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Abstract: Limiting expression to target cell types is a longstanding goal in gene therapy, which 
could be met by sensing endogenous microRNA. However, an unclear association between 
microRNA expression and activity currently hampers such an approach. Here, we probe this 
relationship by measuring the stability of synthetic microRNA-responsive 3'UTRs across 10 cell 
lines in a library format. By systematically addressing biases in microRNA expression data and 
confounding factors such as microRNA crosstalk, we demonstrate that a straightforward model 
can quantitatively predict reporter stability purely from expression data. We use this model to 
design constructs with previously unattainable response patterns across our cell lines. The rules 
we derive for microRNA expression data selection and processing should apply to microRNA-
responsive devices for any environment with available expression data. 

Main text: The ability to predictably sense and respond to specific cell states promises to 
increase the specificity of mRNA, gene, and cell therapies (1–4). In principle, cell state-sensing 
can be achieved by engineering cis-regulatory elements that respond to transcription factors, 
microRNA, or RNA binding proteins that are differentially expressed in the target cell state. 
Practically, we usually lack the ability to quantitatively predict sensor function from available 
prior information, which tends to be limited to expression data for trans-acting RNAs and 
proteins that serve as inputs to the sensor, making it difficult to generalize beyond cellular 
environments compatible with iterative experimental testing. 

So far, maybe the most widespread approach to transgene targeting relies on microRNA 
(miRNA) (5, 6). miRNA are short (~22nt) regulatory RNA bound by the RNA-induced silencing 
complex (RISC), which actively search for and degrade complementary targets, usually in the 
3'UTR of mRNAs (7). miRNA are attractive for engineering applications because regulation can 
be achieved simply by inserting target sites complementary to a miRNA into the transgene. 
Although natural miRNA regulation uses partial target sites, fully complementary target sites 
confer a stronger regulatory effect, making them the more popular choice. Due to their often cell 
type-specific expression, miRNA are well-suited to classify cell state via synthetic gene circuits 
(8–11). Most commonly, multiple target sites for a highly and differentially expressed miRNA 
are used to exclude transgene expression in a specific tissue (12, 13).  
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Still, it remains difficult to achieve complex expression patterns that require multiple target sites 
for miRNA that are expressed in several tissues because there is no method to quantitatively 
predict endogenous miRNA activity, i.e., the loss of expression due to target mRNA degradation, 
from expression data. Previous high-throughput studies have found low correlation between 
miRNA expression and target stability beyond a minimum expression threshold necessary for 
regulation (14, 15). Smaller studies find low, intermediate, and high correlations (5, 16–18). 
miRNA expression and activity are thus generally believed to be relatively weakly associated (6, 
10, 11). How multiple miRNA targets combine to produce an overall regulatory effect is 
similarly contested (9, 15, 18). This necessitates individual validation of miRNAs and makes it 
difficult to anticipate behavior in novel environments (10). 

To address these limitations, we measure the activity of all annotated high-confidence human 
miRNAs (19, 20) across ten different cell lines using reporter libraries. We find that it is possible 
to quantitatively predict the stability of reporter genes containing arbitrary combinations of 
miRNA targets in their 3'UTR purely from readily collectible expression data, but only after 
identifying high-quality microRNA expression datasets and correcting them for systematic bias. 
Using this model, it is possible to quantitatively design mRNA with defined stability patterns 
across cell types without the need for individual verification or high-throughput activity 
measurements, which are infeasible in real tissues. 

A universal transfer function predicts full miRNA target sites 

To measure the regulatory activity of human miRNA, we created reporters for 1,382 miRNAs 
selected from two major miRNA databases (miRBase (19), MirGeneDB (20)) (Fig. 1A). Single, 
fully complementary miRNA target sites were inserted into the 3’UTR of a plasmid-based 
reporter gene (Fig. S1). The reporter library was transiently transfected into 10 cell lines, each of 
which is characterized by a unique miRNA expression profile. Stability of reporter transcripts in 
each cell line was inferred from the ratio of mRNA to input plasmid counts as determined by 
sequencing (21). The resulting relative stability values are normalized such that the stability for 
constructs with inactive target sites in the 3'UTR context used (the 'main context') is 1. 

Our experiments reveal a nearly monotonic, universal relationship between miRNA expression 
obtained via microarray (22) and stability (Fig. 1B). As an example, measurements of the miR-
100-5p reporter across cell lines reveal varying stability values, and aggregating these across all 
miRNAs enables mapping the full regulation function. Experimental replicates have a Pearson r2 
above 0.98, suggesting that the assay is highly reproducible (Fig. S2-S4). High correlation 
between mRNA abundance and reporter protein expression measured with flow cytometry is 
consistent with a model wherein full target sites in the 3'UTR primarily modulate mRNA 
stability rather than translation (r2=0.95, Fig. S5). Different miRNAs have varying levels of 
experimental evidence in databases. The monotonic relationship only clearly holds for miRNAs 
that are listed in the manually curated MirGeneDB, while low-confidence miRNAs in miRBase 
sometimes display erroneously (22) high measured expression with no activity (Fig. S6). We 
therefore exclude them from the analysis. 

The observed relationship between mRNA and miRNA abundance is well explained by a simple 
transfer function derived under the assumptions of mass action kinetics and instantaneous 
degradation of the target transcript by the RISC (r2 = 0.44-0.69, Fig. 1B inset, Supplementary 
Text 1) (23, 24). For low miRNA concentrations ([x]<<kdeg/kon) mRNA degradation is 
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dominated by the baseline degradation rate kdeg. In the opposite regime, the degradation rate 
increases linearly with miRNA concentration. Empirically, mRNA stability starts decreasing 
around 1,000 miRNA transcripts per million (tpm), in line with previous results (14). To confirm 
that our observations are not an artifact of the specific reporter context used, we embedded 10 
miRNA targets in 30 additional 3’UTR sequences (Methods), yielding 3,000 measurements 
across all cell lines. The transfer function correctly predicts the relative stability due to miRNA 
target sites across the different contexts (Fig. 1C). Different context sequences could occlude 
target sites by secondary structure formation, thereby causing outliers. We engineered additional 
context sequences to test this hypothesis and found that, while strong occlusion of the target site 
strongly reduces miRNA activity (Fig. S7), secondary structure in natural 3'UTRs is usually too 
weak to create strong outliers (Fig. S8). 

We observe mostly minor but systematic global deviations from the transfer function for some 
cell lines (Fig. S9), likely due to variations in total miRNA levels and the main context stability 
kdeg between cell lines (Fig. S10, Methods). A scaling factor of the total miRNA concentration 
for each cell line accounts for both of these issues and improves the model fit (Fig. S11). 

Combining datasets corrects data bias 

The universal relationship we observe between miRNA expression and reporter activity seems 
partially at odds with previous high-throughput experiments (14, 15) and in fact, we only observe 
a universal relationship when using certain miRNA measurements. We hypothesized that the 
correlation between stability and expression is determined by the method used to collect the 
miRNA expression data. To test this hypothesis, we collected expression datasets of different 
origins, including short RNA sequencing and microarrays from Agilent and Affymetrix, for our 
cell lines and tested their mutual correlation (Fig. S12A-C). We additionally include datasets 
from what we refer to as “improved sequencing methods”, which involve approaches to reduce 
ligation bias in library construction (25–29). High correlation between different collection 
methods is only observed between Agilent microarray data and improved sequencing methods. 
We hypothesize that cross-method correlation signifies correctness: We calculated r2 values for 
our transfer function (Fig. 1D and S12D) and found consistently high correlation even for older 
publications using Agilent microarray data (r2~0.62) and for improved sequencing methods 
(r2~0.52). In contrast, standard small RNA sequencing datasets perform poorly (r2 0.11 to 0.41).  

Even the highest quality microarray and sequencing data still suffer from technology-specific 
biases in which certain miRNAs are over- or undercounted. To identify putative technology-
specific outliers we combine microarray data (22) with improved sequencing data. Because the 
sample preparation shares little in common, technical biases between these two different types of 
measurements should not correlate. Potential biased data points are defined as outliers from the 
transfer function in one but not the other dataset for at least one cell line (Fig. S13). Because 
technology-specific bias depends only on miRNA sequence features, we only identify consistent 
outliers across multiple cell lines as genuine biased data points. Bias-aware dataset merging is 
performed by using the geometric mean except in cases of technology-specific bias, where the 
data from the other technology is used. Dataset merging removes around a third of outliers with a 
more than two-fold difference to the predicted stability value. Because biases are technology-
specific, this identification of false positives and negatives in highly tractable systems such as 
cell lines should be transferable to more difficult systems such as tissues. 
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Crosstalk between miRNA family members explains outliers from ideal behavior 

MicroRNAs occur in families with highly similar sequences, leading to potential crosstalk (Fig. 
S14). If a microRNA degrades a reporter transcript carrying targets that are not fully 
complementary, such crosstalk can result in apparent deviation from the transfer function model. 
To quantify crosstalk, we measured a reporter library of 1,096 partially mutated miRNA target 
sites (Fig. S15A). Results for individual mismatches qualitatively agree with previous 
observations (Fig. 1E, S15B-C): An adenine at position 1 does not act as a mismatch (30). The 
strongest effects are observed early in the seed and around the cleavage site at positions 10 and 
11 (31, 32). Wobble base pairs are generally more tolerated than genuine mismatches but are still 
damaging (32). 

We then used these measurements to build a model to predict the impact of multiple mutations. 
We classify the impact of individual mutations as high, medium, low and none based on their 
position only and whether the mutation causes a mismatch or a wobble base pair with the 
miRNA. Targets with multiple mutations are then grouped by the number and impact class of 
their individual mutations (Fig. S15D-E). Activity rapidly falls off with increasing numbers of 
mutations and multiple mutations can abrogate cleavage even for combinations of mutations with 
no individual effect (Fig. S15E, S16A). We used the classification of individual mutations to 
build a regression tree model that predicts the effect of multiple mutations (Fig. S16B). The 
model predicts the impact of mutations on a held-out miRNA (Fig. S16C), although the effect of 
mutations is highly sequence-specific (Fig. S16D). We merge miRNAs that are identical for the 
first 18 bases and then use the mutation classification (Methods) to filter targets that are likely to 
experience crosstalk (Fig. 1F), removing many of the strongest outliers. 

Bias correction yields an updated model 

Several additional sources of bias and noise can largely be excluded: Low counts in the stability 
data and miRNA GC content have little to no effect (Fig. S17A-D). Some miRNA targets 
contain homopolymer stretches but except for miR-3613-3p, these do not impact the result (Fig. 
S17E). Each step of bias removal improves the model fit (Fig. 1G, Fig. S18). The effect of 
scaling miRNA concentrations is minor for all cell lines except HUH7 and PC3. Merging data 
sources and addressing crosstalk substantially improves the fit for almost all cell lines. Tera1 and 
Jeg3 improve the least, which likely indicates biological variation in the miRNA composition 
within these cell lines. Bias removal substantially improves the agreement between the transfer 
function and measured stabilities (Fig. 1H). We call the model without and with scaling factors 
and bias-aware merging the "baseline model" and the "updated model". 

Multiple target sites are described by an additive model of miRNA concentrations 

Next, we investigated how multiple target sites cooperate to control reporter stability. Multiple 
models of miRNA interactions have been suggested in the literature (9, 15, 33). Here, we focus 
on the additive model, which assumes that target sites are independent of each other, because it 
arises naturally from the same differential equations that yielded our transfer function (Fig. 2A, 
Supplementary Text 1). We chose 100 miRNAs spanning a range of expression values and 
created reporters by repeating their target sites two to six times. In the additive model, the 
behavior should be predicted by multiplying the miRNA expression data by the repeat number 
and using the transfer function to predict stability. This approach yields accurate predictions 
(r2~0.8) with similar accuracy for all target copy numbers (Fig. 2B, S19-20). An alternative 
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model which assumes that regulation is independent of the number of repeats leads to systematic 
overprediction. 

To investigate the behavior of multiple target sites for different miRNAs, we tested 500 
combinations of 2 to 6 different miRNA targets chosen to best distinguish different models 
(Methods). We see an overall r2 of 0.76 (Fig. 2C, left panel) for the correlation between the 
additive model and measured data, confirming that the additive model also works well for 
multiple different miRNAs. A prediction based simply on the strongest target site systematically 
overpredicts the stability (Fig. S21). Although stability prediction works well, there are still 
outliers. To distinguish between effects not considered in the additive model and inaccuracies in 
our expression data, we used the stability data for single target sites to estimate the true miRNA 
expression levels (inverted transfer function model, see methods). This approach reduces some 
of the deviation from ideal behavior in the prediction (Fig. 2C, right panel). 

As a further test of the additive model, we chose 30 different sets of 5 targets and generated 15 
randomly shuffled versions of their position in the 3'UTR. If secondary structure, cooperative 
effects, proximity to the coding region, or other factors matter, shuffling of target site position 
should change the measured stability. If the additive model is correct, the position should make 
no difference. We compare the mean stability of the 15 sites with the individual measured 
stabilities (Fig. 2D). With an r2 of 0.95, we can conclude that the position along the UTR is not 
relevant. Overall, the updated model prediction accuracy from expression data comes close to 
matching and sometimes exceeds that of the inverted transfer function model, which requires 
difficult-to-collect activity data, across all cell lines for both repeats and combinations (Fig. 2E). 

Although the additive model works well for most miRNA combinations, there are notable 
outliers, especially in the case of repeated target sites for the same miRNA. First, some miRNAs 
show a pattern where an even number of repeats has less activity than an odd number (Fig. 
S22A-B). This is likely due to self-complementarity of the target, which causes strong target-
target interactions and prevents miRNA binding via secondary structure formation (Fig. S22C-
D). Unbiased discovery of all occluded targets via ΔΔG calculations is difficult due to the low 
accuracy of secondary structure prediction for mRNAs in cells (Fig. S22E-F) (34). Second, some 
miRNA target sites lead to a nearly monotonic increase in stability with increasing target 
numbers (Fig. S23A). This effect occurs more strongly in cell lines where the cognate miRNA is 
not expressed, indicating that this is not an effect of non-canonical miRNA regulation (Fig. 
S23B-C). We suspect RBPs as a potential cause, although identification of concrete candidates is 
difficult using current prediction methods. 

Model-based design of 3'UTRs with tailored stability profiles 

We used our model to design 3'UTRs with defined stability patterns based purely on miRNA 
expression data (Fig. 3A). The chosen stability patterns represent tasks of varying difficulty 
given the repressive nature of miRNA regulation. We test “binary” designs aiming for low 
expression (stability 0) in one or more target cell lines and high expression (stability 1) 
everywhere else, binary designs resulting in high expression in the target cell lines (stability 1) 
and low expression in all others (stability 0), and graduated expression patterns, where the goal is 
to achieve stabilities between 0 and 1 in each cell line (Fig. 3B). The baseline model was used to 
generate the designs. This reflects the real-world challenge of creating designs for tissues and 
cell types for which miRNA expression data is available but for which we have no reporter 
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activity measurements. We used an evolutionary algorithm to select four to six target sites based 
on the weighted mean squared error (mse) between the target and the predicted pattern. We 
created designs for either a subset of six or all cell lines based on the notion that the design 
should be easier for a smaller number of target cell lines or for all 10 cell lines. In total, we 
generated 1,782 designs for six cell lines and 1,986 designs for all cell lines, respectively (Fig. 
S24).  

For the binary designs, we experimentally tested four 3'UTRs per design target type using 4, 5, 
or 6 miRNA target sites (Fig. S25-27). The best-performing designs generally come close to 
achieving the desired pattern (Fig. 3C). Easier design tasks lead to better results: Most designs 
that suppress stability in one or two cell lines have relatively little off-target knockdown, but 
constraining expression to one or two cell lines or suppressing activities in three cell lines is 
much more challenging. Still, we observe deviations from the target pattern even for the best 
designs. We next asked whether these deviations are predicted by our models or whether they are 
purely random. First, we note that measurements and predictions generally agree (Fig. S25-27). 
Approximately 70% of predictions have a distance of 0.2 or less to the measured value (Fig. 3D).  

The difficulty of the design types is anticipated by the target-prediction root mean square 
deviation (rmsd) (Fig. S28A). Designs with five or more target sites lead to significantly better 
predicted and measured results for binary designs constraining expression to a single cell line but 
not for binary designs inactivating expression (Fig. S28B). Fig. 3E shows an example prediction 
for restraining activity to a single cell type. Many of the most prominent deviations from the 
desired pattern, e.g., off-target activity in JEG3 for the second design, are predicted by the 
model. Two other model types further increase the prediction accuracy (updated and inverted 
transfer function, Fig. S28C-E). These other two models represent how well we can predict 
stability given knowledge of total miRNA concentrations and background stability (updated 
model) and with access to a prior high-throughput assay of miRNA activity in the same system 
(inverted transfer function model). Notably, all models predict performance not just for well-
performing designs (Fig. S29) but also for poorly performing ones (Fig. S28A, S30). 

We experimentally tested 1,116 graduated designs targeting all cell lines, achieving varying 
levels of success in generating the desired patterns (Fig. S31). Comparing across quartiles of 
design success, we find that for the first three quartiles, the predicted rmsd values track the 
measured rmsd values for all models. For the fourth quartile, the baseline model loses accuracy 
(Fig. 3F). Predictions and measurements in individual cell lines have an r2 of 0.6 for the updated 
model (Fig. S32A) and 75% of predictions deviate less than 0.2 from the measured value (Fig. 
S32B). 84% of designs have a mean absolute prediction error smaller than 0.2 across cell lines 
(Fig. S32C). As for the binary model, we can anticipate the feasibility of achieving a certain 
stability pattern and the success or failure of an individual design is often predicted in advance 
(Fig. S32D).  

Thus, all models predict reasonably well whether a certain design goal will be fulfilled, although 
the two expression data-based models overpredict design success overall (Fig. 3G). Large 
unexpected failures also occur (Fig. S33). Strong target occlusion due to target-target 
interactions is again one potential cause. In the most extreme cases, sites from the 5p and 3p arm 
of related miRNAs are present on the same 3'UTR, leading to a systematic underprediction of the 
stability. Such designs can easily be excluded by prohibiting strong secondary structure or target-
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target interactions. A few designs exhibit overall very high or very low stabilities for unknown 
reasons. 

Targeting mRNA stabilities to human tissues 

Next, we asked what sort of mRNA expression patterns are possible in real tissues (Fig. 3H). We 
chose a microarray (35) and an improved sequencing dataset (36) whose collection method 
matches our cell line expression data (Fig. S34). The two datasets show little correlation before 
consistent outliers are addressed (Fig. S35). We merged the two datasets similarly as for our cell 
line data (Fig. S36). We then used the merged dataset to generate designs with between 1 and 8 
target sites that either exclude or constrict expression to a single tissue (Fig. 3H, S37A-B). While 
exclusion in some tissues with highly specific miRNAs, e.g. miR-122-5p in liver, can often be 
achieved by a single target site that could be chosen without a model, constraining expression to 
a single tissue requires many target sites and a careful balancing of on-target activity with 
unavoidable off-target activity that cannot be achieved without a quantitative model (Fig. S37C-
E). Even for exclusion of a single tissue, the choice of miRNA is often not obvious and the 
optimal number of target sites is rarely the four repeats that are often used. Although we could 
not experimentally test these designs, the good agreement we observed between model and 
predictions in cell lines is encouraging.  

Discussion 

In summary, we find that a universal transfer function predicts the stability of miRNA-
responsive 3'UTRs from total miRNA levels as calculated by an additive model. Universality 
here means that the regulatory effect is a function of the miRNA concentration but is largely 
independent of miRNA identity and of the cellular context. The choice of miRNA expression 
data is key and the universal function becomes apparent only when using high-quality miRNA 
expression datasets. Conversely, our reporter stability data provide an easy way of benchmarking 
collection methods by measuring expression for our used cell lines and seeing whether the 
universal relationship is retained. Systematic treatment of biases increases the prediction 
accuracy: The expression data should be scaled to total miRNA levels, strong secondary 
structure eliminated, outliers removed by combining data sources, and crosstalk excluded. Our 
results suggest that earlier conflicting results on the relationship between miRNA levels and 
activity can be resolved by careful selection and processing of the expression data. Given the 
ubiquitous use of miRNA regulation, this insight should be highly useful for gene therapy and 
cellular control circuits.  

We designed hard-to-achieve patterns such as restriction to a single cell line or graduated 
expression. Importantly, we show that such patterns are achievable even with a limited number 
of target sites, resulting in compact 3’UTRs. We expect such designs to be practically important 
for increasing the specificity of future mRNA therapies where few other levers for achieving 
specificity are available. However, the simple nature of miRNA regulation, namely that it is 
repressive and non-cooperative, still constrains the achievable patterns. Incorporating our 
insights into the design of multi-gene circuits of miRNA-regulated mRNAs could address this 
limitation (9).  

Going beyond cell lines, we have created designs for tissue datasets. Whether our model 
performs well for real tissues remains to be seen. The heterogeneity of cell types in a single 
tissue could pose a significant hurdle because tissue-averaged miRNA expression profiles might 
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not be representative of any single cell type within the tissue. Future single-cell miRNA 
sequencing techniques (37) could help overcome this limitation, though only if they avoid the 
biases of standard library construction workflows. 

Further improvements in prediction accuracy seem possible. Biological variation in miRNA 
levels within the same cell type, sequence-specific RISC loading and activities (38), poorly 
predicted secondary structure (34), titration of miRNAs by other transcripts (14, 39), subcellular 
localization (14), post-transcriptional miRNA modification (40), or miRNA-independent UTR 
stability variation (41) likely all cause residual prediction noise. Given the enormous impact of 
expression data quality, residual technical bias probably also plays a large role. We here focus on 
fully complementary target sites relevant for engineering applications. While biologically 
relevant seed target sites require more complex models that take into account the secondary 
structure and miRNA sequence features (42), any predictive model will also require debiased 
expression data as an accurate proxy for concentrations, making the elimination of residual 
biases equally relevant for basic biology. 

In the longer term, we expect that the approach introduced here, i.e., learning quantitative 
relationships between the levels of trans-regulatory molecules and their targets that allow 
generalization from one cellular context to the other, can also be applied to RNA binding 
proteins or transcription factors, enabling the rational design of functional cis-regulatory 
elements given knowledge of only transregulator expression. 
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Fig. 1. A universal transfer function predicts miRNA activity from expression data. (A) 
Overview of the performed high-throughput stability assay. MicroRNA target sites are ordered 
as an oligo pool and cloned into a reporter plasmid. The plasmid library is transiently transfected 
into cell lines, where constructs are degraded by the RNA-induced silencing complex (RISC). 
Purified mRNA is sequenced. Sequencing counts for mRNA and the plasmid library are used to 
calculate stability values. (B) Stabilities for single full target sites across the different cell lines. 
The dashed line shows the best fit for the function shown in the inset. The x-axis uses unscaled 
microarray expression data (22). The heatmap shows Pearson r2 values between the fit and the 
measured data. (C) The transfer function predicts the relative stability of 3’UTRs containing 
miRNA targets in different context sequences. (D) Pearson r2 derived from fitting the transfer 
function for different miRNA data source types. (E) Effect of a single mutation on the relative 
knockdown between mutated and full target sites for miRNAs where the stability sfull of the non-
mutated target site is less than 1/3. The knockdown 𝑘 is given by 𝑘 = 1/𝑠 − 1. n: no l: low, m: 
medium, h: high impact mutations (F) Potential crosstalk was identified based on the mutation 
classification in (E). The expression of near-identical miRNAs was merged (orange) and other 
miRNA targets that are likely to experience crosstalk (red) are filtered. (G) Changes in the root 
mean square deviation (rmsd) between measured data and the fit due to expression data bias 
removal. 1: unscaled microarray data, 2: scaled microarray data, 3: combination of microarray 
and sequencing data, 4: bias-aware merging, 5: removal of crosstalk. (H) Stability for single full 
target sites using the merged and cross-filtered expression data. The heatmap on the right 
demonstrates the improvements in the model fit. 
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Fig. 2. The additive model predicts the behavior of multiple target sites. (A) We measure the 
stability of repeats and combinations of target sites. The additive model predicts that the 
concentration of individual target sites should be summed before the transfer function is applied. 
(B) Measurements and predictions using the additive model (dashed black line) for 2 to 6 target 
site repeats in two cell lines. We use scaled, merged and crosstalk-filtered microRNA expression 
data. The gray dashed line shows the prediction for a single target site. (C) Measurements and 
predictions using the additive model for combinations of 2 to 6 target sites across all our cell 
lines. We use either scaled, merged and crosstalk-filtered microRNA expression data (left) or 
expression data inferred from the stability data for individual target sites via inversion of the 
transfer function (right). (D) Mean and individual stability data for combinations of 5 target sites 
with shuffled ordering on the 3’UTR. (E) Comparison of model fit Pearson r2 values for repeats 
and combinations of miRNA target sites for actual miRNA expression data (e.d.) or expression 
data derived from inverting the transfer function for individual sites (i.t).  
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Fig. 3. Model-based design of tailored stability profiles from expression data. (A) An 
evolutionary algorithm uses expression data and our model to generate and predict 3’UTR 
designs. Designs are chosen based on a weighted root mean square deviation (RMSD) between 
predicted and target stability patterns. (B) Different stability patterns across cell lines are 
designed using 4,5 or 6 miRNA target sites. Designs either use binary expression patterns or 
graduated patterns. (C) Best-performing designs for either high or low stability in one or a few 
cell lines and the opposite in the others. The blue boxes show the cell lines in which high/low 
stability is desired. (D) Deviations of the measurement for binary designs from the predictions of 
the baseline model used for design. (E) Prediction by the baseline model for the best-performing 
designs with high stability in a single cell line. (F) RMSD of model predictions from target 
stability values for graduated designs across different quartiles of design success (measured 
RMSD to the target pattern). p-values were calculated using a two-sided Mann-Whitney U test. 
(G) Predicted and measured RMSD values from the target stabilities for the different models. 
(H) Two human tissue datasets collected using different methods were merged. We used our cell 
line data to help resolve disagreements and filter crosstalk. We used our model to create designs 
with up to six target sites that are predicted to be either active or inactive in a single organ. 
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Materials and Methods 

Library design 

We designed and measured a first test library of 1,000 sequences and a second library of 10,021 
sequences. The main text focuses on Library 2 because Library 1 was measured in fewer cell 
lines (HEK293T, HeLa, SKNSH, MCF7) and does not yield any additional insights. Not all 
sequences included in these two libraries are evaluated in the main text. 

Library 1 design and purpose 

Each sequence has a length of 142 nt, of which 15 nt were fixed at the 5' end 
(CGAGCTCGCTAGCCT) and 17 nt at the 3' end (AGATCGGAAGAGCGTCG), leaving a total 
of 110 variable nts. The purpose of Library 1 was for us to gain sufficient information to allow 
for the design of Library 2. We chose 145 miRNAs annotated as high confidence in miRBase 
v22 with high expression in the four cell lines. We measured them in two context sequences 
(data_high_fc_rs848_ref and data_high_fc_rs2303225_ref) of endogenous origin with neutral 
stability from Griesemer et al. (21). These measurements were used to fit the transfer function 
constant kon/kdeg that was used to create designs with tailored stability profiles (Fig. S4A). 
Library 1 also contained two and three repeats of 41 miRNAs each, and 197 combinations of 
between two and five different miRNAs, which allowed for an initial verification of the additive 
model. It also included control sequences without miRNA target sites (41), which were used to 
generate further control sequences for Library 2. Other parts of Library 1 were not used in this 
manuscript. Sublibraries are listed in Table S4 and sequences are provided in Data S1. 

Library 2 design 

Each sequence has a length of 200 nt, of which 18 nt were fixed at the 5' end  
(ACGACGCTCTTCCGATCT; part of the TruSeq Read 1 sequence) and 18 nt 
(CTCTGGATTTGCAACCGA) at the 3' end, leaving a total of 164 variable nts. Detailed library 
design, composition, and miRNA selection for Library 2 are described below (see Table S5 for a 
list of sublibraries and Data S3 for library sequences). Unless otherwise mentioned, we used the 
microarray data by Alles et al. (22) when expression data was required, e.g., to choose specific 
miRNA target sites to test. 

Target site insertion 

The vast majority of sequences were embedded into a single context sequence generated from a 
combination of two control sequences (high_fc_rs848_ref and high_fc_rs7539036_ref) with high 
stability and low variability in stability across cell lines from Library 1. Parts of 
high_fc_rs7539036_ref were added to the 5' and 3' end of high_fc_rs848_ref to generate a 
context sequence with a total length of 164 nts. MicroRNA targets are inserted into this 'main 
context' for all designs in Library 2 unless otherwise mentioned. MicroRNA target sites were 
inserted into context sequences as follows: Single target sites were inserted approximately in the 
middle of the variable context sequence. Multiple target sites were inserted at a distance of 6 nt 
to test potential cooperativity effects (43). Start codons or poly(A) signals that were created by 
the insertion of the miRNA target were mutated to inactivate them. 

Controls 

In addition to the main context, we took all control sequences (with a length of 101 nt) from 
Library 1 that were measured as stable in all cell lines (mean stability of at least 1) and ranked 
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them by the variance of their stability across the measured cell lines. We appended the least 
variable sequences and then trimmed them from the 3' end to get a total length compatible with 
Library 2 (164 nt). We retained a total of 52 different control sequences. 

Individual full miRNA target sequences 

This sublibrary tests how a single full miRNA target site alters stability and the reliability of 
different data sources for miRNA sequences. Human miRNA sequences were taken from 
miRBase (version 22). MicroRNAs longer than 21 nt were truncated to 21 nt from the 3' end. 
Sequences shorter than 21 nt were padded with Us at their 3' end to reach a total length of 21 nt. 
A miRNA target is the reverse complement of these homogenized miRNA sequences. Targets 
containing a canonical poly(A) signal (AAUAAA) were filtered. We used almost all (856) high 
confidence human miRNAs in miRBase v22 with the exception of those containing canonical 
poly(A) signals in their targets. We added all sequences in MirGeneDB (166 out of 506 total) 
that were annotated as low confidence in miRBase. We also sampled 293 additional low 
confidence miRNAs from miRBase that are not in MirGeneDB, prioritizing miRNAs with large 
expression values in any of our chosen cell lines. 

Assessing context effects and the impact of secondary structure 

We chose ten miRNAs that cover a range of expression values in our cell lines (let-7a-5p, miR-
16-5p, miR-19b-3p, miR-21-5p, miR-22-3p, miR-23a-3p, miR-24-3p, miR-31-5p, miR-107, 
miR-365a-3p). We embedded full targets for these miRNAs into two types of context sequences: 
First, we used the top 30 context sequences least variable in stability generated from our controls 
in Library 1 (see Controls). Second, we inserted 30 short sequences with varying amounts of 
complementarity to each of these miRNA targets starting 26 nt upstream of the 5' end of the 
miRNA target into the main context sequence. The degree of complementarity ranges from a 
block of 5 complementary bases to full complementarity to the miRNA target site. The 
distribution of ΔΔG values was calculated using NUPACK python package (version 4.0.0.20) 
(44) by deducting the free energy of the two individual strands (the 3'UTR and the miRNA) from 
the free energy of their complex. 

Individual mutated miRNA sequences 

We chose 11 miRNAs to mutate: 10 microRNAs (miR-16-5p, miR-19b-3p, miR-21-5p, miR-22-
3p, miR-23a-3p, miR-24-3p, miR-31-3p, miR-31-5p, miR-107, miR-365a-3p) expected to have 
little crosstalk and one miRNA (let-7a-5p) with strong expected crosstalk. These microRNAs 
were chosen because they have highly variable expression values across our cell lines, allowing 
us to test the impact of mutations at different microRNA expression levels. We generated a total 
of 1092 mutated microRNA targets: a) 252 target sites with a single randomly chosen non-
wobble mutation at all positions (252 total), b) all possible mutations leading to a single wobble 
base pair with the miRNA (132 total), c) insertion of an A at position 1 of the seed site (4 total), 
d) 704 target sites with multiple base changes distributed across the miRNA target for a total of 
two (231 total), three (187 total), four (132 total), five (99 total), and six (55 total) mutations. 

Full miRNA target site repeats 

We chose 100 miRNAs to generate constructs containing two to six repeats of a full target site. 
We included all miRNAs for which we tested mutations and all miRNAs of the 5p arm of the let-
7 family. To make sure we cover the full range of miRNA expression values across our cell 
lines, we then classified miRNAs into buckets according to their maximum expression levels 
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across our cell lines: bucket 1 (max > 104 tpm), bucket 2 (104 tpm ≥ max > 103 tpm), bucket 3 
(103 tpm ≥ max > 102 tpm), and bucket 4 (102 tpm ≥ max). We chose 14 miRNAs in bucket 1, 46 
in bucket 2, 10 in bucket 3, and 5 in bucket 4. This choice ensures that we test all the most 
impactful miRNA targets across our cell lines. 

Full miRNA target site combinations 

To be able to distinguish different models of target site interactions, it is necessary to have 
constructs in which the different regulating miRNAs have similar expression levels. For 
example, in the additive model, if the ratio of expression between two cognate miRNAs for two 
target sites is 10, their impact on the stability fold change will have approximately the same ratio. 
Thus, it would be difficult to determine whether the less expressed miRNA has any impact at all. 
We therefore divided miRNAs into buckets depending on their mean expression across our cell 
lines: below 102.5 tpm, between 102.5 and 103 tpm, between 103 and 103.5 tpm, and above 103.5 
tpm. When choosing multiple miRNA targets for a single UTR, we chose targets from the same 
bucket to maximize the odds of choosing miRNAs with similar expression levels. We started by 
generating 30, 30, and 20 combinations of two different miRNAs for buckets 2, 3, and 4, 
respectively. We then sampled an additional miRNA from the same bucket and added it to the 
previously created designs with one less target site, making sure to discard any duplicate designs 
with the same target sites. We repeated this procedure to generate constructs with between two 
and six different microRNA target sequences. 

Design objectives for tailored stability profiles 

We used five types of binary designs (active in one or two cell lines or inactive in one, two, or 
three cell lines) with target relative stability values of 0 or 1. For binary designs, we generally 
created 4 designs per cell line and miRNA target site number in two design rounds. In the first 
round, we generate 2 designs. In the second design round, 2 miRNA targets that were most often  
used in the first design round were excluded to create 2 additional designs. This prevents the 
algorithm from choosing nearly identical sites for every single design. We also used four types of 
designs with graduated target stability values: uniformly random values between 0 and 1 
sampled independently for each cell line, a range of fixed uniformly spaced values between 0 
and 1 randomly assigned to the different cell lines, values distributed uniformly on a log scale 
between 0.05 and 1 sampled independently for each cell line, and fixed logarithmically spaced 
values between 0.05 and 1 randomly assigned to the different cell lines. In the evaluation, these 
are uniformly treated as graduated designs. For graduated designs, we created 93 designs per 
design type and miRNA target site number with 1 or 2 designs per target pattern. 

Model fitting for the design of tailored stability profiles 

Sequences for tailored stability profiles were assayed as part of Library 2. Thus, all model design 
and fitting was done using Library 1 data and the insights gained from it. We derived the 

constant 
௞deg

௞on
 for the transfer function by fitting the data of Library 1 for the four cell lines 

(HEK293T, HeLa, MCF7, SKNSH) we measured for that library. We heuristically filtered for 
crosstalk by first identifying all potentially crosstalking miRNAs as those with no mismatches in 
the core seed (positions 2 to 7) and up to 4 mismatches total. This crosstalk filtering is different 
from the one applied for the updated model as we did not have access to our measured crosstalk 
data at this point. A miRNA target was excluded when its crosstalking miRNAs were expressed 
to a level of at least 400 tpm and more than 1.35 times its own value in any cell line. We also 
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heuristically filtered false positives in the microarray data. For each cell line, we sorted all 
miRNA targets with a stability larger than 10-0.5 and positive deviation by their deviation from 
the model. miRNAs in the top 30% in at least three out of four cell lines (8 miRNAs total) were 
filtered. We fitted our transfer function to the filtered data, yielding kdeg/kon=103.65, which agrees 
well with the value later derived from filtered Library 2 data (kdeg/kon=103.68). 

The genetic design algorithm 

We used an evolutionary algorithm to create designs with 4, 5, and 6 miRNA target sites for each 
design type. We started with 300 sets of miRNA sites randomly sampled from all high-
confidence miRNAs and ran the algorithm for 30 generations. In each generation, we first predict 
the stability pattern across our cell lines using the additive model and the transfer function 
derived from fitting the data for Library 1. We then evaluate the fitness of all designs. A set of 
300 new designs was created by selecting 2 parents by tournament selection with a size of 3, 
merging the designs at a random position, and then randomly changing one of the miRNA targets 
with a 20% chance. We usually defined the fitness f of a design as the inverse of the weighted 
mean square error (wmse) between the target and the predicted stabilities starget and spred: 𝑓wmse =
(∑ 𝑤௜(𝑠target, ௜ − 𝑠pred, ௜)

ଶ/𝑛)ିଵn
cell lines ௜ୀଵ . For graduated expression patterns, the weighting was 

uniform across cell lines. For the binary designs, we weighted the error in the target cell lines 5 
times for designs with one or two target cell lines and 3.33 times for designs with three target 
cell lines. For the designs meant to be active in a single cell type, we also created separate 
designs with a different fitness criterion ftsi in which we multiply the tissue-specificity index (35) 
of the predicted stability with the stability in the target cell line starget: 𝑓tsi =
𝑠target(∑ 1 − 𝑠௜/𝑠max,ଵ...௡

௡
cell lines ௜ୀଵ )/(𝑛 − 1). This alternative criterion more strongly emphasizes 

high stability in the target cell line over reduction of stability in the other cell lines. For the 
graduated expression patterns with logarithmically distributed stability values, we also evaluated 
the mse on a log scale. 

Library Cloning 

Table S2 lists all oligos used for cloning and library preparation. Libraries were ordered as 
oligopools from Twist. We resupended the oligos to 5 ng/μl in 10 mM Tris-HCl, pH 8.0. We 
amplified the library using Phusion High-Fidelity PCR Master Mix with HF Buffer (NEB, 
M0531L) using 0.25x EvaGreen (Biotium, #31000), 1 ng/μl resuspended library, and 0.5 µM of 
oligos 53 and 54 (Library 1) or oligos 51 and 52 (Library 2). We initially ran a test qPCR 
amplification for 25 cycles in a total of 10 μl to determine the optimal cycle number before the 
end of exponential amplification. Then we ran a larger reaction with this cycle number. The 
amplification protocol was 96°C for 40s, cycles of 96°C for 15s, 61°C for 20s, 72°C for 20s until 
the end of the exponential phase (10 cycles), then a final extension at 72°C for 8 min. The DNA 
was purified using 1.5x SPRIselect (Beckman Coulter, B23319) bead cleanup according to the 
manufacturer's instruction. 

Table S6 lists the used plasmids. We used plasmid 1 (Addgene #176640 (21)) as the base 
plasmid for Library 1. For Library 2, BsaI cutting sites were inserted via overhang PCR to create 
plasmid 4 (oligos 49 and 50). The base plasmid was digested with BmtI and XbaI (Library 1) or 
BsaI (Library 2) and purified on a 1% agarose gel using Monarch® DNA Gel Extraction Kit 
(NEB, T1020L). We used a Gibson Assembly reaction (NEBuilder® HiFi DNA Assembly 
Master Mix, NEB, E2621L) using 800 ng of plasmid digest and 210 ng of amplified library at 
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50°C for 1h to assemble the library. The assembled plasmids were purified using a 1x SPRIselect 
bead cleanup. 

We transformed 480 ng of assembled library into a vial of NEB® 10-beta Electrocompetent E. 
coli (NEB, C3020K). After resuspension in 1 ml of SOC and incubation at 37°C for 1h, we 
plated a 1:100,000 dilution to determine the transformation efficiency and grew the remaining 
cells in 200 ml of LB supplemented with 50 μg/ml kanamycin overnight. The libraries were 
purified using QIAGEN Plasmid Maxi Kit (Qiagen, 12162). 

Individual construct cloning for flow cytometry 

Starting from plasmid 1 digested with BmtI and XbaI, we inserted the main context sequence for 
Library 1 via Gibson assembly with oligo 26. The backbone plasmid for insertion of miRNA 
target sites was created from this plasmid by an overhang PCR with oligos 27 and oligo 28. This 
backbone plasmid was then digested with BsaI, and the individual constructs were created by 
ligation of the digested plasmid with oligos 29 to 48. The resulting constructs precisely match the 
associated sequences in Library 1. 

Cell culture for high-throughput stability measurements 

HEK293T, HeLa, HUH7, MCF7, K562, SKNSH, JEG3 and Tera1 cells were purchased from 
ATCC. A549 cells were a kind gift from Jesse Bloom. HaCaT cells were a kind gift from Paul 
Nghiem. PC3 cells were a kind gift from Andrew Hsieh. HEK293T, HeLa, MCF7, A549, HUH7, 
and HaCaT cells were cultured in DMEM supplemented with 10% FBS and 100 U/ml 
Penicillin/Streptomycin (ThermoFisher 15140122). SKNSH and JEG3 cells were cultured in 
EMEM supplemented with 10% FBS and 100 U/ml Penicillin-Streptomycin. K562 and PC3 cells 
were cultured in RPMI supplemented with 10% FBS and 100 U/ml Penicillin-Streptomycin. 
Tera1 cells were cultured in McCoy's 5A medium supplemented with 15% FBS and 100 U/ml 
Penicillin-Streptomycin. 

MicroRNA expression measurements 

The same RNA samples measured using microarrays in Alles et al. (22) were used for miRNA 
sequencing in this study. Cell culture conditions and the RNA isolation procedure have been 
described there. Small RNA expression libraries were generated using MGIEasy Small RNA 
Library Prep Kit (MGI Tech) according to the manufacturer's protocol. Briefly, 100 ng of total 
RNA were used for 3’ adapter ligation. After removal of unused adapter by digestion, 5’ adapters 
were ligated and the product was reverse transcribed using uniquely barcoded RT primers. The 
cDNA was PCR amplified for 21 cycles and PCR products derived from miRNAs were size 
selected by gel electrophoresis using Novex 6% TBE PAGE gels (Invitrogen). PCR products 
were pooled into a single library, circularized, and sequenced using DNBSEQ-G400RS High-
throughput Sequencing Reagent Set (G400 sRNA FCL SE50) on a DNBSEQ-G400RS sequencer 
(both MGI Tech). 

Fastq files were trimmed and quantified using the miRMaster 2.0 pipeline (45). The adapter 
sequence used for trimming was AGTCGGAGGCCAAGCGGTCTTAGG with a minimum 
overlap of 10 nt. We set a maximum edit distance of 1 nt for adapter matches and no ambiguous 
nucleotides were allowed. For each read 3 nucleotides were trimmed from the leading and 
trailing ends. Trimming was further performed with a sliding window of 4 nt with a phred score 
quality threshold of 20. Read lengths smaller than 17 nt were removed. Reads were collapsed 
and mapped against GRCh38 with a maximum mismatch of 1 using bowtie 1.1.2 using the 
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options –mm -v1 –m 100 –best –strata –fullref. MiRNA and isomiR quantification was 
performed against the H. sapiens miRNA set from miRBase v22.1.   

Flow cytometry for control experiments 

We seeded 100,000 HEK293T or HeLa cells in 24-well plates 24 h before transfection. We 
transfected 500 ng total of plasmid in each well. To screen the effect of plasmid concentration on 
miRNA activity, we used between 16.7 and 200 ng of reporter plasmid, 100 ng of a CMV-
mCherry transfection control plasmid (plasmid 6), and enough pUC19 filler plasmid to reach 500 
ng total. To measure the impact of different miRNA target sites, we used 30 ng (HEK293T) or 
60 ng (HeLa) reporter plasmid, 100 ng of a CMV-mCherry plasmid (plasmid 6), and enough 
pUC19 filler plasmid to reach 500 ng total. Transfections were carried out using 
Lipofectamine™ 3000 Transfection Reagent (ThermoFisher, L3000001) according to the 
manufacturer's instructions. We exchanged media 4 h after transfection. Two days later, we 
detached cells with TrypLE, added media, then centrifuged for 5 min at 210 g. Cells were 
resuspended in 1 ml of PBS. We measured 200 μl of cell suspension either undiluted (HeLa) or 
diluted 1:1 in PBS (HEK293T) using an Attune NxT Flow Cytometer (ThermoFisher). We first 
gated cells on SSC-A and FSC-A (Fig. S5B), then on the mCherry fluorescence such that almost 
all non-transfected cells from a negative control were excluded (Fig. S5C). We calculated the 
median GFP fluorescence of the gated cells, subtracted the median GFP fluorescence of an 
untransfected negative control, then normalized to a positive control of the same plasmid without 
miRNA target sites (Fig. S5E). 

Plasmid library transfection, RNA purification, and library amplification 

We measured two replicates for each cell line. We seeded between 350,000 and 5 million cells 
two days (Tera1 cell line) or one day (all other cell lines) before transfection. The precise 
transfection parameters per cell line can be found in Table S1. Between 2.5 and 15 µg of 
plasmid library were transfected with Lipofectamine™ 3000 Transfection Reagent 
(ThermoFisher, L3000001) according to the manufacturer's instructions. We exchanged media 4 
h after transfection. Two days later, we detached cells with TrypLE, added media, then spun 
down for 5 min at 210 g. We resuspended the cells in 1 ml of cold PBS and placed them on ice. 
We took 25 µl of each sample, added 175 µl of PBS, and measured the GFP fluorescence on the 
Attune NxT flow cytometer to determine cell numbers and transfection efficiencies. We used the 
Monarch Total RNA Miniprep Kit (NEB, T2010S) to purify total RNA. We eluted in 100 µl of 
nuclease-free water and determined concentrations using a NanoDrop 2000c (Thermo Fisher). 
mRNA was purified using the NEBNext® Poly(A) mRNA Magnetic Isolation Module (NEB, 
E7490L). We eluted in 18 µl of nuclease-free water and performed reverse transcription (RT) 
using 0.75 µM oligo 1 (library 1) or oligo 11 (library 2), 0.5 mM dNTPs (NEB), 0.5 U/µl 
SUPERase·In™ RNase Inhibitor (ThermoFisher, AM2696), and 10 U/µl Maxima H Minus 
Reverse Transcriptase (ThermoFisher, EP0752). Before adding RT buffer and enzyme, the mix 
was incubated at 65°C for 5 min. Reverse transcription was carried out at 50°C for 15 min, then 
85°C for 5 min. We added 10 U RNase I (ThermoFisher, EN0601) and 5 U RNase H (NEB, 
M0297S) and incubated at 37°C for 30 min. cDNA was purified using DNA Clean & 
Concentrator-5 (Zymo, D4014) with 7x binding buffer, eluted in 10 µl nuclease-free water, and 
stored at -20°C until library amplification. 

Libraries were amplified using KAPA HiFi HotStart ReadyMix (Roche, KK2602) with 0.5 µM 
of each index primer (Oligos 2 to and 8 and 12 to 25) and 1x EvaGreen (Biotium, #31000). The 
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protocol was 95°C for 3 min, a variable number of cycles of 96°C for 25s, 69°C for 15s, 72°C 
for 30s, and a final extension at 72°C for 5 min. We ran a pilot qPCR for 30 cycles with 1.09 µl 
of library in a total of 5 µl to determine the appropriate cycle number. The full library was 
amplified in 50 µl until the last cycle of exponential amplification. The PCR reaction was run on 
a 1.8% agarose gel at 120V for 35 min. The band matching the expected size was cut out, 
purified using Monarch® DNA Gel Extraction Kit (NEB, T1020L) and eluted in 20 µl of elution 
buffer. Concentrations were determined using a Qubit™ dsDNA Quantification Assay 
(ThermoFisher Q32851). 

To introduce unique molecular identifiers (UMIs) for the DNA library, library amplification was 
preceded by two cycles of amplification with the reverse transcription primer (oligo 1 or 11) and 
the library amplification i5 primers (oligos 2 and 3 or 12 and 13). The DNA was purified using 
DNA Clean & Concentrator-5 (Zymo, D4014), eluted in 10 µl, and amplified as above. 

Library sequencing and data processing 

Library 1 was sequenced in-house on a NextSeq 500/550 Mid Output kit (150 cycles, Illumina) 
with custom primers (Oligos 9 and 10). Library 2 was sequenced on a NovaSeq X Plus 
(Illumina) using a paired-end 300 cycle kit by Novogene. Cell line and replicate data was split 
according to the i5 and i7 indices. The UMI was extracted and added to the read name. Libraries 
were aligned to the reference sequences using BWA-MEM. Alignments were filtered using a 
custom python script. First, we removed ambiguous alignments: Reads were discarded when one 
of the two reads failed to align, when both reads had more than one read with the highest 
alignment score, or when one read aligned uniquely but did not match the top alignments of the 
other strand. We then filtered to at most one total insertion or deletion or four substitutions 
relative to the aligned reference sequence. The alignments were sorted and indexed using 
samtools. UMIs were deduplicated using UMI-tools with unique matching. Alignments for each 
reference were counted using a custom python script. Fold-change values were calculated from 
the count data of the two replicates using PyDESeq2 (46). 

Stability data analysis 

All analyses are performed with custom Python code. 

Filtering and normalization 

We filtered all sequences with less than 100 combined counts in the two plasmid DNA library 
replicates (one sequence out of 10,001 total unique sequences). The fold change values 
calculated by PyDESeq2 were normalized to make the average stability for non-regulated target 
sites in the main context equal to 1. Normalization was performed separately for each cell line. 
We initially divided all fold change values by the median of the 300 most stable constructs of 
containing individual high confidence miRNA target sites in the main context, most of which are 
inactive. For all UTRs using the main context sequence, we grouped designs by the number of 
miRNA target sites (1 to 6). Within each group, we divide fold change values by the median of 
the top 15% of most stable designs, then add the median of the median values across cell lines. 
The individual normalization for different target site numbers accounts for the fact that the 
average baseline stability can change with the number of miRNA target sites. This effect is 
usually small but significant for MCF7 and HUH7. Designs using other context sequences are 
only processed using the first normalization step. Normalized stability data for Library 1 and 2 
are provided as Data S2 and Data S4. 
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The choice of miRNA expression data 

We used two miRNA expression datasets for most analyses: microarray data by Alles et al. (22) 
and BGISEQ-500-based sequencing data generated for this study. Both datasets cover all used 
cell lines. Although the latter was generated for this study, it was collected in a different 
laboratory from the one where the reporter experiments were performed. We deliberately made 
no effort to harmonize cell lines or culture conditions to avoid biasing our results in favor of this 
newly collected data. Of note, both datasets contain expression data for SH-SY5Y, while the 
stability data was collected in SKNSH cells. Since SH-SY5Y were created from the subclone of 
SKNSH, we expect their miRNA expression profiles to be sufficiently similar for this to be 
valid. 

Fitting a function for a single target site in the main context 

For the analysis of single full target sites, we only use high confidence miRNAs in miRBase and 
low confidence miRNAs in miRBase that are in MirGeneDB, but not low confidence miRNAs in 
miRBase that are not in MirGeneDB. First, we normalized the miRNA expression data to 
transcripts per million (tpm) on this subset of miRNAs. We then used SciPy to fit our transfer 
function either for fixed total miRNA levels or variable total miRNA levels, i.e., we introduced 
an additional fitting parameter for each cell line that scales total miRNA levels. For the latter, the 
total miRNA levels for HEK293T cells were kept constant to establish a reference point. We 
calculated deviation values for each miRNA target as the difference between the measured 
stabilities and the stabilities estimated by the transfer function on a logarithmic scale. 

Single target sites in different context sequences 

We used the fitted transfer function for target sites in the main context to predict the stability in 
all other contexts. Because the transfer function predicts relative stability changes due to the 
presence of miRNA target sites, measured stability values for miRNA targets smiRNA, c in different 
context sequences c were divided by the measured baseline stabilities s0, c of the surrounding 
context sequences without a target site in the same cell line: 𝑠miRNA, rel = 𝑠miRNA, c/𝑠0, c. 

Estimation of the scale factor 

We hypothesized that systematic global deviations from the transfer function are the result of 
both genuine biological variations in total miRNA levels between cell lines and differences in 
baseline context stabilities kdeg between cell lines. Notably, Ago2 expression, which could serve 
as a proxy for the total slicing-competent miRNA level, is highest in PC3, where we do observe 
a stronger effect of miRNA (Fig. S10A). To estimate total miRNA levels, we therefore retrieved 
expression data (nTPM) for Ago proteins from the human protein atlas (47), which contains data 
for 8 of 10 of our cell lines. We then normalized these data to those in HEK293T cells. To 
estimate the relative stability of the main context, we took the geometric mean of 51 different 
measured context sequences and normalized this mean to the HEK293T value. For HUH7, 
stability of the main context relative to 51 other endogenously-derived context sequences is low, 
indicating that this effect might be dominant there (Fig. S10B). This approach assumes that the 
range of stability values covered by the different context sequences is similar across cell lines. 
The overall scale factor is then estimated by dividing the relative Ago2 expression by the relative 
mean context stability (Fig. S10C). We note that mathematically only a single scaling factor is 
necessary because the model only depends on the ratio of the miRNA-induced degradation and 
the baseline degradation (Supplementary Text 1).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2024. ; https://doi.org/10.1101/2024.10.28.620728doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.28.620728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Evaluation of the impact of secondary structure for single target sites 

All ΔΔG values were calculated using the Python package for NUPACK version 4.0.0.20 (44) 
using the free_energy result of the complex_analysis function. When calculating these values, 
one must make a choice of how many bases to the 5' and 3' end of the miRNA target site to 
include. We used four different cutoffs (150, 100, 60, and 40 bases to the 5' and 3' end) and 
averaged the results for increased robustness. We calculated the free energy of the miRNA 
ΔGmiRNA), the target without context (ΔGtarget, ideal), the target with varying amounts of context 
(ΔGtarget, actual), and the miRNA in complex with the target both without (ΔGmiRNA-target, ideal) and 
with context (ΔGmiRNA-target, actual). We then subtracted the free energy of the miRNA and the 
target from the free energy of their complex to calculate the binding ΔΔG between the miRNA 
and its target: 𝛥𝛥𝐺ideal/actual = 𝛥𝐺miRNA-target, ideal/actual − 𝛥𝐺miRNA − 𝛥𝐺target, ideal/actual. The 
ΔΔG difference value that we use in figures is then calculated by subtracting the binding ΔΔG 
without context from the binding ΔΔG with context: 𝛥𝛥𝐺diff = 𝛥𝛥𝐺actual − 𝛥𝛥𝐺ideal. For 
individual target sites, ΔΔG differences larger than 10 kcal/mole were heuristically classified as 
indicating strong secondary structure. P-values for the deviation differences between strong and 
weak secondary structure were calculated using a one-sided Mann–Whitney U test. We 
constrained the analysis of deviation values to miRNAs expressed to a level larger than 103.5 
tpm, i.e., those where we expect a measurable impact on stability in the absence of secondary 
structure. In the analysis of designed secondary structures, we excluded the two constructs 
containing the strongest designed secondary structure for each miRNA target. These constructs 
contain contiguous 21 bp and 24 bp RNA duplexes, which cause a decrease in measured stability 
that we attribute either to a destabilizing effect of having a very strong hairpin in the 3'UTR or to 
the negative impact of such hairpins on library preparation, rather than an unexpected increase in 
miRNA activity at stronger secondary structures. 

Processing and comparison of miRNA expression datasets 

Since we compare microarray and sequencing datasets, we use transcripts per million (tpm) 
instead of reads per million (rpm). We used miRNA expression values provided by the authors 
either in the original publication or deposited on the GEO database. The details of the used 
datasets are available in Table S3. The first step of dataset processing depended heavily on the 
individual dataset and was performed with a custom python script. The authors' files were 
converted into a CSV file containing miRNA names, cell line identifiers, and non-normalized 
expression values. We used a custom R script and miRBaseConverter (48) to map older miRNA 
names to a MIMAT ID and to check whether the miRNA in question is still considered real in 
the current version of miRBase. Invalid miRNAs were discarded. We then converted the 
MIMAT ID back to the miRNA identifier in miRBase v22. Datasets were normalized to tpm, a 
baseline value of 1 was added to the expression level of each miRNA, then the dataset was 
normalized to tpm again and converted to log10 values. To compare datasets, we limited the 
miRNAs in each dataset to high confidence miRNAs in miRBase present in all compared 
datasets (242 miRNAs total). Microarray datasets were classified according to the manufacturer 
(Agilent, Affymetrix). Sequencing datasets were classified as either standard or improved based 
on their use of degenerate adapters to reduce ligation bias. To calculate correlation values 
between datasets, correlations were averaged across all cell lines common to both datasets. To 
check the agreement with our stability dataset, the transfer function was fitted individually for 
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each cell line. The resulting correlation values were averaged across cell lines for each dataset 
and then grouped by the dataset collection method. 

Identification of false positives and negatives 

For false positives, we first filtered miRNA targets for which we measured stabilities greater 
than 10-0.25 and expression levels larger than 103.8 tpm. We then flagged those which display less 
activity than expected by the model (deviation > 100.3) as potential false positives. For false 
negatives, we first filtered miRNA targets for which we measured stabilities lesser than 10-0.25 
and expression levels smaller than 103.5 tpm. We then identified those which display more 
activity than expected by the model (deviation > 10-0.3) as potential false negatives. We 
compared potential false positives and false negatives between the two expression datasets. 
When a miRNA expression measurement was identified as a potential false positive/negative in 
one dataset but not the other, it was retained as a potential false positive/negative. If a miRNA 
expression measurement was identified as a potential false positive/negative in both datasets, we 
concluded that it is not a genuine false positive/negative. We labeled miRNAs that appear as a 
potential false positive or negative in at least 4 cell lines after this filtering step as genuine false 
positives or negatives. Table S7 contains a list of these identified false positives and negatives. 

Analysis of mutated target sites and generation of a crosstalk model 

Addressing crosstalk serves to increase the predictive accuracy of our model. In principle, one 
could simply filter all but the most highly expressed miRNA that share a core seed sequence (nts 
2 to 7). However, this leads to a strong reduction in the available number of potential miRNA 
target sites. This problem gets worse as the number of target cell types increases because the 
highest expressed miRNAs of a given family can differ between tissues. Thus, crosstalk filtering 
is a balance between increasing predictive accuracy and retention of as many potential target 
sites as possible. We note that simply adding expression levels of the same family is often worse 
than not addressing crosstalk at all and not a viable option for quantitative prediction. 

The measured stabilities s were converted to relative knockdown values, which we define as 
௦full target

ଵି௦full target

ଵି௦mut targe೟

௦mut  target
.  This expression yields a value of 1 when the mutated target site is as strong 

as the full target site and 0 when the mutated target site is completely inactive. Analyses were 
generally performed on miRNA target sites where the stability value for the full target site is less 
than ⅓ in a given cell line to ensure that this value can be accurately determined. We determined 
the distribution of these relative knockdown values depending on where in the sequence 
mutations and wobbles occur ignoring the specific miRNA sequence and identity. We then 
classify individual mutations and wobbles according to the median relative knockdown at a 
given position with values less than 0.08, 0.3, and 0.65, or greater than 0.65 being classified as 
high, medium, low, and no impact mutations and wobbles, respectively. This classification was 
performed independently for true mismatches and for wobbles. The classification thresholds for 
the median were chosen heuristically such that each category contains multiple positions (10, 12, 
16, and 4 for high, medium, low, and no impact mutations). When the classification for a wobble 
base pair at a specific location was stronger than for the corresponding mismatch, the 
classification for the wobble was lowered to the level of the mismatch. P-values between the 
mismatch and wobble relative knockdown distributions were calculated using a two-sided Mann-
Whitney U test. 
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To train a tree model, we applied the previously derived mutation classification to targets with 
multiple mutations and counted how often each mutation type occurs. The mutation counts by 
mutation strength were the input values for the tree model. Training was performed on relative 
knockdown values constrained to mutated target sites where the non-mutated target site had a 
stability value less than ⅓. We held out all mutated hsa-miR-31-5p target sites as test data. We 
trained both an XGBoost model (xgboost version 1.7.3) and a DecisionTreeRegressor (sklearn 
version 1.3.0) and found nearly identical performance. The decision tree predicts relative 
knockdown values, which are converted to stabilities afterwards. The predictions shown Fig. 
S16C were performed on all measured mutated target sites irrespective of the stability of the 
non-mutated target. 

Because the impact of mutations turned out to be highly sequence-specific, we decided to largely 
filter miRNA target sites where significant crosstalk is expected instead of trying to 
quantitatively adjust predictions for target sites for which crosstalk is expected: First, we added 
the expression levels for miRNAs that are identical for the first 18 bases, which we expect to 
cause nearly identical behavior (Table S8). We note that this is not necessarily fully accurate as 
mutations after base 18 can still have an impact (Fig. S15C-E). We nevertheless consider it 
preferable to filtering these target sites. We then identified miRNAs with potential crosstalk as 
all pairs of miRNAs and miRNA targets separated by fewer than 2 high impact mutations, 4 high 
and medium impact mutations, and 5 total mutations (Table S9). This is based on the maximum 
number of mutations of a given impact that still allows for crosstalk (Fig. S15E). These sites 
with potential crosstalk were filtered if the stability predicted by the transfer function for the full 
target site of the crosstalking miRNA is smaller than 10-0.5 and less than ⅓ of the predicted 
stability of the fully complementary miRNA for the target site in question.  

Repeat and combination data 

We used the bias-corrected expression data demonstrated in Fig. 1H. We predicted the expected 
stability using the transfer function and scale factors derived for single target sites and using 
either the additive model or an antagonistic model where only the miRNA target site with the 
highest associated expression level is used. For the inverted transfer function, expression levels 

are calculated from stabilities s via 𝑡ିଵ(𝑠) =
௞deg

௞on

ଵି௦

௦
. Since the transfer function only outputs 

values between 0 and 1, stability values larger than 1 were reduced to 0.999 for calculations 
using the inverted transfer function. We then input these calculated expression levels into the 
transfer function using the additive model. For the final calculation of Pearson correlation values 
by cell line, we excluded excessively stable sequences (stability values larger than 1.5). 

Analysis of outliers in the repeat and combination data 

Unusual patterns in the repeat data were identified as miRNAs for which two and four repeats 
were at least a factor of 100.1 more stable than one and three repeats, or three and five repeats 
were at least a factor of 100.1 more stable than two and four repeats. Constructs with a stability 
value of at least 1.5 were identified as highly stable. This yielded 13, 3, and 14 miRNAs where 
these conditions were fulfilled in at least one cell line. 

To identify the origin of the unusual patterns in the repeat data, we calculated pairwise 
interaction strengths between the individual target sites as the free energy difference between a 
complex of two targets and the individual targets. To more generally detect whether secondary 
structure plays a role for any construct with multiple target sites, ΔΔG difference values between 
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miRNAs and 3'UTRs with multiple target sites were calculated as for individual target sites but 
with 150 or 100 nts on either side of the center of the variable 3'UTR region. Here, we 
heuristically classified sites with ΔΔG differences larger than 14 kcal/mole as strong secondary 
structure sites. Constructs were identified as likely subject to prediction deviations due to 
secondary structure when the site with the largest cognate miRNA expression value was 
classified as having strong secondary structure. 

Performance prediction and evaluation of constructs with designed stabilities 

We compare three prediction methods: First, the baseline prediction based purely on microarray 
data (22) and the transfer function fitted using the measurements from Library 1. Second, an 
updated model based on bias-aware merging of microarray and improved sequencing data as 
demonstrated in Figure 1 of this manuscript. The updated model also applies the scale factors 
derived from individual target sites. Third, predictions based on estimating expression levels via 
the inverted transfer function as described above for repeat and combination data. All predictions 
use the additive model. We filtered designs where the measured stability in any cell line is larger 
than 1.5 as this makes it difficult to estimate true relative stabilities (15 out of 3753 total 
designs). To evaluate design performance, stabilities larger than 1 were set to 1. When choosing 
the best-performing designs or when ranking design success into quantiles, we used the weighted 
mean square error as explained above in the design section. When comparing the design success 
across design types, we used the unweighted root mean square error between the target and 
measured stabilities. 

Processing and merging of human tissue miRNA expression datasets 

We used an Agilent microarray dataset from two human subjects by Ludwig et al. (35) and a 
BGISEQ-500-based sequencing dataset from six human subjects by Keller et al. (36). The data 
collection methods match the two main datasets used for the rest of this study, making it likely 
that biases behave at least similarly. We first filtered to miRNAs that are either high confidence 
in miRBase or in MirGeneDB. Data were then normalized to tpm. To calculate correlation values 
between subjects for the same tissue and dataset, we set expression values less than 100 tpm to 
100 tpm. To integrate data from the different subjects and produce a single expression dataset 
across tissues, we then calculated the geometric mean of expression values for each tissue across 
all subjects and again normalized to tpm (Fig. S34). To compare the two datasets, we first 
harmonized tissue names and again set values less than 100 tpm to 100 tpm. Tissues that were 
not in both datasets were discarded. To calculate brain expression values for the NGS dataset, we 
averaged over temporal lobe, occipital lobe, frontal lobe, white matter, and gray matter values. 
We found that there are many miRNAs that behave differently in the two datasets. To identify 
these outlier miRNAs, we first renormalized the expression values because the microarray 
dataset has more highly expressed miRNAs overall. Regular normalization to tpm therefore leads 
to an underestimation of individual expression levels relative to the NGS data. We determined 
the top 30 most different miRNA by expression in each tissue. We identified miRNAs that are in 
the top 30 in at least three tissues, then renormalized the dataset to tpm while excluding them 
from the calculation. We again compared miRNA expression levels across tissues and datasets. 
We then determined outliers in a specific tissue as those miRNAs where the renormalized 
expression values differ by more than a factor of 10. miRNAs which are consistent outliers in 5 
or more tissues were classified as consistently larger in NGS (5 total) or microarray (94 total) 
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data. We then calculated Pearson correlation values with and without these outliers on a log 
expression scale (Fig. S35A-B). 

To merge the two datasets, we asked whether it is possible to guess which of the two datasets is 
correct for which outlier. First, we calculated deviation values in the cell line stability for each 
outlier miRNA for both our microarray and NGS data cell line expression data (Fig. S36A). We 
excluded cell lines (JEG3, Tera1) with poorer prediction performance from the analysis. We 
subtracted absolute deviation values for the two cell line datasets and considered a difference 
greater than 100.2 as signifying substantially more correct prediction by one or the other method 
(Fig. S36B-D). Second, we added false positive and negative information from our cell line data. 
Third, we inspected the sequence features of outliers. We noticed that many of the strongest 
outliers had a G-content greater than 50% (Fig. S36E-F). An earlier publication (49) found 
similar outliers between microarray and NGS data. There, RT-qPCR agreed with the NGS data 
over the microarray data. We therefore also labeled miRNAs with a G content of over 50% that 
were previously identified as consistent outliers as more likely to be correctly measured by 
improved NGS data. In total, we classified 12 miRNAs as incorrect in the NGS data and 16 
miRNAs as incorrect in the microarray data. We then performed a bias-aware merging based on 
the geometric mean as for the cell line data (Fig. S36G). The resulting data was then further 
merged and filtered for crosstalk as for the cell line data. 

Designs with tailored stability profiles in human tissues 

We used the merged and crosstalk-filtered human tissue expression dataset. Because this dataset 
contains fewer miRNAs than the merged cell line data due to fewer input miRNAs in the 
microarray tissue data, we performed another round of fitting to the cell line stability data for this 
subset of miRNAs. The design process was generally performed as for cell lines with a few 
differences. First, we only generated a single design per design target and miRNA target number 
(1 to 8). Second, we filtered the expression dataset to miRNAs with a maximum expression 
greater than 3000 tpm across target tissues, which reduces computational complexity and focuses 
the algorithm on potentially relevant miRNAs. Third, we introduced an empty target site with 
zero expression in all tissues, which allows the algorithm to use fewer than the maximum 
number of target sites. We generated designs that are either active or inactive in a single tissue. 
The stability in that tissue was given a weight of 6.5 in calculating the mse. To compare the 
design quality, defined as the inverse of the weighted mse between the prediction and the target 
stability profile, between different target site numbers, we divided all quality values for designs 
targeting the same tissue by the maximum quality across the allowed target site numbers. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2024. ; https://doi.org/10.1101/2024.10.28.620728doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.28.620728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Supplementary Text  

 

The transfer function for predicting the stability of an mRNA containing a single microRNA 
target site from expression data 

Here, we derive the simple transfer function for predicting the stability of an mRNA with 
concentration 𝑚 containing a single target site for a microRNA with concentration 𝑥. We assume 
that 𝑥 is not appreciably depleted by target binding. In the absence of a microRNA target site, 𝑚 
is degraded at a rate 𝑘deg and produced at a rate 𝑝: 

𝑚̇ = 𝑝 − 𝑘deg𝑚 

with a resulting steady-state concentration of 

𝑚଴ =
𝑝

𝑘deg
. 

Let 𝑚free be the concentration of free mRNA and 𝑚bound be the concentration of mRNA bound 
by the microRNA. Assuming irreversible binding this results in 

d

d𝑡
𝑚free = 𝑝 − 𝑘deg𝑚free − 𝑘on𝑥𝑚free

d

d𝑡
𝑚bound = −𝑘deg𝑚bound + 𝑘on𝑥𝑚free − 𝑘cat𝑚bound

 

for a catalytic rate 𝑘cat of the RISC. In the steady state and with 𝑐ଵ = 𝑘deg/𝑘on, this equation can 
be rewritten as 

      0 = 𝑚଴ − 𝑚free −
𝑥

𝑐ଵ
𝑚free

⇔ 
𝑚଴

𝑚free
= 1 +

𝑥

𝑐ଵ

⇔  𝑚free = 𝑚଴

1

1 + 𝑥/𝑐ଵ
.

 

Under the simplifying assumption that degradation by the RISC is very fast compared to its 
binding (𝑚 ≈ 𝑚free), the stability of a microRNA-regulated mRNA relative to its baseline 
stability is given by 

𝑡(𝑥) =
𝑚

𝑚଴
= 1 −

𝑥

𝑐ଵ + 𝑥
, 

which is the transfer function used in the main text. When the finite catalytic rate 𝑘cat of the 
RISC is taken into account, the bound mRNA fraction is given by 

𝑚bound =
𝑘on

𝑘cat + 𝑘deg
𝑥𝑚free, 

which yields an expression for the total mRNA concentration: 
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𝑚total

𝑚଴
=

𝑚bound + 𝑚free

𝑚଴
= ൬1 −

𝑥

𝑐ଵ + 𝑥
൰ ൬1 +

𝑥

𝑐ଶ
൰ ,

𝑐ଶ =
𝑘cat + 𝑘deg

𝑘on
.

 

For large microRNA concentrations, the ratio between the 
mRNA concentrations without and with microRNA 
regulation thus tends to 

𝑚଴

𝑚total
→

௫≫௖భ,௖మ 𝑐ଶ

𝑐ଵ
=

𝑘cat + 𝑘deg

𝑘deg
= 1 +

𝑡ଵ/ଶ,଴

𝑡ଵ/ଶ,cat
. 

This is the maximum loss of stability due to a single 
miRNA target site. In practice, we find that this term is not 
necessary even for repeats of six targets sites for highly expressed microRNAs. Martinez et al. 
(23) estimated the in vitro half-life of human RISC-bound RNA 𝑡ଵ/ଶ,cat to be approximately one 
minute, while 𝑡ଵ/ଶ,଴ is typically on the order of 8 hours. This would imply a maximum stability 
ratio of 480, which is substantially smaller than the smallest values measured in our libraries (cf. 
the illustration on the right). Note that we measure stability, so the maximum loss of 
fluorescence for a fluorescent reporter could be smaller if an mRNA with a cleaved tail can still 
be translated until it is fully degraded.  

 

The dependence of the transfer function on total microRNA concentrations and the baseline 
stability 

The transfer function 

𝑡(𝑥) =
𝑚

𝑚଴
= 1 −

𝑥

𝑘deg/𝑘on + 𝑥 

only has a single parameter, namely the ratio between the baseline degradation rate and the on-
rate of the RISC. We initially fit 𝑐ଵ = 𝑘deg/𝑘on as a global parameter for all cell lines. Different 
total microRNA concentration can be taken into account by a scaling factor 𝑠 for the total 
microRNA concentration 𝑥, i.e., 𝑥scaled = 𝑠 ⋅ 𝑥 for normalized concentrations 𝑥. 

However, 𝑐ଵ also depends on the baseline degradation rate 𝑘deg ∝ 1/𝑚଴. When comparing 
context sequences with different baseline stabilities in one cell line, or a single context sequence 
with cell type-specific stability, 𝑐ଵ also needs to be adjusted for the change in 𝑘deg. A factor 𝑓 
change in stability 𝑚෥଴ = 𝑓 ⋅ 𝑚଴ thus leads to 

𝑚෥

𝑚෥଴
= 𝑡̃(𝑥) = 1 −

𝑥

𝑘෨deg/𝑘on + 𝑥
= 1 −

𝑥

1
𝑓

𝑘deg/𝑘on + 𝑥

= 1 −
𝑓 ⋅ 𝑥

𝑘deg/𝑘on + 𝑓 ⋅ 𝑥
= 1 −

𝑥෤

𝑘deg/𝑘on + 𝑥෤
.

 

An increase in baseline stability by a factor of 𝑓 therefore has the same effect as an increase in 
the microRNA concentration by a factor of 𝑠. 
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The additive model for microRNA regulation of multiple target sites 

We start with the same equation as above but for multiple independent miRNAs 𝑥௜ for the target 
sites 𝑡ଵ, 𝑡ଶ, . . . , 𝑡௡: 

d

d𝑡
𝑚free = 𝑝 − 𝑘deg𝑚free − ෍ 𝑘on

௡

௜ୀ଴

𝑥௜𝑚free 

Assuming instant degradation by the RISC and using the same procedure as above, this yields 
the following transfer function 

𝑡(𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡) =
𝑚

𝑚଴
= 1 −

∑ 𝑥௜
௡
௜ୀ଴

𝑘deg/𝑘on + ∑ 𝑥௜
௡
௜ୀ଴

, 

which is the same transfer function as for a single target site except that the concentrations of 
attacking microRNAs are summed before the transfer function is applied. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2024. ; https://doi.org/10.1101/2024.10.28.620728doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.28.620728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Fig. S1. Library construction and purification scheme. Assembly and processing of Library 1 and Library 2. 
Differences between the workflow for the two libraries are marked by an “or” (Library 1 or Library 2). Library oligo 
pools are amplified via PCR to introduce overhangs. The base cloning plasmid is digested with restriction enzymes 
and the amplified oligo pool is inserted via Gibson assembly to generate plasmid libraries. After transient 
transfection into the target cell lines, mRNAs transcribed from the library plasmids are first purified as total RNA, 
then with a poly(A)-based mRNA isolation kit. Reverse transcription is performed with a primer containing a unique 
molecular identifier (UMI). The cDNA is amplified with i5 and i7 index primers and sequenced. The primary 
differences between the library preparation for the two libraries are the restriction sites used for digestion of the base 
plasmid, the length of the variable region, and the use of custom read 1 and read 2 sequencing primers for Library 1. 
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Fig. S2. Correlation between Library 1 replicates. (A) Correlation between counts across replicates and cell lines 
for Library 1. (B) Comparison of counts for individual designs between the two library replicates for different cell 
lines. 
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Fig. S3. Correlation between Library 2 replicates. (A) Correlation between counts across replicates and cell lines 
for Library 2. (B) Comparison of counts for individual designs between the two library replicates for different cell 
lines. 
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Fig. S4. Comparison of the results for Library 1 and Library 2. (A) Microarray-measured miRNA expression 
(22) versus the measured stability for miRNA targets and cell lines shared between Library 1 and 2. The 
distributions largely agree. The legend shows the Spearman ρ2 between expression and stability. (B) The measured 
stabilities for both libraries. Note that the main context sequences are different for the two libraries. The relatively 
large variation for SKNSH could imply biological differences in the cell line miRNA concentrations at the time of 
measurement for the two libraries. 
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Fig. S5. Flow cytometry results for individual constructs from library 1. (A) We measured constructs containing 
two repeats of a microRNA target site. The sequence is identical to the same constructs in Library 1. (B) Gating 
strategy on SSC-A and FSC-A for HEK293T cells. (C) The gating for transfected cells using an mCherry-expressing 
transfection control. (D) GFP fluorescence distribution for one replicate in HEK293T after filtering for transfection 
using the mCherry signal. The negative control is shown without mCherry gating. (E) Median fluorescence 
normalized to the median fluorescence of the positive control for two different microRNA target types versus the 
transfected plasmid concentration. The result is largely independent of plasmid concentrations when using the 
median fluorescence. N=3 (F) Relationship between the stability measured for Library 1 for our high-throughput 
stability data and the median GFP fluorescence level normalized to the median fluorescence of the positive control 
measured using flow cytometry for two different cell lines (HEK293T, HeLa). N=3  
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Fig. S6. The impact of the microRNA annotation data source on the observed behavior for single target sites. 
The microRNA expression data is from Alles et al. (22). MicroRNA targets in miRBase are annotated as high 
confidence or low confidence depending on the available level of experimental evidence for their existence. Later 
additions to miRBase are often low confidence sequences derived purely from sequencing data without any direct 
biological evidence. MirGeneDB is a manually curated microRNA database that more closely considers clear 
experimental evidence. Most, though not all, microRNAs that are in MirGeneDB are annotated as high confidence 
in miRBase. We find that the association between miRNA expression and target stability depends strongly on the 
annotation data source: All microRNAs in MirGeneDB approximately follow a monotonous relationship regardless 
of their status in miRBase, validating them as likely real microRNA. The microRNAs that are high confidence in 
miRBase but not in MirGeneDB have insufficient expression in our measured cell lines to tell either way. Low 
confidence microRNA that are not in MirGeneDB generally show no activity whatsoever even when (erroneously) 
measured as highly expressed. We therefore exclude them from the analysis. 
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Fig. S7. Strong target secondary structure inhibits microRNA function. (A) We calculate the binding energy 
(ΔΔG) between the miRNA and its target without and with the surrounding context sequence (44). The ΔΔG value 
shown on the x-axis for all graphs investigating secondary structure in this publication is the difference between 
these two values. (B) Our engineered context sequences display a wide distribution of ΔΔG differences, allowing us 
to investigate the dependence of miRNA activity on target secondary structure. (C) The measured stabilities of 
identical miRNA targets depend on the ΔΔG difference between ideal and actual binding energies. The effect is 
relatively consistent across cell lines and microRNAs. A single connected line in this graph belongs to a single 
microRNA target site occluded by different amounts of secondary structure in a single cell line.  
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Fig. S8. The impact of secondary structure is generally small for natural context sequences. (A)-(C): Results 
for 10 miRNA target sites in 30 context sequences. (D)-(F): Results for 1027 miRNA target sites in the main context 
sequence. (A)/(D) Distribution of the binding energy differences. (B)/(E) MicroRNA expression and target 
transcript stabilities for low and high (>10 kcal/mole) binding energy differences. (C)/(F) Distribution of the fit 
deviation values for low and high binding energy differences. We constrained the calculation to miRNAs with an 
expression greater than 103.5 tpm to exclude miRNA targets with no expected effect on stability. The p-value was 
calculated using a one-sided Mann-Whitney U test.  
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Fig. S9. Fit results for individual cell lines and normalized microRNA expression data. The x-axis contains 
microarray microRNA expression data (22). We fit a single universal transfer function for all cell lines. The titles 
show the Pearson r2 values and the root mean square deviation (rmsd) between the measurements and the transfer 
function fit.  
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Fig. S10. Ago2 expression and context stability explain the scaling factor. (A) Ago1 and Ago2 expression 
according to protein atlas data versus the fitted scaling factor for individual target sites. Ago1 expression is 
negatively and Ago2 expression is positively correlated with the scaling factor. We used Ago2 expression as a proxy 
for the total amount of slicing-competent miRNA in a cell. (B) Left: The distribution of baseline stabilities for 51 
different 3’UTRs (Methods) without miRNA target sites. Because normalization is performed relative to the stability 
of the main context, shown stabilities are also relative to the stability of the main context sequence. Right: The 
inverse of the geometric mean of the stabilities shown on the left versus the fitted scaling factor. This value 
approximates the relative stability of the main context across cell lines. (C) Dividing the relative Ago2 expression 
normalized by the HEK293T value by the geometric mean of the context stabilities yields a good estimate of the 
overall scaling factor. 
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Fig. S11. A scaling factor for the total microRNA expression levels improves the model fit. (A)/(B) Scaled 
microRNA expression versus stability for target sites in the main context sequence. The titles and the heatmap show 
the Pearson r2 values and the root mean square deviation (rmsd) between the measurements and the transfer function 
fit. The adjusted transfer function is shown in black and the unscaled transfer function in gray. (C) The scaling 
factor also improves the predictions of the relative stability of 3’UTRs containing miRNA targets in different 
context sequences.    
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Fig. S12. Cross-dataset correlation predicts well-performing datasets. Cross-dataset correlation for (A) A549 
and (B) HeLa cells. All values are set to a minimum of 100 tpm and the analysis is constrained to miRNAs common 
to all datasets. (C) Cross-dataset correlation averaged across all cell lines. (D) Correlation between the fitted transfer 
function using different microRNA expression datasets and measured stability for single microRNA target sites. 
Well-performing datasets have both high correlation with other datasets within their collection method and also with 
some other collection methods.   
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Fig. S13. A comparison of datasets identifies biased data points. We compare the transfer function fit for a 
microarray (22) dataset and the sequencing dataset collected for this study for all cell lines. First, we identified 
potential false positives and negatives in both datasets as outliers from the fit in only one of the two datasets (top 
plots, see methods for details). Then, these potential outliers were filtered for agreement across our cell lines: An 
outlier in a single cell line could represent measurement noise or genuine biological differences in the microRNA 
expression at measurement time. An outlier miRNA that is consistent across multiple cell lines is likely to be due to 
technical differences in the expression measurement method. The middle plots highlight miRNAs that were 
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identified as false positives and negatives in the two datasets in the expression versus stability plot. After merging, 
the previous false positives and negatives were predicted well by the transfer function, indicating that they were 
indeed incorrectly measured in the other dataset (bottom plot). 
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Fig. S14. Crosstalk between let-7 family members causes outliers from the fit. (A) In the stability versus 
expression plot, targets of the 5p arm of the let-7 family consistently appear as some of the strongest outliers with 
less stability than would be expected from the transfer function. The labeled miRNA targets are abbreviated from 
the full hsa-miR/let-x-5p name. (B) The let-7 family member expression is consistent between the microarray and 
sequencing measurements, indicating that the observed crosstalk is not a result of bias in the expression 
measurements themselves. (C) The mismatch pattern between an attacking hsa-let-7a-5p miRNA and target sites 
belonging to other let-7 family members generally only includes one or two mismatches (red, gap without dash) or 
wobble base pairs (red, dashed line), which explains qualitatively why such strong crosstalk is observed. 
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Fig. S15. The impact of mutations can be classified based on their position in the miRNA. (A) Example of a 
mutation pattern between a microRNA and a target. Note that the mutation position is denoted based on the position 
in the microRNA rather than in the target site although the mutations are introduced in the target site. (B) Stability 
for full target sites and those with an A mutation at position 1. A mutation to an A at the first seed-complementary 
nucleotide in the target does not reduce miRNA activity. (C) Relative loss of activity due to individual target site 
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mutations (mismatches and wobbles). The dashed lines denote classification lines based on the median mutation 
impact. P-values for the difference between mismatches and wobbles were calculated using a two-sided Mann-
Whitney U test. (D) Distribution of 3’UTR stabilities for single target sites containing multiple mutations grouped 
by the number and position of mutations and wobbles. (E) Distribution of 3’UTR stabilities for single target sites 
containing multiple mutations grouped by the number of mutations with a specific impact. Classification based on 
the mutation impact leads to a much cleaner classification than one based on the location inside or outside the seed. 
Dashed red boxes show examples of combined mutations with little individual impact that nevertheless strongly 
reduce miRNA activity on the target in combination. 
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Fig. S16. A regression tree model predicts the impact of multiple target site mutations on miRNA activity. (A) 
The performance of three different heuristic models combining knowledge of the impact of individual mutations to 
calculate the overall mutation impact. None of the models work well because multiple individually inert mutations 
can combine to create a strong reduction in miRNA activity. (B) A regression tree that predicts relative knockdown 
values for a mutated target site from the presence and number of mutations classified as no, low, medium and high 
impact. (C) Performance of the regression tree on training and test data. The training was performed on data for all 
but one measured miRNA, the test data contains all mutation data for that specific miRNA (miR-31-5p). (D) 
Although the regression tree approximately captures the behavior of mutations, the behavior of mutations is strongly 
dependent on the individual miRNA sequence. While miR-21-5p is relatively resistant to mutations, miR-19b-3p 
quickly loses activity for mutated miRNAs.  
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Fig. S17. RNA counts, miRNA GC content, weak poly(A) signals, miRNA length, and target site 
homopolymers have little effect on observed model deviations. (A) Counts in the RNA sequencing data (all cell 
lines) versus the observed deviation from the fit and the inferred stability. Strong deviation from the fit is not 
explained by undercounting. (B) MicroRNA GC content versus the observed deviation from the fit and the inferred 
stability. There is no clear association between GC content and observed deviation from the fit. (C) Weak non-
canonical poly(A) signals in the target site do not lead to a lower measured transcript stability (negative deviation). 
(D) Deviation from the fit versus miRNA length and miRNA expression versus stability for the different miRNA 
lengths. In the design process, all miRNAs were standardized to a length of 21 nt by trimming from or adding 
uracils to the 3'end for the purpose of target site generation. We do not observe a pattern of reduced activity for short 
miRNAs. (E) Distribution of deviation values for microRNA targets depending on whether they contain contiguous 
homopolymers of a size of at least 5. Only hsa-miR-3613-3p stands out as an obvious outlier. It contains a long 
stretch of As: ACAAAAAAAAAAGCCCAACCCUUC. The resulting long stretch of Us in the 3’UTR probably 
destabilizes the transcript independent of miRNA regulation.  
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Fig. S18. Changes in the transfer function fit by processing step and cell line. (A) Pearson r2 value. (B) Root 
mean square deviation (rmsd). (C) Number of strong outliers whose measured stability deviates by more than a 
factor of 2 from the predicted value. 1: unscaled microarray data, 2: scaled microarray data, 3: combination of 
microarray and sequencing data, 4: bias-aware merging, 5: removal of crosstalk. 
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Fig. S19. The behavior of target repeats follows the additive model. (A) Stability versus miRNA expression for 
different repeat numbers across all measured cell lines. The plot on the left shows the expected behavior according 
to the additive model. (B) Stability versus miRNA expression for individual repeat numbers. The transfer function 
(dashed black line) uses the fitted parameters from Fig. 1. The dashed gray line shows the prediction for a single 
target site. The input miRNA expression is multiplied by the repeat number.  
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Fig. S20. Predictions of the additive model for two to six repeats of a single target site. The transfer function 
(dashed black line) uses the fitted parameters from Fig. 1. The dashed gray line shows the prediction for a single 
target site.   
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Fig. S21. Comparison of the additive model and antagonistic models using only the strongest site for repeat 
and combination data. All plots use inferred expression values derived by inversion of the transfer function. We 
compare the additive model discussed in the main text and an antagonistic model that only uses the strongest target 
site (i.e., the one whose cognate miRNA has the highest expression) to predict stability. (A) Predictions of the two 
models and measurements for target repeats. (B) Predictions of the two models and measurements or combinations 
of different targets. (C) Model comparison for shuffled target sites. On the left, we show predictions based on the 
measured mean stabilities of the 15 shuffled variants per set of target sites.  
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Fig. S22. Interactions between target sites explain outliers in the repeat stability data. (A). Stability of 
constructs containing one to six repeats of a single target site versus the number of repeats. Each solid line is for a 
single miRNA. Constructs with an unexpected pattern in which stabilities non-monotonically both increase and 
decrease at least twice with the number of repeats are highlighted in red. (B) Four example miRNA targets showing 
unexpected repeat stability patterns. There’s an uptick in stability for an even number of repeats. (C) Left: 
Distribution of binding energies for two identical targets for all miRNAs (blue, high confidence in miRBase or in 
MirGeneDB) and of all miRNA targets we chose for measuring target repeats (Fig. 2B, S20). The interaction 
energies of the outliers shown in (B) and of the two most strongly self-interacting miRNA targets are highlighted. 
Right: Predicted secondary structures for target-target interactions for miRNAs shown in (B). (D) Observed stability 
patterns for the two most strongly self-interacting miRNA targets. These miRNAs do not show unusual stability 
patterns in our measured stability data because they are not significantly expressed in any of the cell lines. (E) 
Predicted versus measured stability for all measured repeats and combinations. Measurements where the dominant 
miRNA target is expected to be obscured by strong secondary structure are highlighted in red. (F) Difference 
between measured and predicted stability for constructs without and with strong secondary structure. 
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Fig. S23. Some miRNA target repeats cause strong increases in stability. (A) Stability of constructs containing 
one to six repeats of a single target site versus the miRNA expression. Each solid line is for a single miRNA. 
Constructs with an unexpected pattern in which there is a strong increase in stability with the repeat number are 
highlighted in red. (B) Four example miRNA targets that show a strong increase in stability in at least one cell line. 
Stability increases are more pronounced in cell lines where the cognate miRNA is not expressed. (C) The number of 
constructs with very high stability (>1.5) in at least one cell line increases with the number of repeats. All constructs 
that have high stability at a lower repeat number also show high stability at higher numbers of repeats. Stability-
increasing miRNA targets behave consistently across repeat numbers. (D) For combinations of different miRNA 
targets, the number of constructs with very high stability also increases with the number of target sites (left plot). 
The fraction is far lower than for repeats of a single target site. Among those combinations that do have high 
stability, a greater fraction contains miRNA target sites that increase stability in constructs with four or more repeats 
(right plot).  
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Fig. S24. Statistics on the generated designs. We created designs for either six of the ten cell lines (A)-(C) or all 
measured cell lines (D)-(I). (A)/(D). The number of designs with 4, 5, or 6 miRNA target sites. (B)/(E). The number 
of designs for different binary design targets including or excluding specific cell lines or graduated stability patterns. 
(C)/(F) Distribution of the number of times a specific miRNA target occurs across all designs. (G) The maximum 
expression level of a miRNA across cell lines and its usage frequency in our designs. More highly expressed 
miRNAs are used more often but many highly expressed miRNAs are nevertheless not used in any design. The 
correlation value is only calculated for used miRNAs. (H) Association of miRNA usage in our designs with the 
tissue-specificity index (tsi) (35) of the miRNA across our measured cell lines. More tissue-specific miRNAs are 
used more often but many tissue-specific miRNAs are not used in any of our designs. (I) Maximum expression 
versus tissue-specificity for miRNAs that were either used or not used for our designs. 
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Fig. S25. Predictions and measurements for all mse-based binary designs for all cell lines with five microRNA 
target sites. We generated four designs per target pattern (e.g., inactivity in a single cell line) for each of the five 
design types. Each column shows one design. (A) Stabilities predicted by the baseline model and (B) measured 
stabilities across the cell lines. The blue boxes indicate the cell lines in which designs are meant to be active or 
inactive.  
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Fig. S26. Predictions and measurements for all mse-based binary designs for a subset of cell lines with five 
microRNA target sites. We generated four designs per target pattern (e.g., inactivity in a single cell line) for each 
of the five design types. Each column shows one design. (A) Stabilities predicted by the baseline model and (B) 
measured stabilities across the cell lines. The blue boxes indicate the cell lines in which designs are meant to be 
active or inactive.  
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Fig. S27. Measurements and predictions of the baseline model for the best-performing binary designs. We 
show one design per target cell line and design type with the smallest measured weighted mean-squared error 
between the target stabilities and the measurement. Designs were created for (A) all cell lines or (B) a subset of 6 
cell lines. Design failures are generally predicted in advance even by the baseline model. The blue boxes indicate the 
cell lines in which designs are meant to be active or inactive.  
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Fig. S28. The performance of different prediction models for binary designs. (A) Measured and predicted 
design rmsd values for the different binary designs. (B) Measured and predicted design rmsd (baseline model) for 
different numbers of target sites. The significance was calculated using a two-sided Mann-Whitney U test. *= 
p<0.05, **=p<0.01, ***=p<0.001, ns=not significant (C) Deviations of measurements from the predictions of the 
updated model. (D) Deviations of measurements from the predictions of the inverted transfer function model. (E) 
Deviations of measurements from predictions for the three models averaged across cell lines.  
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Fig. S29. Measurements and predictions by three different models for the best-performing binary designs 
targeting all cell lines. We show one design per target cell line and design type. We show the target and measured 
stability as well as predictions by the three different prediction models. The blue boxes indicate the cell lines in 
which designs are meant to be active or inactive. t: target stability, m: measured stability; b: baseline, u: updated, 
and i: inverted transfer function model.  
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Fig. S30. Measurements and predictions by three different models for binary designs with a range of 
performances. The figure shows one design from each decile of design performance for each design type. We show 
the target and measured stability as well as predictions by the three prediction different models. The blue boxes 
indicate the cell lines in which designs are meant to be active or inactive. t: target stability, m: measured stability; b: 
baseline, u: updated, and i: inverted transfer function model.   
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Fig. S31. Measurements and predictions by three different models for graduated designs across design 
performance quartiles. (A). We show ten designs for each quartile of design performance. We show the target and 
measured stability as well as predictions by the three different prediction models. t: target stability, m: measured 
stability; b: baseline, u: updated, and i: inverted transfer function model.   
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Fig. S32. Prediction performance by different models for graduated designs targeting all cell lines. (A) 
Predicted and measured logarithmic stabilities. (B) Predicted and measured linear stabilities. The area where the 
difference between prediction and measurement is less than 0.2 is shaded green, the rest is shaded red.(C) Absolute 
prediction error per design averaged across cell lines. (D) Predicted and measured rmsd values to the target log10 
stabilities for all graduated designs.   
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Fig. S33. Secondary structure and global stability explain some prediction failures. (A) Example of a design 
with strong secondary structure due to the use of the 5p and 3p arm of the same miRNA. (B) Predicted (inverted 
transfer function model) and measured stabilities for all designs targeting all cell lines. Designs with strong 
secondary structure in a dominant miRNA target site are highlighted. (C) Difference between measured and 
predicted stabilities for low and high ΔΔG designs. The p-value was calculated by a Mann-Whitney U test. (D) 
Three particularly stable and three particularly unstable designs in the prediction plot for the inverted transfer 
function model. The designs tend to be excessively stable or unstable across all measured cell lines. (E) All high 
stability (stability larger than 1.5 in any cell line) and low stability (ratio between predicted and measured stability 
larger than 6.3 in any cell line) designs. (F) Difference between measured and predicted stabilities for normal, high 
stability, and low stability designs.  
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Fig. S34. Correlations between tissues in the human microRNA expression datasets. (A) Pearson correlation 
values between different tissues in the microarray dataset. The microarray tissue dataset was generated by merging 
expression values for 2 different subjects via a geometric mean. The correlation for the same tissue between the 
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expression values measured for the two subjects before merging is shown on the right. (B) Pearson correlation 
values between different tissues in the NGS dataset. The dataset was generated by merging expression values for 6 
subjects via a geometric mean. The correlation for the same tissue between the expression values measured for the 
six subjects before merging is shown on the right.   
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Fig. S35. Consistent outliers reduce the correlation between microarray and NGS-based human tissue 
datasets. (A). Correlation between microarray and NGS tissue datasets for all microRNAs that are in either high 
confidence in miRbase or listed in MirGeneDB. (B) Correlation between tissue datasets after removal of consistent 
outliers. (C) Outliers in each tissue are defined as microRNAs with an expression ratio of 10 or more between the 
two datasets. Consistent outliers are outliers in five or more tissues. The microarray data contains far more outliers 
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with a consistently higher expression than what is seen in the NGS dataset. (D) Outliers as in (C) but for expression 
data for our measured cell lines. For the cell line data, the outlier patterns are more symmetric between the two data 
types. (E) Expression levels for microRNAs in the two datasets for six chosen tissues. MicroRNAs that are 
consistently higher in one of the two datasets are highlighted. The correlation values are given either for all 
microRNAs or with consistent outliers excluded.  
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Fig. S36. Merging procedure for the tissue datasets. (A)-(D): Decision procedure for consistent tissue outlier 
miRNAs identification by comparison with cell line stability data. (A) Consistent outlier miRNAs identified in the 
tissue NGS and microarray data as measured in our cell line expression and stability data. As can be seen in the top 
left plot, some outliers in which NGS data is consistently much larger in the tissue data are also underpredicted by 
microarray data for the cell lines. (B) Distribution of the difference in absolute deviation between the measured and 
predicted log10 stabilities in cell lines for NGS and microarray data for all measured miRNAs. A much larger 
deviation for one or the other in a given cell line is interpreted as a sign of bias. (C) Cell line expression and stability 
of miRNA targets for miRNAs that were called as correct in one of the tissue datasets. The decision was made based 
on the deviation in (B) (Methods). (D) Mean of the log10 expression across all tissues for microRNAs that were 
either called as correct in one of the two datasets or left undecided. Most microRNAs, especially those with high 
microRNA expression and no NGS expression, were left undecided because they are not expressed in any of the cell 
lines according to both cell line expression datasets. (E) Composition bias for microRNAs that are much more 
highly expressed in the microarray data. Most notably, these microRNAs have a higher G and lower U content, in 
line with an earlier study by Backes et al. (49). P-values were calculated using a two-sided Mann-Whitney U test. 
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(F) The most biased miRNAs often have a very large G content of over 50%. Backes et al. (49) observed the same 
bias and confirmed that these microRNAs are also measured as low expression by RT-qPCR, which could indicate 
that miRNAs with very high G content might be systematically wrong in microarray data. (G) Mean expression for 
miRNAs in the two datasets. MicroRNAs that were found to be likely incorrect in one of the two datasets are 
highlighted.  
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Fig. S37. The impact of the maximum allowed target site number on the predicted performance of designs 
targeting human tissues. We generated designs with a maximum of between 1 and 8 target sites. The design 
algorithm was also given the option of using fewer than the maximum number of target sites. The designs either (A) 
eliminate expression in or (B) constrain expression to a single organ. In the main text, we show designs with up to 
six target sites. The behavior of the algorithm differs drastically between the two design objectives. (C) Number of 
targets used by the design algorithm. For inactivity in a single organ, the optimum number of targets is often fewer 
than are allowed. For activity in a single organ, all available targets are used for every design without exception. (D) 
Unique targets per design. Inactivity in a single organ is overwhelmingly achieved by a single type of miRNA target 
site. Activity in a single organ is achieved by combining many different target site types. (E) Weighted design 
quality (inverse mse) by the number of allowed target sites. Every dot represents a design targeting a different organ. 
The design quality is shown relative to the highest achieved quality design generated for a specific target organ 
across all allowed numbers of target sites. For inactivity in a single organ, a design performance close to the 
maximum is already achieved by a single target site in most cases. For activity in a single organ, the performance 
keeps improving with the allowed number of target sites. Note that there are organs for which inactivity in a single 
organ is also improved by up to six target sites. In those cases, this usually means repeating the same target site six 
times. 
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