertinent to mention that the number of variants was restricted to ten out of a possible 3,628,800 (10! 
possibilities) unique variants of similar length. The peptide length was restricted to 183 amino acids. The scope 
of the work was to test if the immunogenicity changes with the epitope order in the MEBPVC. For some param-
eters, it was also observed that the changes in the biophysical and immune parameters were not significant. This 
can be attributed to the small sample size, restriction on the length of the construct, and manual shuffling of 
epitopes for such small changes. The next challenges are to work with a bigger dataset of variants, optimize the 
parameters influencing the MEBP vaccine design, gain deeper insights into the mechanism(s) behind the muta-
tions and their virulence and improvise the MVP score incorporating the knowledge and the decision making 
systems such as AI and ML51.

Materials and methods
In general, a MEBP sequence is constructed with three broad components (peptide sequence patterns), namely, 
Linkers (for example AAY, GPGPG, EAAAK), Adjuvants for example β-defensin 2 and HSP70, and predicted 
target specific MHCI and MHC II Epitopes (oligopeptides with size ranging from 8AA to 20AA). The MEBP 
sequence (REF_SEQ) published earlier is taken as a reference for this study25. Table 4 lists the properties of 
REF_SEQ MEBPVC.

Construction of MEBP and its variants.  The construction of the REF_SEQ is described elsewhere25. 
Using the REF_SEQ another nine MEBPVCs were generated by shuffling the epitope-linker set at the predesig-
nated positions of REF_SEQ (Fig. 7).

The generated MEBP variants are given unique IDs following the format as: SPVC_NNN, where SPVC stands 
for shuffled peptide vaccine candidate and NNN stands for a unique number. The ten sequences are provided 
as supplementary data (Supp. 1 file).

The following restraints were applied while generating the MEBP variants: (a) The position and order of N-ter-
minal adjuvant (β-defensin 2) followed by EAAAK (linker) and the C-terminal HIS-tag were kept unchanged. 
(b) The length of the construct was kept unchanged at 183AA only. (c) The B-cell-derived T-cell epitope (9AA 
long) plus the linker (AAY/GPGPG), together, were rearranged manually to create nine MEBPVC variants. (d) 
No distinction was made between MHC-I (green) and MHC-II (magenta) epitopes. The molecular weight, the 
sequence length, the isoelectric point (pI), the aliphatic index, the number of atoms, half-life, and the chemical 
formula remained identical for all the variants.

Figure 7.   Schematic template of a typical MEBPVC to generate variants from REF_SEQ. The MEBPVC 
contains five major components: (1) N-terminal adjuvant (blue color), (2) predicted MHC I epitopes (green 
color border, position number 1–5, TLDSKTQSL, GKQGNFKNL, CYGVSPTKL, KIADYNYKL, VVVLSFELL), 
(3) predicted MHC II epitopes (magenta color border, position number 6–10, IGINITRFQ, YGFQPTNGV, 
VLSFELLHA, LQIPFAMQM, IAIVMVTIM), (4) linkers AAY (orange color), GPGPG (cyan color), (5) 
C-terminal HIS-tag (red color). The MEBP variants were generated by shuffling the epitopes at the ten positions.
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Sequence alignment.  The formatting code, all-to-all sequence alignment among the members of the 
MEBP dataset was done using BioInt52, Biobhasha (https://​www.​biobh​asha.​org), and BOSv2.0 (Biological 
Object-Based Software (BOS): An Integrative Biological Programming Environment). Multiple sequence align-
ment and sequence alignment renderer were performed using clustalw (https://​www.​genome.​jp/​tools-​bin/​clust​
alw) and ESpript 3.0 (https://​espri​pt.​ibcp.​fr/​ESPri​pt/​cgi-​bin/​ESPri​pt.​cgi) 53,54.

Prediction of immunological and biophysical properties of MEBPVCs.  The following relevant 
immuno- (antigenicity and allergenicity) and biophysical- (protein stability index, surface/solvent accessibility, sol-
ubility, inherent intrinsic disorder, aggrescan, hydrophobicity) properties were predicted using the online/offline 
web servers/tools to compare and develop a rationale for identifying the more potent ones.

Antigenicity.  Antigenicity is the extent to which the host immune system responds to the antigen (foreign 
body) triggering both humoral and cellular responses. VaxiJen2.0 server (http://​www.​ddg-​pharm​fac.​net/​vaxij​
en/​VaxiJ​en/​VaxiJ​en.​html) was used to predict the antigenicity of the MEBP variants55. The result from VaxiJen 
2.0 categorizes the peptide input into either Probable ANTIGEN or Probable NON-ANTIGEN. Only those vari-
ants which were categorized as Probable ANTIGEN were selected for further processing.

Allergenicity.  Allergenicity is the extent to which an immunogen or antigen induces allergic reactions in the 
host system resulting in discomfort and or inconvenience or any allergic conditions such as asthma, diarrhea, 
skin rashes, and others. AllerTop v2.0 server (https://​www.​ddg-​pharm​fac.​net/​Aller​TOP/) was used to predict 
the allergenicity of the MEBP variants56. The output from AllerTop v2.0 indicates if the input sequence is an 
allergen or not using the following restricted text values i.e. PROBABLE ALLERGEN or PROBABLE NON-
ALLERGEN. Only those variants were selected for further processing which were categorized PROBABLE 
NON-ALLERGEN.

Peptide/protein stability index.  Protein stability is an important property especially to understand the struc-
ture-function and activity relationships of a protein. The EXPASY ProtParam server (https://​web.​expasy.​org/​
protp​aram/) was used for predicting the Instability index of the nine MEBPVCs57. The instability index was 
modified to the stability index by subtracting the score from 100. A score of more than 60 henceforth indicates 
the input protein to have better stability.

Solvent accessibility.  Solvent accessibility is an important feature for understanding and interpreting the struc-
ture–activity relationship58. The solvent accessibility or the surface exposed residues provide data that helps in 
various predictions such as protein–protein interactions, receptor-ligand interactions, drug designing, protein 
folding, and others. Scratch Protein Predictor (http://​scrat​ch.​prote​omics.​ics.​uci.​edu) was used to predict the 
solvent accessibility of the variants59. The output from Scratch Protein Predictor contained residue level acces-
sibility with higher values indicating higher accessibility and vice versa. In the context of peptide vaccine design, 
higher accessibility and especially the residues with high accessibility in the epitope regions of MEBP is preferred 
since to elicit an immune response, the epitopes in the vaccine construct should be accessible, be exposed, and 
be on the surface. The accessibility predictor gives a string output, equal to the length of the sequence, with ‘e’ 
(for each exposed/accessible residue) and ‘b’(for each buried residue). A more meaningful accessibility score 
in the context of MEBP vaccine design is percent epitope accessibility (PEA) defined and calculated as per the 
formula given below:

The higher PEA value is considered favorable.

Solubility.  Solubility of protein is an important biophysical property that depends on the amino acid compo-
sition and the 3D structure. Solubility influences the production of a protein and its half-life in the cell. Less 
soluble proteins are a major concern since the proteins synthesized may precipitate out or form inclusion bodies 
which lead to various disease states. SoluProt v1.0 server (https://​losch​midt.​chemi.​muni.​cz/​solup​rot/) was used 
to predict the solubility of all the MEBP variants60. For each input sequence, i.e. an MEBP variant in the current 
context, the SoluProt v1.0 server gives a score in the range of 0–1.0 where > 0.5 score indicates soluble and < 
0.5 indicates insoluble peptide. The vaccine constructs with higher solubility (> 0.5) were selected for further 
processing.

Inherent intrinsic disorder.  Intrinsically disordered proteins (IDPs) [a.k.a intrinsically unstructured proteins 
(IUPs)] are proteins that deviate from the dogma that every protein has a rigid 3D structure. IDPs or intrinsi-
cally disordered regions (IDRs) regulate many important biological functions such as transcription regulation, 
tissue-specific expression, and other signal transduction pathways. IDRs show high conformational changes, 
influence the stability of the protein, and affect the binding modes during ligand-receptor interactions. These 
regions play an important role in protein-protein interactions. IUPred2A server (https://​iupre​d2a.​elte.​hu/) was 
used to predict the disorder of the MEBP variants61. The output has residue-wise disorder values and contiguous 
IDRs. A value >0.5 is considered disordered and the value <0.5 is considered ordered. An average disorder for 

PEA =

Total count of ′e′s in the EpitopeRegions of theMEBPVC sequence

Total count of ′e′s in theMEBPVC sequence
× 100

https://www.biobhasha.org
https://www.genome.jp/tools-bin/clustalw
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https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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https://web.expasy.org/protparam/
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each MEBP variant was calculated using the residue-wise disorder. The variants with the low average disorder 
are considered for further analysis.

Protein aggregation.  Protein aggregation is a biological process in which protein/peptide subunits instead of 
forming regular and functional assemblages, misfold, aggregate (intra- or extracellularly), and precipitate. Pro-
tein aggregation is one of the important phenomena implicated in diseases such as Parkinson’s, Alzheimer’s, and 
prion diseases62. To predict the aggregation for the variants, we used the AGGRESCAN server (http://​bioinf.​uab.​
es/​aggre​scan/)63,64. Variants with lower predicted aggregation were considered for further analysis.

Hydrophobicity.  Hydrophobicity is the ‘water-hating/avoiding/repelling’ property of molecules. Hydropho-
bic amino acids tend to fold and shrink together to minimize contact with the solvent water or hydrophilic 
surroundings. The hydrophobic effect is a well-known important property to understand the 3D structure of 
a protein65. Hydrophobic interactions are an important driving force in protein folding hence the overall 3D 
structure. The shape determines the function of the protein. In the context of MEBPs which are the potential 
immunogens, higher hydrophobicity indicates more globularity, rigid 3D structure, and associated accessible 
surface residues. Kyte and Doolittle’s method was used to generate the Hydrophobicity values by using EMBOSS 
pepwindow server (https://​www.​ebi.​ac.​uk/​Tools/​seqst​ats/​emboss_​pepwi​ndow/)66. The outputs were screened 
and filtered for higher hydrophobicity and used for further processing.

Dosage versus immune response simulation.  C-IMMSIM (http://​150.​146.2.​1/C-​IMMSIM/​index.​
php) is one of the most commonly used in silico immune system simulation servers. Given the vaccine candi-
date (MEBP amino acid sequence), the dosage volume, and dosage intervals, C-IMMSIM predicts the humoral 
and cellular immune responses in the host system over a period of time. The server uses machine learning tech-
niques to predict the immune responses of immunogens. The time step of injection, 3 doses, was set at 1 h, 84 h 
(3.5 days), and 168 h (7 days). The simulation steps and simulation volume were kept at 1100 and 10.

Structural studies.  Ab initio 3D structure prediction.  A local installation of the I-TASSER-suite was used 
to predict the tertiary structures of the MEBP variants. The suite uses the Local Meta-Threading server (LOMET) 
to find out the suitable template structure from the input sequence. In the second step, the server performs the 
template-based fragment assembly simulation to create a full structure and the final step is that it will produce 
the top five predicted models with TM-score (Quantitative assessment of similarity between protein structures) 
and C-score (confidence score for estimating the quality of predicted models).

Molecular docking and binding affinity calculations.  The protein-protein docking was performed in the Dis-
covery studio (Z_DOCK module)67. The receptors (TLR4 and TLR8) were downloaded from RCSB with 
PDBIDs:4G8A, 3W3M, and the MEBP variants were used as ligands. The docking resulted in ~2000 clusters 
with each cluster containing ~70 to 80 poses of ligands (MEBP variants) with the receptor (TLR4 and TLR8). 
The top poses with the highest Z_RANK-SCORE were selected to find R_DOCK-SCORES (Refined docked 
protein). The R_DOCK uses CHARMm energy to optimize docked poses produced by the Z_DOCK module. 
The top hits from the R_DOCK module were selected for further simulation studies. The binding affinities were 
calculated using the MMGBSA module from Discovery studio68.

Molecular dynamics simulation.  The MEBP variants were scored and assorted based on the favorability of 
each property it represented individually. Among hundreds of variants, we have selected the top 10 MEBP for 
finer investigation to produce a single potent MEBP vaccine candidate based on RMVP score (MEBP vaccine 
potency). The molecular dynamics simulation helps us study the stability and interaction of the MEBP-TLR 
complex in an ion based solvent system. All the top-scored MEBP vaccine candidates were subjected to molecu-
lar dynamics simulation using GROMACS v.2021 and topologies were generated using the OPLS force field. 
The system was solvated in a cubic box conformation using SPCE water model, energy minimized until the 
steepest descent energy, i.e. atoms are realigned to reduce the maximum net forces on them. The minimized 
atoms exert least forces on each atom and therefore serves as a favourable start point for molecular dynamics 
simulations. Pressurized and increasing temperature conditions were implemented for 100 ps. The molecular 
dynamics simulation was produced for a span of 100 ns over the centered projected trajectory. RMSD and RMSF 
were calculated using the gmx_rms option with reference to the MEBP Vaccine complex to TLR4 and TLR8 for 
all the ten MEBP TLR4/8 complexes.

Implementation of a scoring scheme for ranking and discovering the best MEBPVC from the library of vari-
ants..  The values obtained for the ten MEBPVC variants for the above discussed properties were grouped into 
(a) positive influencers (Stability, Accessibility, Solubility, Hydrophobicity, Antigenicity, ZrankScore, Binding 
Affinity (MMGBSA) b) negative influencers (Disorder, Aggregation, RMSD and RMSF). All the values of a 
property were normalized using normalization by averaging i.e.

where x is the original value of the property, n is the normalized value, i is the index of the variant, x is the aver-
age, all the variants.

xn,i =
xi

x

http://bioinf.uab.es/aggrescan/
http://bioinf.uab.es/aggrescan/
https://www.ebi.ac.uk/Tools/seqstats/emboss_pepwindow/
http://150.146.2.1/C-IMMSIM/index.php
http://150.146.2.1/C-IMMSIM/index.php
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where k, l are the normalized values of each positive and negative influencers (property of the variant) respec-
tively. Where m is the receptor i.e. TLR4(1) or TLR8(2).

Final MVP for each variant, i, was calculated by summing individual RMVPs.

Conclusions
In pursuit to design and or discover more potent MEBPVCs, given the list of predicted epitopes, a methodology 
to generate variants and three predictors, percent epitope accessibility (PEA), receptor-specific vaccine potency 
(RMVP) and MEBP vaccine potency (MVP) scores have been introduced to quantify and enable an opportunity 
for the development of efficient MEBP vaccine design platform. This enabled not only ranking but also identify-
ing the best MEBPVC. Thus, the results prove that the reported MEBPVC (REF_SEQ) is not the most potent 
candidate after all. In this article, only the order of epitopes has been used for generating variants. However, 
other parameters such as length of epitopes, length of the sequence, copy numbers, and or other parameters 
should also be explored in the future to design and discover more potent MEBPVCs. In conclusion, our in silico 
analysis and results indeed prove that changes in the position or order of the epitopes change the properties of 
the MEBPVC. Henceforth, the dataset generation method, PEA, RMVP, and MVP score should enable generat-
ing novel MEBPVCs and may be adopted in all MEBPVC design pursuits. The method enables the design and 
discovery of the computationally validated most immunogenic MEBPVC, each having a unique epitope order. 
Experimental validation and verification has no substitute; hence, the computationally validated vaccine con-
structs, with IDs, SPVC_446 and SPVC_537, need to be validated through in vitro, and in vivo experimental 
studies. The experimental validation provides important insights and inputs for improvising and developing a 
more efficient and more reliable scoring function and the improved versions of the software.

Data availability
All data generated or analysed during the study are included in the submitted manuscript.
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