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A B S T R A C T   

Since the end of 2019, the outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has 
evolved into a global pandemic. There is an urgent need for effective and low-toxic antiviral drugs to remedy 
Remdesivir’s limitation. Hydroxychloroquine, a broad spectrum anti-viral drug, showed inhibitory activity 
against SARS-CoV-2 in some studies. Thus, we adopted a drug repurposing strategy, and further investigated 
hydroxychloroquine. We obtained different configurations of hydroxychloroquine side chains by using chiral 
resolution technique, and successfully furnished R-/S-hydroxychloroquine sulfate through chemical synthesis. 
The R configuration of hydroxychloroquine was found to exhibit higher antiviral activity (EC50 = 3.05 μM) and 
lower toxicity in vivo. Therefore, R-HCQ is a promising lead compound against SARS-CoV-2. Our research pro-
vides new strategy for the subsequent research on small molecule inhibitors against SARS-CoV-2.   

1. Introduction 

East Respiratory Syndrome (MERS), Severe Acute Respiratory Syn-
drome (SARS) and Ebola virus have caused a large number of infections 
and deaths. Most recently, at the end of 2019, a new type of coronavi-
rus,1 severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2, its 
genome sequence is highly consistent with SARS-CoV)2, suddenly 
appeared.3 Due to its strong contagiousness (especially for elderly peo-
ple,4,5 people with underlying diseases and immunocompromised in-
dividuals), this virus is raging widely and developed into a global 
epidemic. As the virus spreads, several mutated strains have been 
reported,6–8 which may cause easier human-to-human transmission a 
higher mortality rate before effective vaccines and therapeutic drugs are 
available. So far, there are more than 240 million people infected by 
coronavirus disease 2019 (COVID-19) with nearly five million recorded 
deaths worldwide,9 It highlights the challenges governments and med-
ical institutions face in responding to sudden outbreaks. Therefore, there 

is an urgent need to develop highly effective drugs against novel coro-
navirus to protect people’s health. 

Development of highly effective new drugs for a new virus is costly 
and time-consuming. Although many small molecule inhibitors against 
different targets of SARS-CoV-2 have been discovered,10,11 most of them 
have only undergone partial preclinical or clinical research,12–18 and 
whether they can be formulated into drugs remains to be determined. In 
the face of a rapidly spreading and increasingly serious epidemic, these 
inhibitors cannot solve the current dilemma immediately. 

In light of the challenges, drug repurposing may be an ideal strategy. 
Drug repurposing has many advantages19–21 including saving time, 
money, and the guarantee of safety with clinical experiences. There are 
many successful applications of this strategy in the past, such as 
thalidomide, ketoconazole, finasteride and so on. The World Health 
Organization launched a multinational randomized trial called “the 
solidarity trial” in 2020 to study the efficacy of some promising mole-
cules or drug combinations against COVID-19.22 Its subset includes 
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Remdesivir and hydroxychloroquine (Fig. 1). 
Hydroxychloroquine is an early approved drug for the treatment of 

malaria.23 It is also used to treat diseases such as rheumatoid arthritis 
and lupus erythematosus.24 Studies have shown that hydroxy-
chloroquine sulfate can inhibit the new coronavirus25–27 in vitro, and it is 
inferred that the activity of hydroxychloroquine is higher than chloro-
quine28 or Remdesivir. As a weak base, hydroxychloroquine is able to 
accumulate in acidic organelles, increasing the pH of endosomal/lyso-
somal to inhibit viral replication29 and prevents viral fusion into the 
cell.30 Additionally, cytokines IL-6 and IL-10 have been reported to be 
increased in response to SARS-CoV-2 infection.31 Both chloroquine and 
hydroxychloroquine have immunomodulatory effects and can suppress 
the immune response to avoid multiorgan failure and death caused by 
cytokine storm.32,33 In a clinical trial treatment of 36 COVID-1934 pa-
tients, patients who received hydroxychloroquine therapy had a naso-
pharyngeal swab virus negative rate of 57.1% on the 6th day, while 
patients who received hydroxychloroquine in combination with azi-
thromycin had 100% negative swab and the rate in the untreated control 
group was 12.5%. This shows that hydroxychloroquine, alone and 
combination with azithromycin are effective against SARS-CoV-2. Based 
on this trail with such as small number of patients, the US Food and Drug 
Administration approved hydroxychloroquine as a clinical sympathetic 
drug. In another study, chloroquine was found to be able to reduce the 
SARS-CoV-2 viral load and shorten the duration of viremia, with no 
serious adverse events observed.25 However, a comparative analysis of 
patients who received chloroquine, hydroxychloroquine or concomitant 
macrolide therapy in various regions of the world with other patients 
who did not receive these drugs found that it is impossible to prove that 
the use of chloroquine, hydroxychloroquine alone or together with 
macrolides is beneficial.35 On the contrary, these two drugs may lead to 
an increase in the frequency of ventricular arrhythmias and reduce the 
patient’s survival.36–38 The WHO announced the failure of the “the 
solidarity trial”, which means that hydroxychloroquine did not achieve 
the desired effect in the treatment of COVID-19.39,40 

Since the hydroxychloroquine used clinically is in racemic form, it is 
possible that only one of its enantiomers had antiviral activity, and other 
enantiomer may have toxicity, thus leading to undesirable results. In 
fact, in two earlier studies in rheumatoid arthritis, the pharmacokinetics 
of hydroxychloroquine were shown to be enantioselective, with higher 
blood levels of R-hydroxychloroquine than S-hydroxychloroquine in 
patients following the administration of racemic hydroxy-
chloroquine,41,42 implying a higher clearance of S-hydroxy-
chloroquine,43,44 which may suggest that a particular configuration of 
hydroxychloroquine plays an important role in the actual treatment.45 

In the present study, therefore, we investigated the antiviral activity of 
the enantiomers of hydroxychloroquine and their toxicity in mice, trying 
to find an optimal enantiomer to inhibit SRAS-CoV-2 virus. Unlike other 
reported studies of hydroxychloroquine isomers against SARS-CoV- 

2,45,46 we found for the first time that R-hydroxychloroquine had higher 
replication inhibitory activity against SARS-CoV-2 compared to S- 
hydroxychloroquine and was less toxic in mice. 

2. Results 

2.1. Synthesis 

The synthetic routes of (S)-hydroxychloroquine sulfate and (R)- 
hydroxychloroquine sulfate were depicted in Schemes 1. The synthesis 
began with the recrystallization of commercially available starting ma-
terials 5 with mandelic acid of different configurations as reported 
methods47. Chiral amine 8 or 9 was prepared from the mandelate 6 or 7 
using sodium hydroxide to remove the corresponding mandelic acid. 
Subsequently, treatment of the amine with 4,7-dichloroquinoline gave 
compound 3 and 4, respectively, with good yields, followed by reaction 
with sulfuric acid furnished the final products hydroxychloroquine 
sulfate 10 and 11. 

In order to test the purity and enantiomeric excess values of the 
asymmetric synthesis of hydroxychloroquine, we performed a new 
chiral HPLC analysis method, and the results are shown in Fig. 2 and 
Fig. S1 in Supporting information, SI. The purity of hydroxychloroquine 
exceeded 95%, and the enantiomeric excess values of hydroxy-
chloroquine were all higher than 99%. The results confirm that we had 
indeed obtained a pair of enantiomers with high purity. 

2.2. Preliminary biochemical evaluation of hydroxychloroquine and its 
Enantiomers 

In order to evaluate the inhibitory effect of hydroxychloroquine and 
its enantiomers on the cytopathic effect (CPE) caused by the new 
coronavirus infection, we conducted an observational assay on the 
correlation between drug treatment and CPE. As shown in Fig. 3A, 
obvious cytopathic changes occurred after Vero E6 cells were infected 
with SARS-CoV-2, while Remdesivir treatment completely inhibited the 
occurrence of lesions. The drug treatment group (racemic hydroxy-
chloroquine sulfate, R-Hydroxychloroquine sulfate and S-hydroxy-
chloroquine sulfate) also showed complete inhibition of cytopathic 
changes caused by the virus at 40 μM. These results indicated that the 
enantiomers of hydroxychloroquine had inhibitory activity against 
SARS-CoV-2. 

To examine the effect of these three compounds on the removal of 
viral RNA, we further tested the level of viral RNA in the cell superna-
tant. Consistent with the above results, all three drugs showed effective 
inhibition on the replication of the virus (Fig. 3B). Among them, R-HCQ 
exhibited strongest inhibitory activity (EC50 = 3.05 μM), while the 
inhibitory levels of hydroxychloroquine in racemate (EC50 = 5.09 μM) 
and S configuration (EC50 = 5.38 μM) were comparable. These data 

Fig. 1. Representative antiviral drugs and enantiomers of hydroxychloroquine.  
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implied that R-HCQ might be the most active one of the enantiomers of 
hydroxychloroquine against SARS-CoV-2. 

2.3. In vivo acute toxicity evaluation 

Having obtained in vitro antiviral activities of these three com-
pounds, we further evaluated their toxicity in vivo in a double-dose acute 
toxicity assay. When administered orally at a dose of 230 mg/kg with 
the compounds, the mice treated with Rac-HCQ, R-HCQ and S-HCQ 
behaved differently. As described in Fig. 4, the mice of the racemate 
group died at the 7th day post drug administration (dpd), and the mice 
of the S configuration group appeared malaise at 9 dpd, while the mice 
of the R configuration group performed well until the 12 dpd. More mice 
died after 15 dpd in the racemate group and S configuration group, and 
relatively stable number still maintained in R configuration group. 
Hence, the compound R-HCQ could be better tolerated in mice when 
compared to Rac-HCQ and S-HCQ. 

3. Discussion 

The outbreak of SARS-CoV-2 has evolved into an emergent global 
pandemic. Although Remdesivir has been approved by the FDA as the 
first drug for the treatment of COVID-19, its effectiveness is still limited 
and the treatment was accompanied by many side effects, such as 
gastrointestinal symptoms and heart and lung failure. More importantly, 
the clinical application of Remdesivir did not reduce the mortality 
caused by COVID-19. Therefore, it is still urgent to find effective and 
low-toxic antiviral drugs that can control the infection. 

We adopted the idea of drug repurposing and focus on hydroxy-
chloroquine. The data showed for the application of the racemate 
hydroxychloroquine as an anti-COVID-19 drug for clinical research is, at 
best, mixed. We speculated that the reason for the inconsistent clinical 
effects of hydroxychloroquine may be due to the lower activity or higher 
toxicity of one of its enantiomers, which affects the antiviral effect of the 
racemate. Therefore, we obtained hydroxychloroquine with different 

Scheme 1. Synthesis of target compounds 10 and 11. Reagents and conditions: (a) S-(+)-mandelic acid, 2-propanol, recrystallization, 52%; (b) R-(− )-mandelic acid, 
2-propanol, crystallization, 56%; (c) NaOH, tert-butyl methyl ether, 2 h, 63–83%; (d) 4,7-dichloroquinoline, TEA, K2CO3, 135 ◦C, 24 h, 62–68%; (e) H2SO4, EtOH, 
reflux, 67–85%. 
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configuration of side chains by using the technique of chiral resolution, 
and successfully furnished R- and S-hydroxychloroquine sulfate through 
chemical synthesis. The pair of enantiomers with an enantiomeric excess 
greater than 99% were obtained and we further tested the inhibitory 
activity of racemic hydroxychloroquine, R configuration hydroxy-
chloroquine, and S configuration hydroxychloroquine against SARS- 
CoV-2 virus in Vero E6 cells. In vitro CPE observation and viral RNA 
level detection assays showed that both racemic hydroxychloroquine 
and optically pure hydroxychloroquine have inhibitory but limited ac-
tivity on SARS-CoV-2. When compared to Rac-HCQ, R-HCQ showed 
more efficient antiviral activity, while the activity of S-HCQ was com-
parable to that of the Rac-HCQ. We further conducted the acute toxicity 
studies in vivo, the toxicity of R-HCQ was lower than that of racemate 
and S-HCQ. We will conduct long-term toxicity assay on the two enan-
tiomers to complete the toxicity studies, and test the antiviral activity of 
R-HCQ in vivo. 

4. Conclusion 

Through chiral resolution and chemical synthesis, we successfully 
synthesized optically pure hydroxychloroquine. Among them, R 
configuration hydroxychloroquine exhibited higher antiviral activity 
(EC50 = 3.05 μM) than S configuration and racemic hydroxy-
chloroquine. Acute toxicity tests in vivo showed that S-hydroxy-
chloroquine had higher toxicity with racemates, while R configuration 
has lower toxicity. This is the first report that R-hydroxychloroquine has 

better in vivo toxicity than S-hydroxychloroquine. Based on the content 
above, the synthesis and biological functions of R-HCQ may be an 
important inspiration in promoting this field. Taken together, R-HCQ 
might be a promising lead compound for further investigation of anti-
viral drugs against SARS-CoV-2. 

5. Materials and methods 

5.1. Chemistry general methods 

Reagents and solvents from commercial sources were used without 
further purification. The progress of all reactions was monitored by TLC 
using EtOAc/n-hexane or DCM/MeOH as solvent system, and spots were 
visualized by irradiation with UV light (254 nm) or staining with 
phosphomolybdic acid. Flash chromatography was performed using 
silica gel (300–400 mesh). 1H NMR and 13C NMR spectra were recorded 
on a Bruker Avance ARX-300 or a Bruker Avance ARX-400. Chemical 
shifts are reported in ppm, and multiplicity of signals are denoted as: s =
singlet, d = doublet, t = triplet and m = multiplet. The low resolution 
ESIMS was recorded on an Agilent 1200 HPLC-MSD mass spectrometer 
and the high resolution on an Applied Biosystems Q-STAR Elite ESI-LC- 
MS/MS mass spectrometer. Anhydrous toluene and tetrahydrofuran 
(THF) were freshly distilled from sodium with benzophenone as the 
indicator. All other solvents were reagent grade. All moisture sensitive 
reactions were carried out in flame dried flask under argon atmosphere. 
The purity of the final compounds was determined by Agilent 1260 

Fig. 2. Chromatograms for racemic hydroxychloroquine and its enantiomers. A: racemic hydroxychloroquine (Rac-HCQ); B: (R)- hydroxychloroquine (R-HCQ); C: 
(S)- hydroxychloroquine (S-HCQ). 
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series HPLC system using the following conditions: chiralpak IH30CE- 
WB024 column (DAICEL, 0.46 cm I.D. × 25 cm × 3 μm) with the sol-
vent system (elution conditions: mobile phase A consisting of n-hexane/ 
diethylamine with a ratio of 100/0.1; mobile phase B consisting of iso-
propanol/methanol/diethylamine with a ratio of 75/25/0.1), with 
monitoring 254 nm. A flow rate of 0.8 mL/min was used and the column 
temperature is 35 ◦C. The retention time was reported as tR (min). The 
purity of final compounds is >95%. 

5.2. Experimental procedures 

(S)-2-((4-aminopentyl)(ethyl)amino)ethan-1-ol (S)- mandelate 
(6). A solution of 2-((4-aminopentyl)(ethyl)amino)ethan-1-ol (8.0 g, 
45.9 mmol) in 2-propanol (100 mL) was added to a solution of S- 

(+)-mandelic acid (3.5 g, 23.0 mmol) in 2-propanol (20 mL). The 
mixture was stirred overnight at room temperature. Filtration gave 
white crystals which were recrystallized twice more from 2-propanol 
(100 mL and 80 mL respectively) to afford 6 (7.7 g, 52%) as white 
crystals. 

(R)-2-((4-aminopentyl)(ethyl)amino)ethan-1-ol (R)- mandelate 
(7). Compound 7 was prepared from 5 and R-mandelic acid in a similar 
manner as described for 6. White crystals. (8.1 g, 56%). 

(S)-2-((4-aminopentyl)(ethyl)amino)ethan-1-ol (8). To a solution 
of (S)-2-((4-aminopentyl)(ethyl)amino)ethan-1-ol (S)- mandelate (7 g, 
21.6 mmol) in tert-butyl methyl ether (50 mL) was cooled to 0 ◦C. This 
clear solution was dropwise treated with 1 M NaOH aq. to adjust the pH 
of the mixture to 12. Upon complete addition, the reaction was warmed 
to r.t. over 2 h. The aqueous layer was extracted sextic with tert-butyl 
methyl ether (60 mL), and the organic layer washed with brine and dried 
over anhydrous Na2SO4, filtered and concentrated under reduced 
pressure to give the title compound (3.3 g, 83%) as colorless oil, which 
was used in the next step without further purification. 1H NMR (300 
MHz, Chloroform-d): δ 3.52 (t, J = 5.4 Hz, 2H), 2.88 (h, J = 6.3 Hz, 1H), 
2.60–2.49 (m, 4H), 2.44 (t, J = 7.3 Hz, 2H), 1.54–1.39 (m, 2H), 
1.34–1.24 (m, 2H), 1.10–0.95 (m, 6H). 13C NMR (75 MHz, Chloroform- 
d): δ 77.27, 58.33, 54.93, 53.28, 47.22, 46.78, 37.77, 24.17, 24.04, 
11.80. HRMS (ESI+): m/z calculated for C9H23N2O (M + 1)+ 175.1805 
found 175.1808. 

(R)-2-((4-aminopentyl)(ethyl)amino)ethan-1-ol (9). Compound 
9 was prepared from 7 in a similar manner as described for 8. Colorless 
oil (2.6 g, 80%). 1H NMR (400 MHz, Chloroform-d): δ 3.52 (t, J = 5.4 Hz, 
2H), 2.87 (h, J = 6.3 Hz, 1H), 2.60–2.50 (m, 4H), 2.44 (t, J = 7.3 Hz, 

Fig. 3. Preliminary biochemical evaluation of hydroxychloroquine and its enantiomers. A: CPE observation trial of Rac-HCQ sulfate, R-HCQ sulfate and S-HCQ 
sulfate using Remdesivir as a positive control; B: viral RNA level detection trial. 

Fig. 4. The survival curve of mice in acute toxicity assay.  
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2H), 1.52–1.38 (m, 2H), 1.34–1.25 (m, 2H), 1.05 (d, J = 6.3 Hz, 3H), 
1.00 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, Chloroform-d): δ 77.26, 
58.34, 54.91, 53.27, 47.21, 46.86, 37.82, 24.20, 24.11, 11.83. HRMS 
(ESI+): m/z calculated for C9H23N2O (M + 1)+ 175.1805 found 
175.1808. 

(S)-2-((4-((7-chloroquinolin-4-yl) amino) pentyl) (ethyl) amino) 
ethan-1-ol (3). The mixture of (S)-2-((4-aminopentyl) (ethyl)amino) 
ethan-1-ol (1.21 g, 7.0 mmol), 4,7-dichloroquinoline (1.1 g, 5.8 mmol), 
triethylamine (0.4 mL, 7.0 mmol), and potassium carbonate (400 mg, 
2.9 mmol) were heat to 135 ◦C for overnight without any solvent. After 
reaction was complete, indicated by TLC, the resulting mixture was 
cooled down to room temperature. The mixture was extracted with DCM 
(3 × 100 mL) and the combined organic layers were dried over anhy-
drous Na2SO4, filtered and concentrated under reduced pressure. The 
resulting residue was passed through a silica gel column chromatog-
raphy (0–5% methanol in DCM) to provide the title compound (1.3 g, 
yield 68%) as colorless oil. 1H NMR (300 MHz, Chloroform-d): δ 8.50 (d, 
J = 5.4 Hz, 1H), 7.94 (d, J = 2.2 Hz, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.35 
(dd, J = 8.9, 2.2 Hz, 1H), 6.40 (d, J = 5.5 Hz, 1H), 4.96 (d, J = 7.7 Hz, 
1H), 3.79–3.63 (m, 1H), 3.56 (t, J = 5.4 Hz, 2H), 2.61–2.54 (m, 4H), 
2.50 (q, J = 4.4, 2.5 Hz, 2H), 1.75–1.52 (m, 4H), 1.32 (d, J = 6.3 Hz, 
3H), 1.02 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, Chloroform-d): δ 
151.87, 149.20, 149.03, 134.88, 128.68, 125.20, 121.13, 117.20, 99.13, 
58.29, 54.80, 52.98, 48.33, 47.48, 34.28, 23.94, 20.41, 11.63. [α]20 D=
+95.8 (c = 1, EtOH). HRMS (ESI+): m/z calculated for C18H27ClN3O (M 
+ 1)+ 336.1837 found 336.1841. 

(R)-2-((4-((7-chloroquinolin-4-yl) amino) pentyl) (ethyl) 
amino) ethan-1-ol (4). Compound 4 was prepared from 9 in a similar 
manner as described for 3. Colorless oil (1.6 g, yield 62%). 1H NMR (300 
MHz, Chloroform-d): δ 8.51 (d, J = 5.4 Hz, 1H), 7.94 (d, J = 2.2 Hz, 1H), 
7.71 (d, J = 9.0 Hz, 1H), 7.35 (dd, J = 9.0, 2.2 Hz, 1H), 6.40 (d, J = 5.5 
Hz, 1H), 4.96 (d, J = 7.7 Hz, 1H), 3.69 (dt, J = 13.5, 6.6 Hz, 1H), 3.56 (t, 
J = 5.4 Hz, 2H), 2.63–2.55 (m, 4H), 2.54–2.49 (m, 2H), 1.77–1.53 (m, 
4H), 1.32 (d, J = 6.4 Hz, 3H), 1.02 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, 
Chloroform-d): δ 151.58, 149.23, 148.90, 135.02, 128.39, 125.27, 
121.36, 117.17, 99.07, 77.47, 77.05, 76.62, 58.14, 54.94, 53.05, 48.39, 
47.64, 34.16, 23.74, 20.41, 11.40. [α]20 D = − 86.5 (c = 1, EtOH). 
HRMS (ESI+): m/z calculated for C18H27ClN3O (M + 1)+ 336.1837 found 
336.1840. 

(S)-2-((4-((7-chloroquinolin-4-yl) amino) pentyl) (ethyl) amino) 
ethan-1-ol sulfate (10). A solution of (S)-2-((4-((7-chloroquinolin-4-yl) 
amino) pentyl) (ethyl) amino) ethan-1-ol (500 mg, 1.5 mmol) in EtOH 
(5 mL) was placed under an atmosphere of Ar and cooled to 0 ◦C. This 
clear solution was dropwise treated with a solution of 1 M sulfuric acid 
in EtOH (1.5 mL, 1.5 mmol). Upon complete addition, the reaction was 
warmed to r.t. for 2 h, then reflux for 6 h with the formation of a white 
precipitate. The solid was collected by filtration, washed with hexane, 
and dried to give 550 mg (85%) for the title compound as a white power. 
1H NMR (300 MHz, Deuterium Oxide): δ 8.22 (d, J = 7.2 Hz, 1H), 8.11 
(d, J = 9.0 Hz, 1H), 7.70 (d, J = 2.0 Hz, 1H), 7.51 (d, J = 9.0 Hz, 1H), 
6.79 (d, J = 7.3 Hz, 1H), 4.14–4.02 (m, 1H), 3.82 (t, J = 5.2 Hz, 2H), 
3.22 (q, J = 5.2, 4.7 Hz, 6H), 1.79 (s, 4H), 1.36 (d, J = 6.4 Hz, 3H), 
1.25–1.17 (m, 3H). 13C NMR (75 MHz, Deuterium Oxide): δ 155.28, 
142.08, 139.11, 137.99, 127.13, 124.00, 118.91, 115.07, 98.46, 55.20, 
53.67, 51.92, 49.40, 48.18, 31.80, 19.91, 18.69, 7.80. [α]20 D= +81.3 
(c = 1, H2O). 

(R)-2-((4-((7-chloroquinolin-4-yl) amino) pentyl) (ethyl) 
amino) ethan-1-ol sulfate (11). Compound 11 was prepared from 4 in 
a similar manner as described for 10. White solid (232 mg, yield 67%). 
1H NMR (300 MHz, Deuterium Oxide): δ 8.12 (d, J = 7.2 Hz, 1H), 7.98 
(d, J = 9.1 Hz, 1H), 7.56 (d, J = 2.0 Hz, 1H), 7.38 (dd, J = 9.1, 2.1 Hz, 
1H), 6.69 (d, J = 7.4 Hz, 1H), 4.05–3.93 (m, 1H), 3.74 (q, J = 5.4 Hz, 
2H), 3.13 (t, J = 10.8 Hz, 6H), 1.71 (t, J = 6.5 Hz, 4H), 1.27 (d, J = 6.5 
Hz, 3H), 1.13 (td, J = 7.3, 1.6 Hz, 3H). 13C NMR (75 MHz, Deuterium 
Oxide): δ 155.19, 142.04, 139.05, 137.91, 127.07, 123.96, 118.84, 
114.99, 98.46, 55.17, 53.65, 51.90, 49.39, 48.14, 31.76, 19.92, 18.66, 

7.84. [α]20 D = − 89.3 (c = 1, H2O). 

5.3. Cell culture 

African green monkey kidney Vero E6 cells were obtained from 
Shanghai Cell Bank, Chinese Academy of Sciences. Cells were cultured at 
37 ◦C with 5% CO2 in Dulbecco’s modified Eagle medium (DMEM) 
(Gibco, Carlsbad, USA) containing 2 mmol/L L-glutamine, 50 U/mL 
penicillin, 100 mg/mL streptomycin, and 10% (v/v) fetal bovine serum 
(Gibco, Carlsbad, USA). Vero E6 cells after SARS-CoV-2 infection were 
maintained in DMEM containing 2 mmol/L L-glutamine, 50 U/mL 
penicillin, 100 mg/mL streptomycin, and 2% (v/v) fetal bovine serum. 

5.4. Cell Counting Kit-8 (CCK-8) assay 

The Cell Counting Kit-8 (Dojindo, Kumamoto, Japan) was used to 
evaluate cell viability and cytotoxicity according to the manufacturer’s 
instructions. Briefly, Vero E6 cells were dispensed into 96-well plate 
(1.0 × 104 cells/well), cultured in medium supplemented with different 
concentrations of the compounds for 48 h. After removal of the medium, 
the cells were incubated with fresh serum-free medium containing 10% 
CCK-8 for 1 h at 37 ◦C and then the absorbances at 450 nm were 
measured using a microplate reader (Bio-Rad, Hercules, USA). 

5.5. In vitro CPE observation and viral RNA level detection trials 

A clinical isolate of SARS-CoV-2 (GenBank: MT121215.1), was 
propagated in Vero E6 cells and the viral titer was determined as 50% 
tissue culture infectious dose (TCID50) per milliliter (mL) by CPE 
quantification. All the infection experiments were performed in the 
biosafety level-3 (BSL-3) laboratory of Fudan University. 

Before virus infection, the drugs were diluted to the corresponding 
concentration by maintenance medium (DMEM with 2% FBS). Each well 
was added 100 μL of medium containing the corresponding concentra-
tion of the drugs and placed in a CO2 incubator for continuous cultiva-
tion for 1 h at 37 ◦C. After pretreatment of cells and drugs, each well was 
added two times the final concentration of diluted drug 60 μL. At the 
same time, cell control (CC) and virus control (VC) were set up with 120 
μL and 60 μL of maintenance medium, respectively. Subsequently, in 
addition to the cell control, the virus (diluted to 100 TCID50/50 μL) was 
dropped vertically onto the 96-well plate to make the volume of the 
virus-drug mixture 120 μL (Note: After co-incubating 60 μL of virus 
dilution and 60 μL of drug dilution, use 100 μL of virus-drug mixture to 
infect the cells so that the final amount of virus infected cells is 100 
TCID50/well). After mixing the added virus-antibody on a shaker and 
removed the supernatant (100 μL) of the culture plate seeded with cells, 
the residue was added 100 μL/well of the virus-drug mixture. Cells were 
placed in a 37 ◦C CO2 incubator for 48 h and observed the cytopathic 
changes with an inverted microscope to determine the antiviral ability 
of the drugs. Viral RNA level detection follows the steps below: Initially, 
cells were placed in a 37 ◦C CO2 incubator for continuous culture for 1 h, 
and the supernatant medium was discarded. After washed twice with 
PBS, 100 μL of maintenance medium was added to each well, and placed 
in a 37 ◦C CO2 incubator for continuous culture for 48 h. Subsequently, 
100 μL of the supernatant was added to 300 μL of TRIzol LS (Invitrogen, 
Carlsbad, USA) to extract viral RNA for RT-qPCR detection following the 
manufacturer’s instructions. RT-qPCR was performed by using Verso 1- 
step RT-qPCR Kit (Thermo Fisher, Waltham, USA) on CFX96™ Real- 
Time PCR System (Bio-Rad, Hercules, CA). The PCR primers targeting 
the N gene (nt608-706) of SARS-CoV-2 were: 5′- 
GGGGAACTTCTCCTGCTAGAAT-3′/5′-CAGACATTTTGCTCTCAAGCTG- 
3′ (forward/reverse). 

5.6. In vivo acute toxicity assay 

All the procedures for animal handling, care, and the treatment in 
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this study were performed according to the guidelines approved by the 
Institutional Animal Care and Use Committee (IACUC) of China Phar-
maceutical University following the guidelines of the Association for 
Assessment and Accreditation of Laboratory Animal Care (AAALAC). 
The compounds Rac-HCQ sulfate, R-HCQ sulfate and S-HCQ sulfate were 
dissolved in physiological saline. Sixteen male and 16 female mice (25 g) 
were divided into four groups (n = 8): male and female control groups 
and male and female test groups. All mice were fasted overnight and 
then administered intragastrically with the vehicle or 230 mg/ kg of test 
compounds twice a day. The death, daily behavior, and body weight of 
the mice were monitored during the subsequent 20 days. 
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