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Abstract
1. Acoustic recordings of the environment can produce species presence–absence 

data for characterizing populations of sound‐producing wildlife over multiple spatial 
scales. If a species is present at a site but does not vocalize during a scheduled audio 
recording survey, researchers may incorrectly conclude that the species is absent 
(“false negative”). The risk of false negatives is compounded when audio devices have 
sampling constraints, do not record continuously, and must be manually scheduled 
to operate at pre‐selected times of day, particularly when research programs target 
multiple species with acoustic availability that varies across temporal conditions.

2. We developed a temporally adaptive acoustic sampling algorithm to maximize de‐
tection probabilities for a suite of focal species amid sampling constraints. The 
algorithm combines user‐supplied species vocalization models with site‐specific 
weather forecasts to set an optimized sampling schedule for the following day. 
To test our algorithm, we simulated hourly vocalization probabilities for a suite of 
focal species in a hypothetical monitoring area for the year 2016. We conducted 
a factorial experiment that sampled from the 2016 acoustic environment to com‐
pare the probability of acoustic detection by a fixed (stationary) schedule versus a 
temporally adaptive optimized schedule under several sampling efforts and moni‐
toring durations.

3. We found that over the course of a study season, the probability of acoustically 
capturing a focal species (given presence) at least once via automated acous‐
tic monitoring was greater (and acoustic capture occurred earlier in the season) 
when using the temporally adaptive optimized schedule as compared to a fixed 
schedule.

4. The advantages of a temporally adaptive optimized acoustic sampling schedule 
are magnified when a study duration is short, sampling effort is low, and/or spe‐
cies acoustic availability is minimal. This methodology presents the opportunity to 
maximize acoustic monitoring sampling efforts amid constraints.
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1  | INTRODUC TION

Automated remote acoustic monitoring of wildlife offers a means 
to characterize the distribution of sound‐producing species—such 
as birds, amphibians, bats, and insects—across vast landscapes 
(Dawson & Efford, 2009; Marques et al., 2013). Because acquiring 
species abundance data is often logistically impractical at large spa‐
tial scales, research programs may instead collect species detec‐
tion–nondetection data, an endeavor with which automated remote 
acoustic monitoring is compatible (Cerqueira & Aide, 2016; Furnas 
& Callas, 2014). In a typical passive remote acoustic monitoring pro‐
gram, audio recording devices deployed at fixed locations take envi‐
ronmental recordings based on a schedule that has been manually 
input to the device. Commercially available recording units often 
store recordings directly on the device (e.g., Wildlife Acoustics, 
2016), which obligates the researcher to be physically present to re‐
trieve data from a storage card. Alternatively, recordings units may 
expedite data access and analysis by sending files in near‐real time to 
a server using a cellular or Wi‐Fi network (McKown, Lukac, Borker, 
Tershy, & Croll, 2012; ARBIMON: Aide et al., 2013; Balantic & 
Donovan, 2019a; Gage & Farina, 2017). A drawback of using the cel‐
lular network to transmit audio files is that data plans can be costly 
and may constrain the amount of acoustic sampling that is possible, 
which provided the primary motivation for this work.

Regardless of whether audio recordings are stored on board 
the device or transmitted automatically over a network, remote 
acoustic monitoring of wildlife presents a multitude of opportuni‐
ties and challenges (Gibb, Browning, Glover‐Kapfer, & Jones, 2019). 
Monitoring programs can collect massive volumes of audio data—
often too much for researchers to listen to and examine manually. 
Methodologies that permit automated detection of target sounds 
from audio recordings offer a means for coping with large data 
volumes, but can be fraught with detection mistakes (Shonfield 
& Bayne, 2017). Automated detection methods may fail to detect 
sounds issued by species of interest (false negatives), or mistakenly 
detect false alarms not issued by the target species (false positives; 
Acevedo, Corrada‐Bravo, Corrada‐Bravo, Villanueva‐Rivera, & Aide, 
2009; Balantic & Donovan, 2019a; Buxton & Jones, 2012; Duan et 
al., 2013; Marques et al., 2013). Occupancy modeling frameworks 
are a well‐established approach for accommodating the detection 
mistakes that arise from remote acoustic monitoring and can deal 
both with false negatives (Cerqueira & Aide, 2016; Furnas & Callas, 
2014; Rich, Beissinger, Brashares, & Furnas, 2019) and false positives 
(Balantic & Donovan, 2019b; Banner et al., 2018; Chambert, Miller, 
& Nichols, 2015; Chambert, Waddle, Miller, Walls, & Nichols, 2018). 
However, false negatives due to suboptimal automated detection 
methodologies are distinct from false negatives that occur as a con‐
sequence of deficient audio sampling schedules. Research programs 
with limited audio sampling capacity may benefit from methods that 
maximize target detection probabilities given that a target species 
is present.

The methodology we outline in this work arose from our real 
field experience implementing a remote acoustic monitoring study. 

We deployed a proof‐of‐concept remote acoustic monitoring pro‐
gram in the Colorado‐Sonoran Desert of California, on Bureau of 
Land Management (BLM) public land (Balantic & Donovan, 2019a). 
We installed stationary smartphone‐based acoustic monitoring units 
at 16 sites within the BLM‐managed Riverside East Solar Energy 
Zone, a 599‐km2 parcel designated for utility‐scale solar energy de‐
velopment. As a pilot study, the work focused on development of 
smartphone‐based monitoring methodology rather than ecological 
inference; monitoring locations were selected in microphyll wood‐
lands to record songbirds, and in historical breeding pond locations 
in hopes of recording Couch's Spadefoot (Scaphiopus couchii), an 
amphibian whose current distribution status across the area is un‐
known. The use of smartphones for near real‐time data transmis‐
sion, in combination with our limited research budget, constrained 
us to taking n = 9 total minutes of recordings per monitoring location 
per day. The constraints imposed by data transmission costs were 
outweighed by the logistical benefit of having access to our audio 
data the day after it was recorded, despite our physical location over 
4,000 km from the study site.

The difficulty with manually setting a recording schedule to sur‐
vey wildlife is that truly present species do not always provide an 
acoustic cue during the recording session. If a species is present but 
does not announce itself during scheduled recording periods, the 
species is logged as absent, resulting in a false negative (MacKenzie 
et al., 2002). Across time and space, deficient fixed recording sched‐
ules can fail to adequately describe a pattern of occupancy, poten‐
tially resulting in conservation management decisions that are at 
odds with management objectives. For example, if an amphibian 
species of interest only vocalizes after the first substantial rainfall 
of the season, as is the case for Couch's Spadefoot (S. couchii) in the 
Sonoran Desert (Mayhew, 1965), and no recordings were scheduled 
at a time that captures this event, then researchers may conclude 
the species is likely absent. Resource managers may subsequently 
use this information to make land use decisions that unwittingly sab‐
otage their own conservation goals. As such, low species detection 
probabilities motivate the development of sampling protocols that 
improve the chances of detecting a species given that it is present 
(MacKenzie et al., 2006).

The task of avoiding false negatives is magnified when large‐
scale acoustic monitoring regimes attempt to track multiple focal 
species available under varying conditions (Manley, Zielinski, 
Schlesinger, & Mori, 2004; McKown, 2012). Focal species may 
have diverse behaviors and life histories, driving vocalization 
activity patterns that vary across time of day, time of year, and 
weather conditions. For example, a comprehensive monitoring 
program may be interested in tracking the occurrence patterns of 
breeding birds that vocalize on spring mornings with minimal rain 
and wind, seasonally available amphibians that only vocalize after 
fall monsoon rains, and nocturnally active species such as nightjars 
(Caprimulgidae family) or coyotes (Canidae family), as was the case 
in our pilot monitoring program. Certain species within the focal 
set may be of special concern and therefore merit higher monitor‐
ing priority. Thus, remote acoustic monitoring programs targeting 
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multiple species face the prospect of low detection probabilities 
for some or all targets if using a fixed, manually applied schedule 
for sampling, particularly if sampling is constrained by mobile data 
transmission costs.

Alongside detection challenges, acoustic monitoring programs 
often encounter constraints that restrict sampling efforts, prompt‐
ing the need for guidance in the development of effective sampling 
schedules that avoid squandering key resources. Contingent on pro‐
gram circumstances, budget and logistical limitations may curb the 
total number of allowable audio samples, total amount of sampling 
time, and sample file sizes for storage or efficient transfer over a 
mobile or Wi‐Fi network (Gage, Joo, Kasten, Fox, & Biswas, 2015). 
Even if a Wi‐Fi or cellular network is available to facilitate the real‐
time transmission of audio recordings (allowing researchers to avoid 
collecting recordings from on‐site memory cards), some portion of 
the research budget is required to support the Wi‐Fi or cellular data 
plan, which may limit the total recording time that can be taken and 
transmitted over the network. Additionally, if network signal is weak, 
it is prudent to limit recordings to short intervals of time (~1–2 min) 
to ensure efficient and reliable file transmission over the network, 
particularly if using high sampling rates (44.1 + kHz) and/or uncom‐
pressed file formats (e.g., .wav; C. Balantic & T. Donovan, unpub‐
lished data).

Addressing these emergent acoustic monitoring challenges is 
crucial for building an expedient acoustic monitoring framework. As 
human land use and climate change continue to influence wildlife 
ranges and populations, there is a need to characterize status and 
trends of species that have been poorly understood and described 
(Thompson, 2004). Lacking a framework for optimizing acoustic 
sampling schedules amid constraints, landscape‐scale bioacoustic 
monitoring programs may fail to take full advantage of their moni‐
toring efforts, resulting in compromised scientific inference and sub‐
optimal conservation management decisions.

In this paper, we introduce a novel, temporally adaptive acous‐
tic monitoring methodology for recording devices that can com‐
municate remotely via Wi‐Fi or cellular network. Devices that can 
remotely transmit recordings are inherently equipped to receive ex‐
ternal instructions about when to record on the following day. Our 
method optimizes these instructions across time and monitoring lo‐
cations by tracking p*, also known as p(capture), the probability of 
acoustically capturing (detecting) a target species at least once at any 
monitoring site at any time during the study (sensu Otis, Burnham, 
White, & Anderson, 1978; White, Anderson, Burnham, & Otis, 1982). 
Note that the concept of p*, the probability of capture, should not be 
confused with the concept of p in occupancy modeling, which indi‐
cates the probability of detection. By tracking p* for each species at 
each site on a daily basis, the timing of future acoustic surveys is al‐
lowed to vary across sites as a function of information from previous 
surveys. Once p* reaches a user‐defined threshold for target species 
at a given site, those species are released from future monitoring pri‐
ority, allowing the recording schedule to focus more heavily on spe‐
cies that remain below target thresholds. Acoustic monitoring thus 
offers an opportunity to implement flexible, temporally adaptive 

sampling schedules that adjust automatically to optimize detection 
probabilities across a suite of focal species.

1.1 | Objectives

The methodology described here was motivated by our real field ex‐
periences doing remote acoustic monitoring for a suite of focal spe‐
cies, using smartphones that transmitted audio files over the cellular 
network. The goal of this work was to design a temporally adaptive 
automated acoustic sampling algorithm and assess its potential for 
maximizing detection of multiple focal species. Specific objectives 
were to (a) develop a temporally adaptive automated acoustic sam‐
pling algorithm for acoustic wildlife monitoring subject to species 
prioritization and sampling constraints, (b) simulate hourly vocaliza‐
tion probabilities for nine species across 133 sites in a hypotheti‐
cal monitoring area for the year 2016, and (c) implement a 2 × 6 × 2 
factorial experiment to compare the probability of acoustic detec‐
tion across sites in the 2016 vocalization simulation under differ‐
ing monitoring protocols: schedule type (n = 2 levels; fixed schedule 
vs. optimized temporally adaptive schedule), sampling effort (S = 6 
levels: 2, 5, 10, 20, 30, or 40 sampling minutes per day at each site), 
and monitoring duration (D = 2 levels: Full Year [d = 366 days for the 
2016 leap year] vs. bird breeding season only [d = 31 days]).

2  | MATERIAL S AND METHODS

2.1 | Objective 1: Develop an optimized adaptive 
sampling algorithm subject to species prioritization 
and sampling constraints

We engineered a temporally adaptive sampling algorithm (Figure 1) 
designed to maximize detections across K target species and R study 
sites for D days, conditional on presence. The sampling schedule's 
unit of temporal adaptation was 1 day (i.e., the schedule updated 
every 24 hr and could not change mid‐day). In this approach, audio 
samples were collected on day d. Each day, based on these samples 
and forecasted temporal data, an optimized recording schedule was 
determined for the next day (d + 1).

Three fundamental user‐defined inputs provided the functional‐
ity for schedule optimization (Figure 1):

1. Species vocalization models: First, we created logistic regression 
vocalization models that reflected our knowledge about each 
of the K target species' vocalization patterns. We then used 
these models to predict the probability of vocalization (pv) 
for each species at each monitoring site during any hour of 
the day given existing weather and temporal conditions (User 
Input 1; Figure 1a).

2. Species monitoring priority weights: For each species in the focal 
group, we assigned an initial weight that reflected its user‐de‐
fined monitoring priority throughout the entire study period. 
Weights may be equal across focal species, or asymmetrical if a 
research program has varied species monitoring priorities and/or 
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F I G U R E  1   Objective 1 Workflow for an optimized temporally adaptive sampling algorithm subject to species prioritization and sampling 
constraints

(a) User Input 2: 
Species Monitoring Priority Weights

for site 1 through R, and species 1 through K
Example Input: 

(b) Obtain tomorrow's
weather forecast

(a) User Input 1: 
Species Vocalization Models

Example Input:
Vocalization model for one target species:

Model M = 0 +1*sin(2*pi*day.of.year/366)  –2*cos(2*pi*hour.of.day/12)–
0.000005*time.to.sunrise2 + 0.009*temperature – 0.000001*temperature3–

0.25*wind.speed

pv= exp(M) / (1 + exp(M))

(c) Generate vocalization probabilities (pv) for each
species-site-hour of the sampling period

(d) Calculate overall score for each site-hour (dot-
product of today's species weights vector and species

vocalization probabilities) 

(e) Set survey schedule: for each site, allot daily
recording surveys to the hours containing highest

scores generated in step d

(f) Collect acoustic samples based on schedule for this
day

(g) Compute probability of acoustic capture that day
(p*d) and overall cumulative probability of acoustic

capture (p*) values for each species at each site

(h)  Update daily species weights vector at each site by
comparing p* to the maximum cumulative probability
of at least one acoustic capture during the monitoring

period (p*max)

Species-
site-weight

vector,
Day = 1

Species-site-
weight vector 

Day = 2:nDays

(a) User Input 3: 
Species Acoustic Capture

Thresholds (p*max) 
Example Input: 
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anticipates greater or lesser calling availability of certain species 
a priori (User Input 2; Figure 1a). The algorithm updated these 
weights on a daily basis as monitoring progressed.

3. Species acoustic capture thresholds: Third, for each species and site 
combination, we chose a monitoring threshold that informed the 
allocation of samples at each site. We designated this user‐de‐
fined monitoring threshold as p*

max, or the maximum cumulative 
probability of at least one acoustic capture during the monitor‐
ing period, if the species is present (Otis et al., 1978; White et 
al., 1982). For example, a p*

max value of .95 for a given species 
at a given site indicated that monitoring should continue for this 
species at this site until the probability of detecting the species 
at least one time across the full monitoring period (D) met or ex‐
ceeded .95 (i.e., monitor until p* ≥ p*

max; User Input 3, Figure 1a).

These three key inputs drove the optimized schedule (Figure 1), and 
utilized functions within the R package (R Development Core Team, 
2019) AMMonitor on day d to produce the optimized recording sched‐
ule for each site on day d + 1. AMMonitor is a package intended to sup‐
port adaptive management of biodiversity through remote monitoring 
methods and includes functions for automatic detection of target 
wildlife sounds with mitigation of false‐positive detections (Balantic & 
Donovan, 2019a), dynamic occupancy modeling from acoustic moni‐
toring data (Balantic & Donovan, 2019b), and the temporally adaptive 
sampling algorithm described herein, which is implemented in the 
AMMonitor function scheduleOptim().

For each day d of monitoring, we used AMMonitor's temporalsGet() 
function to obtain site‐specific, hourly weather forecast data for the 
next day (d + 1). We combined this temporal data with the species vo‐
calization models to predict each species' hourly probability of vocal‐
ization (pv) at each site on day d + 1, hereafter “site‐hour” (Figure 1b,c). 
Next, the AMMonitor function scheduleOptim() calculated a single 
overall score for each site‐hour, computed as the dot‐product of the 
species weights vector and the species vocalization probabilities 
vector (Figure 1d). On day d = 1, the weights vector consisted of the 
species monitoring weights assigned at the start of the monitoring 
program (Figure 1a). In later iterations, it was a vector updated based 
on the probability of acoustic capture (p*) computed from previous 
sampling intervals (Figure 1h). The site‐hour scores were then ranked 
for each site, identifying the optimal hour(s) for sampling within 
each site for day d + 1. The scheduleOptim() function then scheduled 
S 1‐min samples, evenly spaced, into the highest scoring hour(s) for 
each site for day d + 1 (Figure 1e). The schedule was then sent to 
the recording unit, which collected audio samples as instructed the 
following day (Figure 1f). Based on the optimized recording schedules 
(which could vary from site to site) and the pv associated with that 
hour for each species, we then computed p*

d for each species at each 
site, where p*

d was defined as the probability of detecting the species 
at least once that day given the sampling schedule (Figure 1g). We 
recomputed the cumulative probability of acoustic capture across all 
previous days (p*) for each species at each site at the end of each 
day (Figure 1g). The daily update of p* permitted priority weights of 
each species at each site to shrink or grow based on how likely it was TA
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that the species has already been adequately acoustically captured 
by previous sampling (Figure 1h). When p* equaled or exceeded our 
chosen p*

max threshold at a given site, the species' updated weight at 
that site dropped to zero, allowing remaining sampling to emphasize 
species for which acoustic capture remained inadequate. The algo‐
rithm repeated daily until the sampling period D was complete or until 
all p* ≥ p*

max for each species at each site.

2.2 | Objective 2: Simulate hourly vocalization 
probabilities for nine species across 133 sites in a 
hypothetical monitoring area for the year 2016

2.2.1 | Study site

To test the utility of the algorithm, we simulated hourly vocalization 
probabilities for nine species across 133 sites for 366 days (2016 
was a leap year), and then sampled from this acoustic environment 
in Objective 3. Our focal study area in this work was the Bureau 
of Land Management's (BLM) Riverside East Solar Energy Zone, 
a 599 km2 parcel allocated as a utility‐scale solar renewable en‐
ergy hub in southeastern California, USA. The Riverside East Solar 
Energy Zone contains 133 sites actively monitored under an adap‐
tive management protocol for vegetation indicators (Bureau of Land 
Management, 2016). We used these 133 sites as study locations for 
our simulation, to investigate the possibility of implementing tempo‐
rally adaptive sampling in the field at a large scale.

2.2.2 | Study species

Based on literature and the monitoring interests of U.S. BLM, 
we selected nine study species for this simulation: Black‐tailed 
Gnatcatcher (Polioptila melanura), Common Poorwill (Phalaenoptilus 
nuttallii), Couch's Spadefoot (Scaphiopus couchii), Coyote (Canis la‐
trans), Eurasian Collared‐Dove (Streptopelia decaocto), Gambel's 
Quail (Callipepla gambelii), Lesser Nighthawk (Chordeiles acutipennis), 
Phainopepla (Phainopepla nitens), and Verdin (Auriparus flaviceps). 
These species represented a mix of phylogenetic classes, diurnal and 
nocturnal vocalizers, early and late‐year vocalizers, common and un‐
common vocalizers, residents and nonresidents, and species that are 
of conservation concern versus invasive species (Table 1).

2.2.3 | Vocalization models

We used the AMMonitor function simGlm() to create literature‐based 
logistic regression models that predicted the probability of vocalizing at 
least once during a single hour of a given day for all nine target species 
(pv), conditional on presence. This function produced a statistical model 
of class “glm” (generalized linear model) in R. Model covariates for any 
given species included date, hour of day, lunar phase, and proximity to 
sunrise and/or sunset, as well as weather conditions such as tempera‐
ture, wind, and precipitation. In the interest of simplicity, and because 
this method focused on the probability of acoustically capturing a spe‐
cies given presence, we did not include any spatial (habitat) covariates.

To accommodate the circular nature of temporal predictive vari‐
ables like day of year, hour of day, and lunar phase, we modeled sine 
and cosine‐based coefficients. For example, we modeled hour of the 
day on a 24‐hour scale as sin(2*pi*hour.of.day/24) and cos(2*pi*hour.
of.day/24). To provide finer control over the modeling outcome, we 
also modeled hour of the day on a 12‐hour scale as sin(2*pi*hour.
of.day/12) and cos(2*pi*hour.of.day/12). To illustrate with a hypo‐
thetical example, the 0‐intercept model M describes the vocalization 
process of Eurasian Collared‐Dove (Streptopelia decaocto):

The probability of vocalizing at least once during a given hour 
on a given day (pv) was subsequently obtained by applying the logit 
link function:

We developed logistic regression models that reflected our liter‐
ature‐based knowledge about vocalization activity for all nine focal 
species (Table 2). All models used some combination of distance to 
sunrise/sunset and/or circular temporal variables (day of year, time 
of day) modeled with sin and cosine. We visualized the impacts of 
these variables on each species' vocalization probability in Figure 2. 
Temperature and wind speed were included for all diurnal avian spe‐
cies (U. S. Geological Survey, 2001). The nocturnal avian species 
models included variables for wind speed and cosine of the lunar 
phase because vocal availability may be improved on moonlit nights 
(Woods, Csada, & Brigham, 2005). The coyote model also contained 
the cosine of the lunar phase because this species may be more vo‐
cally active at the new moon (Bender, Bayne, & Brigham, 1996). The 
Couch's Spadefoot model included rain accumulation within the past 
24 hr (Mayhew, 1965). Based on the literature, we made Couch's 
Spadefoot, Coyote, and Lesser Nighthawk less vocally available and 
thus more difficult to detect (Table 2).

2.2.4 | Calculate pv for each site‐hour for each 
species at each location

For each day of 2016, we acquired hourly weather data for all 133 
study sites using the AMMonitor function temporalsGet(). This func‐
tion utilized the Dark Sky API (Dark Sky, 2017) to provide hourly 
data for precipitation intensity, precipitation probability, tempera‐
ture, dew point, pressure, wind speed, cloud cover, ultraviolet index, 
visibility, and ozone, as well as the daily sunrise time, sunset time, 
and lunar phase associated with each monitoring site. The function 
appended variables such as the absolute value of time to sunrise 
or sunset, predicted rain accumulation in the previous 24 hr, day of 
year, and hour of day, and the aforementioned circular sine and co‐
sine‐based predictors. We supplied the finalized covariate dataset 
and the class glm vocalization models (n = 9) to R's predict() function 
to generate the probability of vocalization (pv) for each species, at 
each location, during each hour for the year 2016 in its entirety. This 

M=0+1∗ sin
(

2∗pi∗day.of.year∕366
)

−2∗cos
(

2∗pi∗hour.of.day∕12
)

−0.000005∗

time.to.sunrise2+0.009∗ temperature−0.000001∗ temperature3−0.25∗wind.speed

pv=exp (M)∕(1+exp (M))
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resulted in a dataset consisting of 9 species * 133 sites * 24 hr * 366 
days = 10,514,448 pv records from which to sample in Objective 3.

2.3 | Objective 3: Apply both the optimized 
schedule and fixed (stationary) sampling schedule 
to the simulated environment and compare 
performance of the optimized schedule and fixed 
schedule at different sampling efforts and study 
season lengths

We implemented a 2 × 6 × 2 factorial experiment that subsampled 
the Objective 2 vocalization simulation. The experiment consisted 
of two scheduling treatments (Tr = optimized or fixed) at six sam‐
pling effort levels (S = 2, 5, 10, 20, 30, or 40 min per day of sam‐
pling) and under two study durations (D = “Full Year (366 days)”: the 
full 2016 year using all nine species, and “March Only (31 days)”: a 

sole focus on the March 2016 breeding season, where most focal 
species were expected to be especially active and where Couch's 
Spadefoot was omitted because it was not expected to be active).

For the Full Year Optimization treatment, we applied our daily tem‐
porally adaptive sampling protocol beginning on January 1, 2016, and 
ending on December 31, 2016. For the March Only Optimization treat‐
ment, the temporally adaptive sampling protocol began on March 1, 
2016, and concluded on March 31, 2016. In both cases, we set each initial 
Species monitoring priority weight to be equal at each site (1 divided by the 
total number of focal species; Table 3). Additionally, we selected Species 
acoustic capture thresholds (p*

max) of 0.95 for each species at each site.
For the fixed treatment, we created stationary schedules for each 

sampling effort (S) (Table 4) in an effort to make them as competi‐
tive as possible with the optimized treatment at the same sampling 
effort. The S = 2‐min sampling effort consisted of a 1‐min sample in 
the morning (08:00:00) and a 1‐min sample at night (23:00:00). At 

Species Model

Black‐tailed 
Gnatcatcher (BTGN)

−0.3 − 0.002*day.of.year + 1*sin(day.of.year) − 0.5*cos(hour12) − 0.0
00007*time.to.sunrise2 + 0.009*temperature – 0.000001*tempera‐
ture3 − 0.35*wind.speed

Common Poorwill 
(COPO)

−1.5 − 0.003*day.of.year − 0.5*cos(day.of.year) + 0.6*sin(day.
of.year) + 1*cos(hour24) − 0.5*cos(hour12) − 0.0005*time.
to.sunrise − 0.0005*time.to.sunset − 0.1*wind.speed − 0.2*cos(lunar.
phase)

Couch's Spadefoot 
(TOAD)

−8 − 1*cos(day.of.year) − 2*sin(day.of.year) + 3*cos(hour.
of.day24) + 5*rain.accumulation.in.past.24.hours

Coyote (COYOTE) −3 − 0.5*cos(day.of.yearequinox) + 0.2*sin(day.of.yearequinox) + 1*cos
(hour24)  − 0.5*cos(hour12) − 0.001*time.to.sunrise − 0.001*time.
to.sunset + 0.2*cos(lunar.phase)

Eurasian Collared‐
Dove (ECDO)

−1.4 + 1*sin(day.of.year)  − 2*cos(hour12) − 0.000005*time.
to.sunrise2 + 0.009*temperature – 0.000001*tempera‐
ture3 − 0.25*wind.speed

Gambel's Quail 
(GAQU)

−1.2 − 0.002*day.of.year + 1.3*sin(day.of.year) – 2*cos(hour.
of.day12) – 0.000005*time.to.sunrise2 + 0.009*tempera‐
ture – 0.000001*temperature3 – 0.25*wind.speed

Lesser Nighthawk 
(LENI)

−2 – 0.006*day.of.year + 0.4*cos(day.of.year) + 0.7*sin(day.of.year)  
+ 1*cos(hour24) – 0.5*cos(hour12) – 0.0005*time.
to.sunrise – 0.0005*time.to.sunset – 0.25*wind.speed – 0.3*cos(lunar.
phase)

Phainopepla (PHAI) −2.2 – 0.00001*day.of.year2 + 0.7*cos(day.of.year) + 2.2*sin(day.of.ye
ar) – 2.5*cos(hour12) – 0.000004*time.to.sunrise2 + 0.009*tempera‐
ture – 0.000001*temperature3 – 0.25*wind.speed

Verdin (VERD) −0.5 – 0.004*day.of.year + 1*sin(day.of.year) – 1.5*cos(hour12) – 0.0
00007*time.to.sunrise2 + 0.009*temperature – 0.000001*tempera‐
ture3 – 0.25*wind.speed

Note: Covariates: day.of.year = integer of the day of the year, from 1 to 366; day.of.yearequinox = inte‐
ger of the day of the equinox period, from 1 to 183; hour24 = integer of the hour of the day, on a 24‐
hour scale; hour12 = integer of the hour of the day, on a 12‐hour scale; time.to.sunrise = real number 
denoting absolute value of the time from sunrise, in minutes; time.to.sunset = real number denoting 
absolute value of the time from sunset, in minutes; temperature = real number denoting the 
temperature in degrees Celsius; wind.speed = real number denoting the wind speed in kilometers 
per hour; lunar.phase = fractional part of the lunation number, ranging from 0 (new moon), 0.25 
(first quarter moon), 0.5 (full moon), to 0.75 (last quarter moon), with ranges in between represent‐
ing waxing or waning crescent or gibbous moons (Dark Sky, 2017); rain.accumulation.in.past.24.
hours = amount of rain accumulated in the past 24 hr, in millimeters.

TA B L E  2   Logistic regression models 
for nine focal species, each producing the 
hourly probability of vocalization
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higher efforts, samples were generally clustered around the aver‐
age sunrise and sunset times throughout the year, with recordings 
scheduled on an hourly and subhourly basis as sampling effort in‐
creased. The same fixed schedules were applied for both the Full 
Year and March Only study durations.

For the optimized treatment, the scheduleOptim() function allo‐
cated evenly spaced samples to the highest scoring hour(s) in 1‐min 
increments, with a buffer of at least 1 min between each sample. 
We settled upon this formulation as a consequence of real field test‐
ing within the Riverside East Solar Energy Zone, wherein we found 
that (a), schedules with a high number of sampling occasions mit‐
igated the risk of individual events not being received and logged 
by remote audio recording devices and (b), smaller files produced 
by short recordings were more likely to be reliably dispatched over 
the cellular network. Thus, a maximum of 30 1‐min samples could be 
assigned to any single hour. For example, a sampling effort of S = 30 
1‐min samples would allot all 30 evenly spaced samples, each 1 min 
in length, with a 1‐min buffer between each sample, into the highest 
scoring hour. For sampling efforts greater than 30 min (i.e., S = 40), 
additional minutes spilled over into the second highest scoring hour.

For each species, under each sampling effort (S) and study du‐
ration (D), we used two metrics to compare the performance of the 
optimized and fixed treatments. First, we rendered p* accumulation 
curves averaged across the 133 sites and computed the total area 
under these curves (AUC), with AUC values closest to 1 being best. 
We also calculated the average date p*

max was achieved for each spe‐
cies across sites (if at all), on the assumption that earlier achievement 
dates were more desirable.

3  | RESULTS

3.1 | Vocalization simulation results (Objective 2)

Driven by weather and temporal covariates, the simulated environ‐
ment produced hourly probabilities of vocalization for each of the 
nine species at each site for the entire year of 2016. Summary sta‐
tistics of monthly temperature, 24‐hr rain accumulation, and wind 
speed demonstrated variation in weather covariates throughout the 
year, while sunrise and sunset times illustrated shifts in temporal 
covariates (Table 5), all of which showed differences in conditions 
between the March Only and Full Year study durations.

The average probability of vocalization by species was summa‐
rized in Figure 3 for both study durations, showing that breeding birds 
had a higher average vocalization probability during the March study 
duration as compared to the entire year, and illustrating that three 
species—Couch's Spadefoot (TOAD), Coyote, and Lesser Nighthawk 
(LENI)—were far less vocally available in general than the other spe‐
cies. Large standard deviations in Figure 3 indicated the wide varia‐
tion in overall vocalization probabilities across each hour of the year.

3.2 | Factorial results (Objective 3)

Using the simulated environment for all species, the optimized treat‐
ment equaled or outperformed the fixed treatment on both metrics 
under all sampling efforts (S) and under both the Full Year and March 
Only durations (D), with only one exception (coyote p*

max achieve‐
ment at S = 20, D = Full Year).

F I G U R E  2   Visual demonstration of 
species logistic regression vocalization 
models. Species codes and regression 
models are given in Table 2. The 
probability of vocalization (pv), given 
presence, is graphed as a function of 
key weather and temporal covariates to 
display vocalization characteristics across 
species. Because covariates are graphed 
separately, intercepts of zero are used for 
visual demonstration purposes
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In the optimized treatment, because we used equal initial moni‐
toring priority weights for all species, gregarious species dominated 
the sampling allocation early on for both study durations. Species 
modeled to be more vocally available (Figure 3) initially had a greater 
effect on aggregate scores, causing sampling effort to be allotted in 
their favor early in the season. Once these species’ weights began 
shrinking as their p* values increased, optimized sampling focus 
shifted to less vocally available species.

Across species, AUC values produced by the p* accumulation 
curves for the optimized treatment equaled or exceeded those of 
the fixed treatment under all sampling efforts and for both study 
durations. At the extreme low end of sampling effort (S = 2 min per 
day), the optimized treatment yielded AUC values that were typically 
at least 25% greater than those of the fixed treatment during the Full 
Year study (Figure 4a), often ranging up to more than 50% greater for 
the March Only study (Figure 4b). Although the optimized AUC val‐
ues were greater than the fixed AUC values in most cases, these dif‐
ferences became negligible for commonly available vocalizers during 
the Full Year study when sampling effort was high. For example, 
comparatively loquacious species, such as Black‐tailed Gnatcatcher, 

Common Poorwill, Gambel's Quail, Eurasian Collared‐Dove, 
Phainopepla, and Verdin attained relatively high AUC regardless of 
schedule type, provided that the study duration was sufficiently long 
and sampling effort was sufficiently high. Meanwhile, for the rarest 
vocalizers (e.g., Couch's Spadefoot), the optimized treatment sub‐
stantially outperformed the fixed treatment AUC even when sam‐
pling was high over the longer study duration.

Schedules only achieved p*
max values under certain conditions 

of sampling effort, study duration, and species vocal availability. For 
the Full Year study, where comparisons were possible, the optimized 
schedule reached p*

max earlier in the year than the fixed schedule 
for nearly all scenarios (Figure 4a). The sole departure from this 
pattern was presented by the coyote, for which p*

max was not ob‐
tained below a sampling effort of 20 min. At 20 min, both schedules 
attained p*

max for coyote, although the fixed schedule reached this 
value 4 days earlier than the optimized schedule. In every other case, 
the opposite was true: across sites, for the Full Year study, the op‐
timized schedule surpassed p*

max anywhere from 5 to 179 days ear‐
lier than the fixed schedule depending on the species and sampling 
effort (average = 30 days earlier; Appendix 1). Even at 40 samples, 

Species

Site

1 2 3 … 131 132 133

(a)

Black‐tailed Gnatcatcher 
(BTGN)

0.11 0.11 0.11 0.11 0.11 0.11 0.11

Common Poorwill 
(COPO)

0.11 0.11 0.11 0.11 0.11 0.11 0.11

Couch's Spadefoot 
(TOAD)

0.11 0.11 0.11 0.11 0.11 0.11 0.11

Coyote (COYOTE) 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Eurasian Collared‐Dove 
(ECDO)

0.11 0.11 0.11 0.11 0.11 0.11 0.11

Gambel's Quail (GAQU) 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Lesser Nighthawk (LENI) 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Phainopepla (PHAI) 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Verdin (VERD) 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Sum 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(b)

Black‐tailed Gnatcatcher 
(BTGN)

0.13 0.13 0.13 0.13 0.13 0.13 0.13

Common Poorwill 
(COPO)

0.13 0.13 0.13 0.13 0.13 0.13 0.13

Coyote (COYOTE) 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Eurasian Collared‐Dove 
(ECDO)

0.13 0.13 0.13 0.13 0.13 0.13 0.13

Gambel's Quail (GAQU) 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Lesser Nighthawk (LENI) 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Phainopepla (PHAI) 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Verdin (VERD) 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Sum 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TA B L E  3   Monitoring priority weights 
for focal species at 133 sites, used for 
the Full Year (a) and March Only (b) study 
durations
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where the fixed schedule began to become more competitive, the 
optimized schedule still reached p*

max an average of 14 days earlier 
than the fixed schedule for all species except for Couch's Spadefoot, 
where no comparison was available because the optimized schedule 
achieved p*

max and the fixed schedule did not (Figure 4a). In general, 
for both the fixed and optimized treatments, commonly available 
vocalizers (e.g., Eurasian Collared‐Dove, Gambel's Quail, Verdin) ex‐
ceeded p*

max earlier in the season than less available vocalizers (e.g., 
Coyote, Lesser Nighthawk), and the least available species (Couch's 
Spadefoot) only reached p*

max with the optimized schedule. This out‐
come is consistent with simulated differences in average vocaliza‐
tion probability between species (Figure 3), given that we assigned 
equal initial monitoring priority weights to each species.

Under the abbreviated March sampling duration (where the 
Couch's Spadefoot was omitted due to seasonal inactivity), the opti‐
mized schedule again proved superior on the p*

max metric (Figure 4b). 
Only six out of the eight species hit p*

max at all during the shorter 
sampling season. Often p*

max was achieved only at higher sampling 
efforts, even for commonly available vocalizers such as Eurasian 
Collared‐Dove, Gambel's Quail, and Verdin. In all cases, the fixed 
schedule lagged well behind the optimized schedule in attaining 
p*

max, if at all. For conditions under which a comparison was even 
possible, across all species and sampling efforts in the March Only 
study, the optimized schedule reached p*

max an average of 11 days 
earlier than the fixed schedule (Appendix 1).

4  | DISCUSSION

We demonstrated that a temporally adaptive optimized sampling 
schedule can substantially outperform a fixed schedule in a simu‐
lation setting for maximizing the probability of detecting a suite 

of focal species, given presence. The advantage of the optimized 
schedule was magnified especially for the shorter study season 
and particularly at lower sampling efforts. Simulation provided the 
opportunity to investigate the utility of temporally adaptive sam‐
pling on a limited budget and with a small pilot study sample size 
(n = 16) before attempting to implement this concept in the field 
at all actively monitored sites for ecological monitoring (n = 133). 
Depending on research questions and objectives, simulation can 
uncover whether temporally adaptive sampling is necessary for a 
given project. For certain programs and target species, temporally 
adaptive sampling will add no value, and false negatives can be ad‐
equately dealt with using occupancy modeling frameworks (e.g., if 
there are few target species or target species may be monitored suf‐
ficiently using a fixed schedule; if audio recording sampling capac‐
ity is high). For other circumstances, temporally adaptive sampling 
may enable monitoring that might otherwise have been impossible 
(e.g., if target species are only available under specific conditions; if 
there are constraints on the number and length of audio recordings 
that may be taken). Depending on the research question, a fixed 
schedule may be preferable if researchers prioritize comparability 
of sampling efforts over maximization of detection probabilities, 
because the temporally adaptive sampling routine may produce 
different daily recording schedules at different sites.

This work contributes novel methodology to the adaptive sam‐
pling paradigm for monitoring wildlife. The bulk of research on 
adaptive sampling of wildlife is focused on sampling in the spatial 
dimension (e.g., Thompson, White, & Gowan, 1998; Thompson, 
2004; Turk & Borkowski, 2005), while temporal adaptive sampling 
has not been explicitly explored in great depth (though see Charney, 
Kubel, & Eiseman, 2015; Dyo et al., 2012). Recent work on the opti‐
mization of survey effort over space and time (Moore & McCarthy, 
2016), and when species detectability varies (Moore, McCarthy, 

Number of samples Fixed schedule

2 08:00:00, 23:00:00

5 02:00:00, 05:00:00, 06:00:00, 08:00:00, 23:00:00

10 00:00:00, 01:00:00, 02:00:00, 06:00:00, 06:30:00, 07:00:00, 
07:30:00, 08:00:00, 22:00:00, 23:00:00

20 00:00:00, 01:00:00, 02:00:00, 03:00:00, 04:00:00, 05:00:00, 
05:30:00, 06:00:00, 06:30:00, 07:00:00, 07:30:00, 08:00:00, 
18:00:00, 18:30:00, 19:00:00, 19:30:00, 22:00:00, 22:30:00, 
23:00:00, 23:30:00

30 00:00:00, 01:00:00, 01:30:00, 02:00:00, 02:30:00, 03:00:00, 
03:30:00, 04:00:00, 04:30:00, 05:00:00, 05:30:00, 06:00:00, 
06:30:00, 07:00:00, 07:30:00, 08:00:00, 08:30:00, 09:00:00, 
09:30:00, 10:00:00, 17:00:00, 17:30:00, 18:00:00, 18:30:00, 
19:00:00, 19:30:00, 22:00:00, 22:30:00, 23:00:00, 23:30:00

40 00:00:00, 00:30:00, 01:00:00, 01:30:00, 02:00:00, 02:30:00, 
03:00:00, 03:30:00, 04:00:00, 04:30:00, 05:00:00, 05:30:00, 
05:45:00, 06:00:00, 06:15:00, 06:30:00, 06:45:00, 07:00:00, 
07:15:00, 07:30:00, 07:45:00, 08:00:00, 08:15:00, 08:30:00, 
08:45:00, 09:00:00, 09:30:00, 10:00:00, 17:00:00, 17:30:00, 
18:00:00, 18:15:00, 18:30:00, 18:45:00, 19:00:00, 19:30:00, 
22:00:00, 22:30:00, 23:00:00, 23:30:00

TA B L E  4   Fixed sampling schedules 
used on the 24‐hour clock at each 
sampling effort (S = 2, 5, 10, 20, 30, or 
40 min), applied to both the March Only 
and Full Year study durations
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Parris, & Moore, 2014), explicitly incorporates the opportunity cost 
incurred by researchers when traveling to a field site for sampling; 
conceptually, the travel cost parameter may be framed as an analog 
to the costs of wireless data plans in remote acoustic recording units. 
Additionally, although the notion of time‐sensitive sampling is pres‐
ent in wildlife surveys—for example, by surveying during seasonally 
appropriate occasions for breeding amphibians, or on spring morn‐
ings during the dawn chorus for breeding birds—such sampling is not 
adaptive in nature unless information from prior surveys is incorpo‐
rated into future sampling efforts (Charney et al., 2015; Thompson 
& Seber, 1994).

Accordingly, the adaptive nature of this methodology introduces 
new possibilities. A temporally adaptive sampling framework may 
be used to increase confidence in the local arrival and departure 
dates for migratory birds in a dynamic occupancy model framework 
(sensu MacKenzie, Nichols, Hines, Knutson, & Franklin, 2003; Miller 
et al., 2013; Balantic & Donovan, 2019b). Though occupancy models 
already account for detection errors in the form of false negatives, 
the adaptive optimization framework described here may reduce 
the false‐negative rate to provide more confidence in detection 
probability estimates. Additionally, a temporally adaptive approach 
may be useful for community‐level monitoring within multispecies 
occupancy models (Mackenzie, Bailey, & Nichols, 2004).

The optimization options developed here provide a frame‐
work for improved sampling granularity. First, in addition to local 
weather conditions, field‐based implementations of the temporally 
adaptive optimization scheme could incorporate real‐time bird mi‐
gration predictions which combine citizen science observations via 
the eBird database (Sullivan et al., 2009), flight calls of nocturnal 
migrants, and radar to detect “clouds” of migrating birds (BirdCast: 
Cornell Lab of Ornithology, 2017). Given brief study durations, 

sampling constraints, and multiple focal species with varied vocal 
availabilities, automated optimization of acoustic sampling may 
thus allow research programs to collect higher quality data with 
limited resources.

Second, optimization methods might sample during the highest 
scoring time increments independent of site. In this work, we forced 
all sites to take S 1‐min samples daily, but future extensions could allo‐
cate all available sampling power within a given time period to the best 
“site‐hours” overall, perhaps across a 1‐, 3‐, or even 5‐day weather 
forecast. For example, if a study area is vast, and rain is forecasted 
for a subset of sites where Couch's Spadefoot is of high monitoring 
priority, available sampling power would be optimally distributed only 
to those site‐hours with high predicted rain accumulation. Rainless 
site‐hours, meanwhile, would be earmarked for no sampling during 
the forecast period of interest, minimizing wasteful sampling efforts if 
target species are only available under specific conditions.

Third, although this implementation optimized under an as‐
sumption of species presence, future extensions might set the 
adaptive schedule based on the joint probability of occupancy and 
vocalization. That is, our simulations set the optimized schedule 
based on the probability of calling, conditional on presence; we 
did not consider the factors that actually shape the presence or 
absence of species across the 133 sites. However, site occupancy 
can be factored into the algorithm by redefining pv (currently, the 
conditional probability of vocalization given presence) as the joint 
probability of presence and vocalization. In this formulation, high 
presence probabilities produce a higher site‐hour score, increasing 
the chances of sampling a given site‐hour under the optimization 
scheme. In contrast, lower presence probabilities drive lower site‐
hour scores, resulting in a smaller chance that a site‐hour will be 
selected for sampling.

F I G U R E  3   Vocalization Simulation 
Results. Average probability of 
vocalization in a given hour across all 
hours and sites for each focal species 
during both the March Only and Full 
Year study durations. Species codes are 
provided in Table 1. Standard deviation 
error bars reveal wide variation in 
vocalization probabilities contingent on 
weather and temporal conditions
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Fourth, although this work focused on simulation results, in 
practice, researchers may incorporate additional considerations into 
a temporally adaptive sampling scheme implemented in the field. 

Firstly, vocalization models producing species vocalization probabil‐
ities (pv) may be generated such that they have confidence intervals 
that include upper and lower bounds. In practice, to accommodate 
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model uncertainty, researchers may elect to use the upper bound, 
lower bound, or mean predicted pv values in the optimization 
scheme, depending on model confidence. Secondly, although we 
used equal initial priority monitoring weights at all sites for all spe‐
cies, in practice, researchers maybe set higher weights for species 
or sites of greater monitoring priority. Thirdly, if the allocation of 
all sampling power into the highest scoring hour is undesirable due 
to low confidence in species vocalization models, researchers may 
explore alternative optimization schemes (Appendix 2).

Finally, although our p*
max values were set to 0.95 for the sim‐

ulation (i.e., sampling continued until there was a 95% chance the 
species was acoustically captured on our recording devices at least 
once), users may set this threshold to any value. For instance, we 
might relax the definition of p*

max as a probability bounded be‐
tween zero and one, and set a p*

max value of 2.00 for a given spe‐
cies at a given site, which would indicate that monitoring should 
continue until we are quite confident that the species has been 
acoustically captured on at least two separate sampling occasions 
during the monitoring period. This arrangement could further safe‐
guard against false negatives: first by providing an additional fail‐
safe against recording at inopportune times, and second by adding 
preemptive cushion against false negatives that could occur as a 
consequence of using automated detection algorithms.

Although this work is simulation‐based, we field‐tested the 
mechanics of a temporally adaptive sampling optimization proto‐
col on n = 16 audio recorders by connecting each Android audio 
recording unit with a site‐specific Google calendar account. We 
also developed a protocol linking the Android apps Easy Voice 
Recorder Pro (Digipom, 2016) and Tasker (Tasker, 2015) with the 
optimization protocol. This combination allowed us to populate 
each device's calendar with the optimized sampling schedule on 
a daily basis and collect acoustic recordings, providing a real field 
proof‐of‐concept for the simulation experiment detailed in this 
paper. This protocol can be implemented in the field using the 
fully operational AMMonitor functions scheduleOptim() and sched‐
uleFixed(), which can be combined to create daily optimized and/or 
fixed schedules that are automatically pushed to a remote record‐
ing unit's Google account and then synced automatically for the 
next day of acoustic sampling.
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APPENDIX 1
Comprehensive results comparing the achievement of p*

max (the 
maximum cumulative probability of at least one acoustic capture 
during the monitoring period) between the optimized sampling 
schedule and a fixed sampling schedule, for both the Full Year and 
March Only studies. The “Species” column refers to target species 
(see Table 1 for species codes). The “Optimized” column refers to the 
date upon which p*

max was achieved using the temporally adaptive 
temporally adaptive sampling protocol outlined in the methods sec‐
tion of this paper. The “Fixed” column refers to the date upon which 
p*

max was achieved using the fixed schedules denoted in Table 4. The 
“Difference (Days)” column indicates the difference in days of p*

max 
achievement between the optimized and fixed schedules. Values of 
“–” indicate that p*

max was not achieved, and no “Difference (Days”) 
comparison was possible. The “Effort” column denotes the sampling 
effort (S = 2, 5, 10, 20, 30, or 40 1‐min samples). The value in bold 
denotes the only case in which the fixed schedule achieved p*

max 
prior to the optimized schedule.

Species Optimized Fixed
Difference 
(days) Effort

Date p*
max achieved (Full Year)

BTGN 12/27/2016 – – 2

ECDO 5/24/2016 – – 2

GAQU 5/12/2016 – – 2

PHAI 4/27/2016 – – 2

VERD 5/16/2016 – – 2

BTGN 4/7/2016 5/22/2016 −45.5 5

COPO 7/7/2016 – – 5

ECDO 3/1/2016 4/22/2016 −51.5 5

GAQU 2/26/2016 4/10/2016 −43.8 5

PHAI 2/18/2016 3/28/2016 −38.7 5

VERD 2/25/2016 4/8/2016 −42.4 5

BTGN 2/17/2016 3/20/2016 −31.6 10

COPO 3/7/2016 4/8/2016 −32.5 10

Species Optimized Fixed
Difference 
(days) Effort

ECDO 1/31/2016 3/7/2016 −35.7 10

GAQU 1/29/2016 3/1/2016 −32.3 10

PHAI 1/25/2016 2/23/2016 −28.7 10

VERD 1/28/2016 2/28/2016 −30.7 10

BTGN 1/23/2016 2/25/2016 −33.3 20

COPO 2/3/2016 2/13/2016 −10.8 20

COYOTE 10/2/2016 9/28/2016 4.4 20

ECDO 1/17/2016 2/13/2016 −27.2 20

GAQU 1/16/2016 2/8/2016 −23.4 20

LENI 3/25/2016 9/19/2016 −178.9 20

PHAI 1/14/2016 1/31/2016 −17.3 20

VERD 1/15/2016 2/6/2016 −22.7 20

BTGN 1/16/2016 2/9/2016 −23.9 30

COPO 1/23/2016 1/31/2016 −7.5 30

COYOTE 5/26/2016 8/3/2016 −68.8 30

ECDO 1/12/2016 2/2/2016 −21.4 30

GAQU 1/11/2016 1/29/2016 −18.1 30

LENI 2/26/2016 4/12/2016 −46.6 30

PHAI 1/10/2016 1/24/2016 −14.8 30

TOAD 11/1/2016 – – 30

VERD 1/10/2016 1/27/2016 −16.3 30

BTGN 1/15/2016 1/25/2016 −10.1 40

COPO 1/19/2016 1/24/2016 −5.1 40

COYOTE 4/8/2016 5/8/2016 −30.0 40

ECDO 1/10/2016 1/21/2016 −11.3 40

GAQU 1/9/2016 1/19/2016 −10.5 40

LENI 2/14/2016 3/9/2016 −24.2 40

PHAI 1/8/2016 1/17/2016 −9.3 40

TOAD 9/24/2016 – – 40

VERD 1/8/2016 1/18/2016 −9.4 40

Species Optimized Fixed
Difference 
(days) Effort

Date p*
max achieved (March Only)

No species achieved p*
max below an effort of 10 samples

BTGN 3/30/2016 – – 10

ECDO 3/27/2016 – – 10

GAQU 3/23/2016 – – 10

PHAI 3/28/2016 – – 10

Summary statistics for difference in days (Full Year)

Min. 1st Qu. Median Mean 3rd Qu. Max

−178.9 −34.5 −24.2 −30.0 −13.1 4.4

https://www.wildlifeacoustics.com/products/song-meter-sm4
https://www.wildlifeacoustics.com/products/song-meter-sm4
https://doi.org/10.2173/bna.32
https://doi.org/10.2173/bna.32
https://doi.org/10.1002/ece3.5579
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APPENDIX 2

COMPARISON OF S IMPLE OP TIM VERSUS MA X PER 
HOUR VERSUS FIXED SCHEDULE

The main body of this paper used the simple daily site constraint 
option in AMMonitor's scheduleOptim() function, wherein an equal 
number S 1‐min samples per day were taken at each site and distrib‐
uted into the highest scoring hour(s). Alternatively, samples may be 
distributed via the “max per hour” option. Using the “simple” daily 
site constraint option, if daily sampling effort is ≤30 min, all of those 
minutes are distributed at equal intervals into the highest scoring 
hour of the day. If this is undesirable, the researcher may invoke the 
“max per hour” option to specify a maximum number of samples that 
can be allocated into each hour. In an exploratory simulation using 
the March 2016 study duration (31 days), eight species, sampling ef‐
forts of S = 20, 30, and 40 1‐min samples per day, and a maximum 
number of samples per hr of 10, we found that the “simple” daily site 
constraint option outperformed the “max per hour” option slightly. 
The figure below demonstrates that the “simple” optimized sched‐
ule method, which preferentially allocates sampling power into the 
highest scoring hour, equals or outperforms the “max per hour” op‐
timization method in the simulation, on both the p* area under the 
curve (AUC) metric and on the achievement date metric for p*

max 
(the maximum cumulative probability of at least one acoustic cap‐
ture during the monitoring period). We provide the performance of 
the fixed schedule for comparison.

Species Optimized Fixed
Difference 
(days) Effort

VERD 3/25/2016 – – 20

BTGN 3/18/2016 – – 20

COPO 3/14/2016 3/31/2016 −16.8 20

ECDO 3/12/2016 3/25/2016 −13.2 20

GAQU 3/16/2016 – – 20

PHAI 3/14/2016 3/30/2016 −16.0 30

VERD 3/24/2016 – – 30

BTGN 3/10/2016 3/26/2016 −15.5 30

COPO 3/10/2016 3/22/2016 −12.3 30

ECDO 3/9/2016 3/18/2016 −9.2 30

GAQU 3/10/2016 3/23/2016 −13.9 30

PHAI 3/11/2016 3/20/2016 −9.0 40

VERD 3/19/2016 3/27/2016 −8.1 40

BTGN 3/8/2016 3/17/2016 −8.3 40

COPO 3/8/2016 3/15/2016 −7.1 40

COYOTE 3/7/2016 3/12/2016 −5.1 40

ECDO 3/8/2016 3/16/2016 −7.9 40

Summary statistics for difference in days (March Only)

Min. 1st Qu. Median Mean 3rd Qu. Max

−16.8 −13.9 −9.2 −11.0 −8.0 −5.1
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Fixed: 0.57
MaxHr: 0.76

Opt: 0.77

Fixed: 0.53
MaxHr: 0.58

Opt: 0.60

Fixed: 0.21
MaxHr: 0.25
Opt: 0.26

Fixed: 0.63
MaxHr: 0.81

Opt: 0.82

Fixed: 0.67
MaxHr: 0.83

Opt: 0.83

Fixed: 0.24
MaxHr: 0.32
Opt: 0.34

Fixed: 0.73
MaxHr: 0.85

Opt: 0.85

Fixed: 0.65
MaxHr: 0.82

Opt: 0.83

Fixed: 0.69
MaxHr: 0.82

Opt: 0.84

Fixed: 0.62
MaxHr: 0.68

Opt: 0.70

Fixed: 0.28
MaxHr: 0.35
Opt: 0.36

Fixed: 0.71
MaxHr: 0.86

Opt: 0.87

Fixed: 0.75
MaxHr: 0.87

Opt: 0.88

Fixed: 0.31
MaxHr: 0.41
Opt: 0.45

Fixed: 0.79
MaxHr: 0.89

Opt: 0.89

Fixed: 0.74
MaxHr: 0.87

Opt: 0.88

Fixed: 0.78
MaxHr: 0.86

Opt: 0.87

Fixed: 0.70
MaxHr: 0.74

Opt: 0.76

Fixed: 0.35
MaxHr: 0.42
Opt: 0.43

Fixed: 0.81
MaxHr: 0.89

Opt: 0.90

Fixed: 0.83
MaxHr: 0.90

Opt: 0.90

Fixed: 0.38
MaxHr: 0.47
Opt: 0.53

Fixed: 0.86
MaxHr: 0.91

Opt: 0.91

Fixed: 0.82
MaxHr: 0.89

Opt: 0.90
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