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Abstract

Purpose

To explore the possible brain structural and functional alterations in congenital fibrosis of

extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging.

Methods

T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A

positive patients and 19 age- and gender- matched healthy controls. Voxel based mor-

phometry and tract based spatial statistics were applied to the T1-weighted and diffusion

tensor images, respectively. Amplitude of low frequency fluctuations and regional homoge-

neity were used to process the functional MRI data. We then compared these multimodal

characteristics between CFEOM1 patients and healthy controls.

Results

Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter

volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices

changes were detected, indicating unaffected white matter microstructure. In addition, from

resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases

were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of

ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex,

temporal pole and cingulate gyrus.
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Conclusions

CFEOM1 patients had structural and functional changes in grey matter, but the white matter

was unaffected. These alterations in the brain may be due to the abnormality of extraocular

muscles and their innervating nerves. Future studies should consider the possible correla-

tions between brain morphological/functional findings and clinical data, especially pertain-

ing to eye movements, to obtain more precise answers about the role of brain area changes

and their functional consequence in CFEOM1.

Introduction
Congenital Fibrosis of the Extraocular Muscles (CFEOM) refers a group of congenital /heredi-
tary strabismus syndromes characterized by congenital non-progressive ophthalmoplegia with
or without ptosis[1]. Patients with CFEOMmay show rapid convergent eyes movement on
attempted up gaze, simulating convergence retraction nystagmus [2]. Based on clinical perfor-
mance, mainly three types of CFEOM have been identified, of which CFEOM type1
(CFEOM1) is the ‘classic’ and most common type [3]. Generally, patients with CFEOM1 are
accompanied by congenital bilateral blepharoptosis and ophthalmoplegia, with the eyes par-
tially or completely fixed in infraduction [4] (Fig 1A). Although it is rather uncommon with a
prevalence of 1/230,000 [5], this eye movement disease can cause severe problems such as the
poor appearance, impairment of visual acuity and binocular vision, and easily noticeable psy-
chosocial problems [2, 4].

CFEOM was previously considered to be caused by primary muscle pathology, but post-
mortem studies of a single CFEOM patient revealed abnormality of the alpha motor neurons
of the oculomotor nucleus. Here, decreased numbers of motor neurons were found in oculo-
motor subnuclei which innervate the extraocular muscles and receive input from cerebral

Fig 1. The research strategy and experiment design. A, Phenotypes of a typical patient with CFEOM1; B,
CNIII (Oculomotor nerve) hypoplasia shown in MRI (arrows) of this typical patient with CFEOM1which were
used to identify the atrophy of extraocular muscle. The structural abnormality of optic nerve and extraocular
muscles have been well studied in CFEOM.We then focus on the cerebral alterations associated with
CFEOM; C, T1-weighted MRI scanned from the patient, shown with three different views. T1 data were later
feed into VBM processing pipeline; D, The DTI images scanned from the patient. DTI date were then used in
TBSS processing; E, The resting—state fMRI data from this CFEOM1 patient. ALFF and ReHo processing
were then carried out using the resting-state fMRI data.

doi:10.1371/journal.pone.0133473.g001
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cortex [4]. In addition, genes necessary for the normal development and connectivity of brain-
stem ocular motoneurons are known to be mutated [6], which may explain the results obtained
by magnetic resonance imaging (MRI) studies [7]. Based on these evidences, Assaf suggested
that CFEOM is actually a neurological disorder [8], arising from an abnormal development of
individual or multiple cranial nerve nuclei or their axonal connections [9]. Indeed, Then
Cheng et al also concluded that CFEOM1 is a primary error in cranial nerve development [10].

Eye movements are initiated by cerebral cortical activity which acts on ocular motor control
structures beyond the ocular reflexes. [11] While the mechanism of gene mutations and its
relation to dysfunction of extraocular muscles and nuclei have been well studied in CFEOM,
[6, 12–14] there are very few reports regarding possible changes in cerebral cortical areas
related to eye movement control and the voluntary saccades circuit [15]. It is therefore still
unclear whether and how brain structural and functional alterations occur in CFOEM patients.

Recent technical improvements in MRI make it possible to investigate the brain structural
and functional development and their disease-associated alterations in a quantitative manner.
Structural MRI studies using voxel-based morphometry (VBM) have been conducted to detect
the local concentration changes of gray matter (GM) [16] between groups [17]. Compared
with the conventional region-of-interest (ROI) analysis, the VBMmethods is fully automated
and unbiased voxel-wise approach which is not restricted to specific brain regions. Diffusion
tensor imaging (DTI) is another MR imaging technique which is capable of providing some
measures that are sensitive to white matter (WM) structure changes, e.g. fractional anisotropy
(FA), mean diffusivity (MD), etc. Based on these measurements, tract-based spatial statistics
(TBSS) was recently developed to evaluate the whole brain WM alterations in various diseases
[18]. In addition, with resting state functional MRI, investigators can characterize the brain
spontaneous functional activities with some local features, e.g. the amplitude of low-frequency
fluctuations (ALFF)[19] and regional homogeneity (ReHo)[20], etc. Besides their wide applica-
tion in neurodegenerative diseases [21–23], these multimodal imaging techniques have also
been used to explore the brain structure and function in eye-related diseases, e.g. strabismus
and amblyopia [24, 25] etc. However, due to the low incidence of CFEOM, no multimodal
MRI study has been conducted for a larger group of CFEOM patients; hence little is known
about their possible brain structural and functional alterations.

In the present study, we aimed to explore the possible brain alterations in a group of
CFEOM1 patients using structural MRI, DTI and resting state functional MRI. Some quantita-
tive assessments, including VBM, TBSS and ALFF [19] and ReHo [20], were conducted on
these multimodal MRI imaging. We hypothesized that there might be structural and functional
alterations in cerebral cortical areas that are related to the abnormalities of the extraocular
muscles in patients with CFEOM1.

Materials and Methods

Participants
Nine KIF21A-mutation positive patients with classic CFEOM1 (age at imaging [mean ± std]:
24.3±9.9 yrs; range: 15 ~ 49 yrs; 1 male) and 19 age and gender matched (age at imaging
[mean ± std]: 25.3 ± 9.6 yrs; range: 16 ~ 53 yrs, 3 males) healthy controls were included in this
study. All subjects were all right handed. They underwent the ophthalmic examination includ-
ing corrected visual acuity, ocular motility, measurement of palpebral fissure height and levator
function, binocular alignment, anterior segment anatomy, and ophthalmoscopy. All 9 patients
with CFEOM1 had blepharoptosis. Ocular alignment was evaluated in all positions of gaze,
and ophthalmic histories were also obtained. By checking with orbital and intracalvarium
MRI, in all the patients hypoplasia of the ocular motor nerves and the extraocular muscles
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could be shown (Table 1). The abducens nerves could not be visualized in MRI in 7 out of 9
patients, in 3 cases it could not be visualized bilaterally and 4 cases unilaterally. The healthy
controls were enrolled by excluding any ophthalmic or neurological diseases which could affect
the visual pathway and brain structure.

The study was approved by Beijing Tongren Hospital’s review board, and written informed
consent was obtained from all the subjects or their guardians according the Declaration of Hel-
sinki. The individual in this manuscript has given written informed consent (as outlined in
PLOS consent form) to publish these case details.

MRI Data Acquisition
All MRI scans were performed on a 3T HDxt MR imaging scanner (Signa HDxt, GE Health-
care, Milwaukee, Wisconsin) using a 8-channel phased-array head coil. Three types of images
were acquired for each subject, including T1-weighted structural, DTI and resting state fMRI
images. T1-weighted structural images were obtained using GE’s BRAVO sequence (IR-prep,
fast SPGR with parameters tuned to optimize brain tissue contrast) with the following parame-
ters: repletion time (TR) = 9 ms; echo time (TE) = 3.5 ms; inversion time = 450 ms; flip
angle = 13°; field of view (FOV) = 24×24 cm; acquisition matrix = 256×256; and slice thick-
ness = 1 mm (Fig 1C). DTI Images were acquired using spin-echo, echo-planar imaging
sequence with the following imaging parameters: TR/TE = 17,000/93 ms, acquisition
matrix = 256×256, FOV = 24×24 cm, slice thickness = 2mm, and no intersection gap. Motion-
probing gradients were applied along 15 non-collinear directions with a b factor of 1000 s/mm2

after an acquisition without diffusion weighting (b = 0 s/mm2) for reference (Fig 1D). Resting-
state fMRI images were acquired using echo-planar imaging sequence with the following param-
eters: TR/TE = 2000/35 ms, flip angle = 90°, acquisition matrix = 64 × 64, FOV = 24 × 24 cm,
slice thickness = 4 mm, gap = 1 mm, voxel size = 3.75 × 3.75 × 5 mm. Resting-state scans lasted

Table 1. Clinical details of the patients.

Patient No/Gender/
Age (yr)

Corrected Visual Acuity
(LogMAR): Right/Left

Horizontal
Alignment

MRI (Orbit) MRI (Cistern Segment)

1/F/24 0.2/0.3 XT hypoplasia of SR, LPS, IR
bilaterally; left MR

Hypoplasia of CNIII bilaterally

2/M/26 0.4/0.3 XT hypoplasia of SR, LPS, MR, IR
bilaterally

Hypoplasia of CNIII bilaterally,
absence of left CNVI

3/F/18 0.2/0.09 XT hypoplasia of SR, LPS, MR, IR
bilaterally; left LR

Hypoplasia of CNIII bilaterally

4/F/22 0.3/0.2 XT hypoplasia of SR, LPS, MR, IR,
LR bilaterally

Hypoplasia of CNIII bilaterally,
absence of left CNVI

5/F/23 0.4/0.5 XT hypoplasia of SR, LPS, MR, IR,
LR bilaterally

Hypoplasia of CNIII bilaterally,
absence of CNVI bilaterally

6/F/15 0.25/0.2 XT hypoplasia of SR, LPS, MR, IR,
LR bilaterally

Hypoplasia of CNIII bilaterally

7/F/18 0.2/0.2 Orthotropic hypoplasia of SR, LPS, MR, IR
bilaterally

Hypoplasia of CNIII bilaterally,
absence of right CNVI

8/F/49 0.3/0.48 XT hypoplasia of SR, LPS, MR, IR
bilaterally

Hypoplasia of CNIII bilaterally,
absence of right CNVI

9/F/24 0.4/0.2 XT hypoplasia of SR, LPS, MR, IR
bilaterally

Hypoplasia of CNIII bilaterally,
absence of CNVI bilaterally

XT, exotropia; SR, superior rectus; IR, inferior rectus; MR, medial rectus; LR, lateral rectus; LPS, levator palpabrae superioris; CNIII, Oculomotor nerve;

CNVI, Abducens nerve. All patients had bilateral blepharoptosis, limited supraduction, and essentially complete ophthalmoplegia.

doi:10.1371/journal.pone.0133473.t001
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for 400 s to collect 200 volumes for each subject. Subjects were instructed to lay still and awake
with their eyes closed during the resting state fMRI scan (Fig 1E).

Image Processing and Statistical Analysis
All images were reoriented to match the orientation of the MNI152 standard template images
and processed off-line as follows:

T1-weighted structural images were analyzed using FSL-VBM framework (http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/FSLVBM) [17]. First, non-brain tissue pixels were removed [26] and brain
tissues were segmented into GM, WM and CSF in native space [27]. The segmented GM
images were then non-linearly registered to the GM ICBM-152 template [28] and then aver-
aged to create a study-specific GM template. All the native GM images were then non-linearly
registered to the GM template and modulated to correct for local expansion or contraction.
The modulated images were subsequently smoothed with an isotropic Gaussian kernel with a
standard deviation of 3 mm. At last, permutation-based non-parametric testing (10,000 per-
mutations) was used in a voxel-wise general linear model for comparison of patients versus
normal controls [29]. Threshold-free cluster enhancement (TFCE)[30] method was used for
multiple comparisons to identify cluster-like structures The statistical threshold was p< 0.05.

For each subject, fifteen DTI volumes with b value of 1000 s/mm2 were affine registered to
the b0 volume for correction of eddy current distortion and simple head motion. Non-brain
voxels were removed and a fractional intensity threshold of 0.3 was selected to generate a
brain-extracted 4D image and a binary brain mask, which were used for fitting diffusion tensor
model at each voxel [31]. Then some DTI’s measures were calculated including fractional
anisotropy (FA), mean diffusivity (MD) axial diffusivity (AD) and radial diffusivity (RD). The
standard TBSS procedure [18, 32, 33] was then applied on these DTI’s measures to generate
the skeleton images. Voxel-wise statistical analysis of individual skeleton images of CFEOM1
patients versus normal controls was performed using a nonparametric permutation test [29].
And TFCE[30] method was used for multiple comparisons in order to identify significantly
changed clusters. The statistical threshold was p< 0.05.

For resting-state fMRI images, we selected ALFF [19] and ReHo [20] methods to character-
ize the amplitude and the synchronization of the local spontaneous brain activity, respectively.
The fMRI image processing was carried out using SPM8 (www.fil.ion.ucl.ac.uk/spm/) and the
REST software [34]. The first ten volumes of individual resting state fMRI data were discarded.
The remaining volumes were realigned to the first one to correct for head motion. The individ-
ual fMRI images were then spatially normalized to the standard template and re-sampled to
3×3×3 mm voxel size. The linear trends were regressed and a band-pass filter were applied at
0.01~0.08 Hz. ALFF value on each voxel was calculated by averaging the square root of power
spectrum from 0.01 Hz to 0.08 Hz [19], and then standardized by dividing the global mean
ALFF value. ReHo value on each voxel was obtained by calculating the Kendall’s coefficient of
concordance (KCC) within a cubic cluster size of 27 voxels [20]. Finally, two sample t-tests
were applied to investigate the possible differences of these two indexes between patients with
CFEOM1 and healthy controls.

Results
VBM analysis on structural MRI revealed that CFEOM1 patients had significant GM increases
in brain regions including the right temporal pole and bilateral orbital frontal cortex (Table 2)
(p< 0.05, TFCE corrected). Fig 2 illustrates their positions on the MNI standard template.

No significant alterations were detected in any DTI measures (FA, MD, AD and RD)
between the CFEOM1 group and healthy group.
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With resting state MRI, we did not detect signifcant changes in ALFF, or ReHo after multi-
ple correction. However, when compared with healthy controls, we found that the patients
with CFEOM1 showed a trend of ALFF increase (p< 0.001, uncorrected) in the right inferior
parietal lobe and right frontal cortex and also a trend of ReHo increase (p<0.001 uncorrected)
in the left precentral gyrus, left orbital frontal cortex, temporal pole and the posterior division
of cingulate gyrus (Table 3 and Fig 3).

Discussion
In the present study, a multimodal MRI imaging strategy was employed to investigate possible
brain abnormalities in patients with CFEOM1. Quantitative analysis methods were applied to
characterize the image features of structural, diffusion tensor and functional MRI. Our study
demonstrated, for the first time, that there were some brain structural and functional alter-
ations associated with CFEOM1. These alterations were documented with the significant GM
changes detected by VBM analysis of structural MRI, and the slight change in spontaneous
brain activity revealed by fMRI indices. However, TBSS analysis on DTI revealed the white
matter microstructure of in patients with CFEOM1 was unaffected.

Table 2. Brain areas with regional gray matter changes.

Anatomical location Cluster size (voxels) MNI-Space (mm; X, Y, Z) p-Value

R-FOC, R-TP 229 (30, -12, -26) 0.005

L-FOC 89 (-16, 14, -20) 0.035

Voxel size = 2×2×2 mm; R = right; L = left; FCO = Frontal Orbital Cortex; TP = Temporal Pole.

doi:10.1371/journal.pone.0133473.t002

Fig 2. VBM results. Brain areas showing significant GM increases, including the right temporal pole and
bilateral orbital frontal cortex (p < 0.05, corrected for multiple comparisons).

doi:10.1371/journal.pone.0133473.g002
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With genetic techniques, patients with CFEOM1 were identified to be accompanied by the
heterozygous missense mutations in KIF21A [6, 10]. Although the potential role of KIF21A in
brain development is still unknown, KIF21A expression were found to be widely distributed in
many neuronal populations of the central and peripheral nervous system from early develop-
ment into maturity [35]. CFEOM1 has been established to be a primary error in cranial nerve
development [10]. To obtain a good physiological rationale to better understand the basis of
CFEOM1, we now scouted more attention to look for the possible secondary changes in the
brain regions of patients with CFEOM1.

The temporal pole is believed to play a role in integrating visual information and viscero-
autonomic responses, and may modulate the vestibular system to reduce or enhance the level
of vestibular control over eye movements [36–38]. The CFEOM1 patients showed increased
GMV in the right temporal lobe, reflecting increased multisensory integration to support visual
task, such as eye movement control and visual identification. The orbital frontal cortex is one
of the least understood areas of cerebral cortex [39]. Previous studies suggest this area to be a
component of brain systems critically engaged in memory, reward and decision-making mech-
anisms. Furthermore, it is particularly affected in various mental and neurological disease, such
as major depression [40], Tourette syndrome [41] and dementia [42]. However, unlike these
neurodegenerative disorder patients who have GMV decreases in the orbital frontal cortex,
CFEOM1 patients showed GMV increases in the orbital frontal cortex, indicating the functions
of orbital frontal cortex were not impaired but strengthened. ReHo increases were also
observed in the orbital frontal cortex, and temporal pole. This is consistent with the GMV
changes in these areas.

Table 3. Functional MRI results.

Cluster size (voxels) MNI-Space (mm; X, Y, Z) p-Value

ALFF: CFEOM > Controls
950 (24, -48, 33) 0.000

737 (39, 36, 0) 0.000

ReHo: CFEOM > Controls

950 (-27, -21, 60) 0.000

800 (-24, 9, -14) 0.000

725 (-3, -42, 3) 0.000

doi:10.1371/journal.pone.0133473.t003

Fig 3. fMRI data results. ALFF increase (p< 0.001, uncorrected) in right inferior parietal lobe and right frontal
cortex and ReHo increase (p<0.001 uncorrected) in left precentral gyrus, left orbital frontal cortex, temporal
pole and Cingulate gyrus.

doi:10.1371/journal.pone.0133473.g003
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DTI is becoming increasingly popular for its high sensitivity in detecting WMmicro-struc-
tural alterations [43–45]. When analyzed with TBSS [18], DTI studies have the advantages of
higher spatial registration and smoothing, thus enabling more accurate results. Interestingly,
no significant difference in FA, MD AD or RD was detected in CFEOM1 patients by using
TBSS. The absence of any differences suggests that the fiber myelination in identified WM
areas (FA threshold of 0.2 was selected as the boundary of WM and GM) and the white matter
connectivity pattern in the CFEOM1 patient group was not affected by the disease. However,
the observed abnormality in oculomotor nucleus in previous studies suggests a decreased
input/output in neural stimuli between these nuclei and cerebral cortex, indicating decreased
brain integrity and altered eye movement control output patterns to the target muscles [4, 46].
The unchanged WM diffusion indices may suggest that the decreased input/output’s efferts on
the brain structural and function is more subtle than expected. Thus, further studies are needed
to resolve the question how the integrity of the eye movement related brain areas are altered in
CFEOM1 patients.

Our study has some limitations and the findings should be interpreted with some caution.
Firstly, we did not collect functional measures of eye movement. Secondly, we had a small sam-
ple size (n = 9) because of the low incidence of the disease, which is perhaps underpowered to
detect more subtle changes. Finally, the potential role of KIF21A in brain development is
unknown. Whether it will affect some other subgroup of nerves in other parts of brain is yet to
be determined. Thus, our study should be viewed only as an exploratory step towards charac-
terizing brain pathology and understanding the brain-based mechanisms of CFEOM1.

In conclusion, by studying a group of CFEOM1 patients using automated MRI voxel based
morphometry, tract based spatial statists, and fMRI indices statists methods, we found that the
patients showed alterations in cerebral cortex areas, which were not documented in previous
cases or family based studies. These alterations indicated that the patient’s brain functions may
have changed accordingly. Future studies should consider possible correlations between brain
morphological/functional findings and clinical data, especially pertaining to eye movements,
and to obtain more precise answers about the role of different brain area changes and their
functional consequence in CFEOM1.
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