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Abstract: Accelerometer data collected from wearable devices have recently been used to monitor
physical activities (PAs) in daily life. While the intensity of PAs can be distinguished with a cut-off
approach, it is important to discriminate different behaviors with similar accelerometry patterns
to estimate energy expenditure. We aim to overcome the data imbalance problem that negatively
affects machine learning-based PA classification by extracting well-defined features and applying
undersampling and oversampling methods. We extracted various temporal, spectral, and nonlinear
features from wrist-, hip-, and ankle-worn accelerometer data. Then, the influences of undersampilng
and oversampling were compared using various ML and DL approaches. Among various ML and
DL models, ensemble methods including random forest (RF) and adaptive boosting (AdaBoost)
exhibited great performance in differentiating sedentary behavior (driving) and three walking types
(walking on level ground, ascending stairs, and descending stairs) even in a cross-subject paradigm.
The undersampling approach, which has a low computational cost, exhibited classification results
unbiased to the majority class. In addition, we found that RF could automatically select relevant
features for PA classification depending on the sensor location by examining the importance of each
node in multiple decision trees (DTs). This study proposes that ensemble learning using well-defined
feature sets combined with the undersampling approach is robust for imbalanced datasets in PA
classification. This approach will be useful for PA classification in the free-living situation, where
data imbalance problems between classes are common.

Keywords: physical activity; accelerometer; ensemble method; random forest; bootstrap aggregating
(bagging); adaptive boosting; undersampling; oversampling

1. Introduction

Physical activity (PA), which can be defined as all types of body movements produced
by skeletal muscles that require energy expenditure, plays a key role in the well-being
of both mental and physical health. Nowadays, due to the increased manifestation of
a sedentary lifestyle, many people are facing elevated health risks [1]. Both moderate
PAs, which include daily activities such as walking, and vigorous PAs, such as exercises
and sports, can improve human health and quality of life. Furthermore, many studies
have reported that PA can mitigate the risks of metabolic disorders [2], cardiovascular
diseases [3], cancer [4], neurological diseases [5], and psychiatric disorders [6,7]. In this
regard, it is important to monitor PA in daily life to provide an appropriate intervention
to encourage exercise. Recently, wearable devices, or wearables, have been widely used
with the advancement of smart devices and embedded sensors. The most commonly used
wearables are wrist-worn smartwatches which can collect the user’s physiological data
while performing the basic functions of smartphones [8–10]. Wearable sensors can also be
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attached to various body positions of the torso (chest, waist, and hip) [11,12], lower limbs
(legs and feet) [13], upper limbs (forearm and finger) [14], or head (scalp and ear) [15–17],
depending on their purpose.

Accelerometers, which measure acceleration in three dimensions—vertical, medio-
lateral, and anterior-posterior—have often been used in wearable sensors to measure PA
objectively in the free-living environment. Numerous studies have attempted to distinguish
PA from sedentary behaviors by adopting a cut-point approach with the accelerometry
data [18–22]. Cut-points are generated to differentiate moderate-to-vigorous physical activ-
ity (MVPA) by finding the optimal accelerometer activity counts that best correspond to the
energy expenditure [23–25]. However, because the cut-point approach has limitations in
differentiating the activities of daily living from similar patterns of acceleration, it can lead
to a biased estimation of energy expenditure [26,27]. For example, the energy expenditure
of climbing stairs is nearly twice that of walking on a flat surface, although both activities
produce similar patterns of acceleration [28]. Therefore, it is more important to recognize
the specific type of performed activity rather than its duration or intensity to quantify PA.
Since the classification of a PA type enables more precise estimation of energy expenditure
and provides more informative human behavioral data, wearable PA recognition can be
applied to various fields, including healthcare and human–machine interfaces [29–31].

In recent decades, various machine learning (ML) methods including deep learning
(DL) techniques, which can learn the patterns of linear or nonlinear features extracted from
the raw accelerometer data, have been adopted for the classification of human behavior.
Most studies have utilized various ML and DL methods to classify six different types of
PA, including walking on level ground, walking upstairs, walking downstairs, sitting,
standing, and lying, using an open database presented by the UCI machine learning
repository [32–34]. In the subject-specific paradigm, where an independent classifier is
trained and evaluated within each subject, ML classifiers such as k-nearest neighbors (k-
NN), multilayer perceptron (MLP), and random forest exhibited great performance [35–37].
In regard to the PA classification, the performance of the subject-specific paradigm was
better than that of the group-level paradigm, which used the model pretrained with data
from other subjects, due to the different sensor locations and behavioral patterns of each
subject [38–40]. In the group-level paradigms, DL approaches including convolutional
neural networks (CNN) resulted in high PA classification accuracy [41–43]. For example,
Ronao and Cho achieved 94.79% performance for the classification of six PAs using a CNN
in the UCI dataset [41]. Ignatov also reported that the CNN outperformed RF and k-NN in
the UCI and WISDM datasets [42]. The author also demonstrated that the CNN approach
led to successful classification in cross-dataset evaluation. Hassan et al. proposed a deep
belief network (DBN)-based PA classifier that automatically extracts features from raw
sensor data to classify 12 different exercises with 97.5% accuracy [43]. Although these
studies demonstrate the enhanced performance of DL-based classifiers compared with
that of standard ML-based models, some studies reported that the ML approach with a
well-defined feature set could outperform DL approaches when the resource, such as a
hardware specification or the amount of the dataset, is limited. For instance, Montoye et al.
proposed that RF outperformed other ML models, including neural networks, in classifying
21 PAs [44].

Although many studies demonstrated that the ML and DL techniques were useful for
predicting a wide range of daily living activities, most studies have utilized the accelerom-
eter data collected in the laboratory environment where participants were instructed to
perform certain activities. Therefore, in these controlled settings, the length of the data for
each PA could be balanced. However, in a free-living situation, people spend most of their
time indulging in a few activities such as sedentary or light behavior, including walking
on level ground. On the other hand, people relatively do not engage much in moderate
or vigorous PAs, including ascending stairs or running. Since the ML and DL approaches
require a large amount of data for each class, the data imbalance between each PA could
pose a challenge in building robust ML classifiers. In general, when using an imbalanced
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dataset, ML models are prone to making biased predictions toward the majority class. In
many studies on PA classification, the recognition rate of the minority class was much
lower than that of the majority class despite high overall accuracy [38,39,45,46].

In this regard, this study aims to comprehensively examine the influence of the data
imbalance between PA classes by adopting multiple ML and DL methods after performing
data balancing techniques. Undersampling and oversampling methods are often used
in ML and DL studies to adjust the class distribution. Undersampling methods reduce
the size of the majority class by randomly discarding samples in the majority class. The
oversampling method is more frequently adopted in ML and DL studies. Random over-
sampling, in which random samples in the minority class are simply duplicated, can induce
an overfitting problem. Therefore, the synthetic oversampling techniques, which generate
novel samples that have similar statistical properties to the samples in the minority class,
are generally more preferred.

This study utilized an open database presented in PhysioNet [47], which contains
labeled raw accelerometer data during walking on level ground, ascending and descending
stairs, and driving. Since there was a huge variation between the durations of each PA
(walking on level ground: 262.80 min (26.88%), ascending stairs: 46.65 min (4.67%), descend-
ing stairs: 44.59 min (4.56%), and driving: 623.58 min (63.79%)), this dataset was considered
adequate to examine the influence of the data imbalance problem. In the original study
that provided this dataset, the decision trees (DTs) were trained with spectral features to
identify different types of walking [39]. Despite the high performance in the subject-specific
paradigm, relatively poor performance was shown in the group-level paradigm due to
the poor recognition rate of the minority class. While the classification of walking and
sedentary behaviors such as driving exhibited relatively high performance, that of different
walking types was more challenging due to similar PA patterns [22,39]. In other studies,
the recognition rate of walking upstairs and walking downstairs was much lower than that
of other PAs even with the balanced distribution of PAs [41,45,46].

We aim to investigate the influence of multiple classification techniques fused with
data sampling techniques on the imbalanced PA dataset. We propose a feature set consisting
of temporal, spectral, and nonlinear features, which have been widely used not only in
PA classification but also in the analysis of time series data such as biosignals. We also
propose that an ensemble learning method that makes predictions with multiple decision
trees (DTs) efficiently captures multi-domain features related to the PA classification and is
robust to small datasets. The main contribution of this study can be described as follows:

1. Undersampling and oversampling with ensemble methods could resolve the class
imbalance between different PA types;

2. When using ensemble methods with well-defined features, undersampling was more
efficient than the oversampling approach, since it requires a low computational cost
while maintaining high classification performance;

3. Ensemble methods based on decision trees (DTs) successfully made decision criteria
based on the multi-domain features and the locations of the accelerometers.

The remainder of this paper is organized as follows. Section 2 contains the data de-
scription and proposed methods, including feature extraction, data sampling, ensemble
learning, and comparative ML models. Section 3 describes the classification performance
based on data sampling techniques and ML models, along with the contribution of each fea-
ture set to the PA classification. Finally, in Sections 4 and 5, the main findings, implications
of this study, and the conclusion are described.

2. Materials and Methods
2.1. Data Description

For this study, the open database of raw accelerometry data of 32 healthy subjects
(13 males and 19 females) was adopted from PhysioNet [46]. In the database, three-axial
acceleration was measured from the left wrist, left hip, left ankle, and right ankle. All
subjects but one, who identified as ambidextrous, were right-handed. Their average age,
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height, and weight were 39.03 ± 8.84 years (23–54), 68.31 ± 4.30 inches (58–76), and
169.69 ± 49.61 lbs (100–310), respectively. Throughout the experiment conducted at Indiana
University, all subjects wore ActiGraph GT3X+ accelerometer devices (Actigraph, Pensacola,
FL, USA) for data collection while performing various PAs. The four devices were attached
on the outside of both ankles, the top side of the left wrist similar to a regular watch, and
the belt of the subject on the left hip. The sampling rate was 100 Hz for all devices, and all
devices were synchronized. Desynchronization between the devices existed, but no serious
desynchronization was observed.

The experiment started with a walking session on a trail of 0.66 miles, where the
subjects were asked to walk on level ground, descend stairs, and ascend stairs for a total
of 9–13.5 min. Walking on level ground was repeated five times, while descending and
ascending stairs were repeated six times. In the following driving session, the subjects drove
on a city road and highway trails of 12.8 miles for approximately 18–30 min. Throughout
the experiment, the subjects were instructed to walk at their usual pace and to drive along a
predetermined route to simulate free-living activities. To identify the exact time points, the
subjects were told to clap three times at the start and end of each activity, which induced
a corresponding amplitude change in the accelerometry data. The periods of clapping
and non-study activity, which refers to a few seconds before and after each activity, were
excluded from this study because they were only used to mark the time points of each trial.

Classification results were provided every 5 s because the features were extracted from
a 5-s window. Epochs of transition where two different PAs overlapped were excluded from
the analysis. As a result, a total of 55,680 epochs for 4 PAs were collected from 32 subjects.
The ratio of each PA was 66.72% for driving, 26.88% for walking on level ground, 3.31% for
ascending stairs, and 3.09% for descending stairs. The data distribution for each PA class is
shown in Figure 1.

Figure 1. A total number of 5-s epochs in the PA dataset after excluding epochs of transition where
two different PAs overlap.

In this study, a group-level paradigm was adopted to classify four PAs, including
walking on level ground, ascending stairs, descending stairs, and driving. The accelerome-
ter data recorded from three different body parts were independently analyzed to see if
the place of sensor attachment influenced the PA classification. Accelerometer data were
randomly divided into training and test data at a 7:1 ratio. Thus, among 32 subjects, 28
were assigned to the training set, while the remaining subjects were assigned to the test set.
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This process was repeated eight times by permuting the training and test data set. Thus
eightfold cross-validation was used for this study.

In training, the imbalance of data between classes can adversely affect the ML training
process. In this dataset, the average amount of data for driving was more than twice
that for walking on level ground and 20 times that for descending or ascending stairs
(Figure 1). To avoid the class imbalance problem, two training methods were adopted to
balance the data: undersampling and oversampling (Figure 2). In undersampling, random
epochs from the majority class were deleted without making changes to the data in the
minority class. Random selection of the deleted epochs was repeated 10 times, and the
performance was averaged for evaluation. In oversampling, randomly selected epochs in
the minority class were replicated to balance the majority class. To reduce the overfitting
problem, synthetic minority oversampling techniques (SMOTE), which create novel data
based on the k-nearest neighbors of the minority class, were utilized instead of simple
duplication [48]. These undersampling and oversampling procedures were only applied to
the training and not the test dataset to avoid bias in ML.

Figure 2. Undersampling and oversampling in the training set. In undersampling, the data belonging
to the majority class were randomly partitioned to have the same length as the minority class. In
oversampling, the data in the minority class were permuted and replicated to have the same length
as those of the majority class.

2.2. Feature Extraction for the Machine Learning Approach

To identify the relevant features from the raw accelerometer data, three types of feature
domains, which are frequently used for signal processing, were measured in this study:
the temporal, spectral, and nonlinear domain features. All features were extracted from
a 5-s window with a 4-s overlap so that the PA was classified every second (Figure 3).
To reduce the subject variability of each feature in a cross-patient paradigm, all extracted
features were normalized to have zero means and one standard deviation based on z-
score standardization. Eight ML methods, including (1) RF, (2) AdaBoost, (3) DT, (4)
k-NN, (5) linear discriminant analysis (LDA), (6) quadratic discriminant analysis (QDA), (7)
support vector machine (SVM), and (8) MLP, were evaluated using the extracted features.
In addition, to compare the influence of the feature extraction method, four types of DL
methods including (1) gated recurrent unit (GRU), (2) bidirectional long short-term memory
(BiLSTM), and (3) a one-dimensional CNN (1D CNN) were utilized to train the raw data.
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Figure 3. A 5-s window with a 4-s overlap was used to extract temporal, spectral, and nonlinear fea-
tures, respectively. These features were used to construct 10 machine learning methods, including the
ensemble approach. Four deep learning methods utilized raw data itself without feature extraction.

2.2.1. Temporal Features

In the temporal domain, eight features corresponding to the magnitude and statistical
measures were calculated from each axis of the raw accelerometer data. The peak-to-peak
amplitude, which subtracts the minimum value in the epoch from the maximum value,
was used to estimate the intensity of the x, y, and z axes [36,44]. The root mean square
(RMS) was also used to evaluate the absolute intensity instead of the mean value itself.
The second, third, and fourth moments that represent the statistics of the data were also
calculated in each epoch [49,50]. The second moment refers to the variance, which measures
the variability of data distribution. In this study, a standard deviation for each epoch was
used as a feature. The third and fourth moments denote the skewness and kurtosis that
represent the properties of the data distribution. Two Hjorth parameters, namely statistical
time domain measures known for their low computational costs, were used to measure
the degree of complexity in the accelerometer data [51]. Hjorth mobility represents the
mean frequency of the power spectrum. The Hjorth complexity estimates the change in
frequency while mobility is proportional to the standard deviation of the power spectrum.
Furthermore, the number of zero-crossing, which counts the number of intercepts with
zero value in each epoch, was used to estimate the fundamental frequency [36]. The details
of each feature are described in Table 1.

2.2.2. Spectral Features

A short-time Fourier transform (STFT) was adopted to extract the spectral domain
features. In the STFT, time series data were converted into a time–frequency domain using
a fast Fourier transform (FFT) algorithm with a 5-s window and 1-s sliding window. The
Hamming window was applied to minimize the side lobe. Then, 12 spectral features were
extracted using power spectral densities (PSDs) corresponding to the 0–15-Hz frequency
band obtained from the STFT (Table 2) [36,44,49,50]. Since PSDs were obtained for each 5-s
window, the frequency resolution was 0.2 Hz, and thus 75 PSDs were selected as candidates
for the spectral features. First, the total energy was obtained by summing all PSDs and
entropy, which represents the randomness of PSDs [49]. Then, three peak powers with the
largest power and the three dominant frequencies that corresponded to those peak powers
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were selected among the 75 PSDs. The dominant frequencies were sorted in ascending
order. Furthermore, since several studies have reported that the frequency of the resting
state and walking behavior each lie within 0.5 Hz and 1.5–2.5 Hz, the dominant frequency
smaller than 2.5 Hz and their corresponding peak powers were used for this study [44,50].
The energy and entropy of PSDs smaller than 2.5 Hz were also included in the spectral
feature set.

Table 1. Temporal features extracted from the x, y, and z axes of the accelerometer data. The variables
xi, n, and µ each refer to the accelerometer data along the temporal axis, the total number of epoched
data, and the average of each epoch, respectively. The symbol ∆ denotes the first derivative, and the
function sgn indicates the signum function that returns 0 if the input is equal to 0, 1 if the input is
positive, and −1 if the input is negative.

Feature Equation

Peak-to-Peak (PTP) PTP = max(xi)−min(xi)

Root Mean Square (RMS) RMS =

√
1
n

n
∑

i=1
xi

2

Standard Deviation (σ) σ =

√
1
n

n
∑

i=1
(xi − µ)2

Skewness skewness = 1
n×σ3

n
∑

i=1
(xi − µ)3

Kurtosis kurtosis = 1
n×σ4

n
∑

i=1
(xi − µ)4

Hjorth Mobility Mobility = 1
σ

√
1
n

n
∑

i=1
(∆xi − µd)

2

Hjorth Complexity Complexity =
Mobility(∆xi)
Mobility(xi)

Zero-Crossing (ZC) ZC = 1
2

n
∑

i=1
|sgn(xi)− sgn(xi−1)|

Table 2. Spectral features extracted from the x, y, and z axes of accelerometer data. Each feature was
extracted from two sets of the PSDs, X f was obtained using STFT: one in the frequency range of
0–15 Hz and another in the frequency range of 0–1.5 Hz. The function argmax indicates the index of
the maximum value in the epoch.

Name Equation Number of Features
<15 Hz <2.5 Hz

Total Energy (TE) Energy =
k
∑

f=1

∣∣∣X f

∣∣∣2 1 1

Spectral Entropy (SpecEn) SpecEn = −
k
∑

f=1

∣∣∣X f

∣∣∣2log2

∣∣∣X f

∣∣∣2 1 1

Peak Power (PP) PP = max
(∣∣∣X f

∣∣∣2) 3 1

Dominant Frequency (DF) DF = argmax
(∣∣∣X f

∣∣∣2) 3 1

2.2.3. Nonlinear Features

Nonlinear features were utilized to examine the inherent nonlinearity embedded in the
accelerometer signals. The time delay parameter τ and embedding dimension d were used
to reconstruct the time series data in the phase space [52]. The time delay parameter that
represents the time lag to reconstruct an attractor in the phase space can be estimated using
auto mutual information (AMI). Since mutual information (MI) quantifies the amount of
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information shared between two variables, AMI measures the autocorrelation between the
original time series xi and the delayed time series xi+τ . The following equation describes
the AMI function:

AMI(xi, xi+τ) = ∑xi , xi+τ
pxx(x, x + τ)× log2

(
pxx(x, x + τ)

px(xi), px(xi + τ)

)
, (1)

where px(xi) and px(xi + τ) are the probability functions of the original signal xi and
time-delayed signal xi+τ , respectively, while pxx(x, x + τ) indicates the joint probability of
two signals. Then, the optimal time delay τ can be determined with an index of the first
local minimum of the AMI. The embedding dimension, which is defined as the minimal
number of data points to reconstruct signals in the phase space, can be calculated with the
false nearest neighbor (FNN). The FNN determines the minimum embedding dimension
by observing the changes in the nearby neighbors as the embedding dimension is increased
from m to m + 1. If two points with a time delay τ are separated in a certain dimension, then
it means the attractors in the phase space are not preserved. As a result, the first time index
at a point where the FNN rate dropped to 0 and did not decrease in the higher dimension
was determined as the embedding dimension. The FNN utilizes the equations below:

[
Rm+1

2(i, r)− Rm
2(i, r)

Rm2(i, r)

]1/2

=

∣∣∣xi+mτ − x(r)i+mτ

∣∣∣
Rm2(i, r)

> Rtol , (2)

Rm
2(i, r) = ∑m−1

k=0 [x(i + kτ)− x(r)(i + kτ)]
2
, (3)

where Rm
2(i, r) is the Euclidean distance in the m-dimensional space between xi and the rth

nearest neighbor xi
(r) and Rtol is the predefined tolerance threshold. Then, the time delay

and the embedding dimension were used to calculate the Lyapunov exponent and sample
entropy. The Lyapunov exponent λ quantifies the stability of the signals by estimating the
divergence rate of two trajectories that were initially close to each other as in the following
equation [53]:

λ = lim
i→∞

1
m ∑m

i=1 ln
∣∣∣∣ ∆(xi − xi+τ)

∆(x1 − xi+τ)

∣∣∣∣, (4)

The largest Lyapunov exponent is commonly used to determine the predictability of
signals, and its positive, negative, and zero values refer to chaotic, steady, and periodic
signals, respectively. The sample entropy (SampEn), a variant of the approximate entropy
(ApEn), quantifies the complexity of the time series data [54]. Unlike ApEn, which finds the
repetitive patterns of signals, SampEn eliminates self-matches, which makes it independent
of the data length [55]. SampEn can be defined as follows:

SampEn = −log(
∑N−m

i−1 number o f xi such that d
[
xi

m+1, xj
m+1] < R

∑N−m
i−1 number o f xi such that d

[
xi

m, xj
m
]
< R

), (5)

d
[
xi

m, xj
m] = maxk=1,2,...,m

(∣∣∣xi+k−1 − xj+k−1

∣∣∣), (6)

where the function d
[
xi

m, xj
m] denotes the Chebyshev distance between two points that

are not equivalent (i 6= j). A larger SampEn means that the signal is more unpredictable
and irregular. Finally, the Hurst exponent H measures the long-term memory of time series
data [56]. It estimates the self-similarity of signals by fitting the power law as follows:

CnH ∼= E
[

1
σ

PTP(∑n
i=1(xi − µ))

]
, (7)

where E indicates the expected value and C is constant. The function PTP denotes the
peak-to-peak function that subtracts the minimum value from the maximum value, as
described in Table 1. The value H being in the range of 0.5–1 indicates that the signals are
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persistently auto-correlated, while an H value of 0.5 implies that the signals are brown
noise, meaning that they are completely uncorrelated.

2.3. Ensemble Learning

Ensemble learning, which employs multiple models to make predictions on given
data, aims to compensate for the potential problems that could arise from using a single
classifier. Previous studies have shown that ensemble learning can mitigate the class
imbalance problem which is common in machine learning, where classifiers can easily
develop a bias toward the majority class [57]. The use of multiple learners in ensemble
learning can also lower the risk of getting stuck in a local minimum, which is common when
using an individual learner. The basic assumption is that the final output generated by
ensemble learning leads to better prediction than that of the individual classifiers. Ensemble
learning can be implemented in a sequential or parallel process. RF is one of the ensemble
techniques, first introduced by Breiman in 2001, which uses bootstrap aggregation (bagging)
to construct ensembles to deal with classification and regression problems [58]. It utilizes
ensemble learning in a parallel process in which predictions made from multiple classifiers,
called decision trees (DTs), are averaged to yield the final output (Figure 4). Each training
data are randomly drawn from the original data set so that input variation is given to each
learner. Each of the DTs starts with a root node, where a feature is used as a threshold to
split the data into two branches, giving it a tree-like shape [59]. The same step is repeated
using different features until the leaf node of the tree is reached, where a prediction of the
class label is made. While the conventional DT is prone to overfitting the training data, RF
is less likely to overfit due to its ensemble design. In RF, the data are randomly split into
training and validation sets. For each set, decision trees are generated through bagging,
which is a procedure of repeatedly drawing random samples from the dataset. Then, the
final class label is determined by employing a majority vote, which means that the class
label estimated by most of the trees is given as the final prediction. This majority vote
system helps reduce the variance in predictions. A previous study has also shown that
RF performed the best among a total of 11 classification algorithms, even with noisy and
imbalanced data [60].

Figure 4. The structure of random forest (RF). RF is one of the bagging (bootstrap aggregating)
methods that adopts bootstrapping and aggregation. In bootstrapping, RF generates multiple
decision trees (DTs) using random subsets with the replacement of training data. In aggregation, RF
labels the test data based on the class elected by majority voting from multiple trees.

Boosting is another ensemble learning method, which sequentially generates multiple
models based on the errors of the previous model (Figure 5). One of the most popular
boosting algorithms is AdaBoost, where each decision tree in the ensemble is assigned a
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weighted error rate based on the previous model, which is used to determine the decision
power of each tree [61]. Unlike RF, where the learners are independently trained with
random subsamples, AdaBoost trains individual learners with the entire data in a serial
manner by increasing the error weights of misclassified instances. Each learner is also
assigned another set of learner weights which is inversely correlated with the assigned
error weights. Thus, the larger the weighted error rate assigned to a tree, the less influence
the tree has in majority voting for the final prediction. In this study, after testing for the
optimal parameters, the number of decision trees was set to 100 for both RF and AdaBoost.

Figure 5. The structure of adaptive boosting (AdaBoost). AdaBoost generates multiple weak learners.
Unlike RF, previous decision trees (DTs) affect the next DT by using the classification errors to weigh
the misclassified data. The final decision is performed with weighted voting from multiple trees
based on the error of each tree.

2.4. Evaluation Metrics

In this study, the influences of the undersampling and oversampling methods for
balancing classes were examined based on the classification performance of ensemble
learning, including RF and AdaBoost. Furthermore, the ensemble methods were compared
to other ML models that are frequently exploited for various classification tasks. In most
ML and DL studies, classification performance is assessed using the sensitivity, specificity,
precision, F1-score, and accuracy. Sensitivity, which is also known as recall, measures
the ratio between true positives (TP) and actual positives (TP + FN, where FN refers to
false negatives). Therefore, it evaluates the performance of the model based on its ability
to correctly recognize the target. Specificity measures the percentage of true negatives
(TNs) out of the actual non-target cases (TN + FP), where FP refers to false positives),
indicating the model’s ability to correctly classify non-target classes. Specificity is inversely
proportional to sensitivity in that it increases as the sensitivity decreases and vice versa.
Another evaluation metric is precision, which refers to the fraction of the actual target
class (TP) among those classified as the target class (TP + FP). Next is the F1-score, which
combines precision and recall by taking their harmonic mean, which is also frequently
used for evaluating ML classifiers. Finally, there is the accuracy, the most commonly used
evaluation metric, which calculates the ratio of correctly predicted cases (TP + TN) to the
total predictions (TP + TN + FP + FN).

However, when evaluating the performance for imbalanced data, F1-score and accu-
racy can be unreliable, since they do not take the data distribution into account. Therefore,
this study mainly adopted balanced accuracy, which can be defined as the average of the
recall obtained from each class, for evaluating the multi-class ML classifiers. To compare
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the classification performance depending on the undersampling or oversampling approach
or the classification performance among multiple ML classifiers, the Kruskal–Wallis test
was utilized for each evaluation metric. Furthermore, multiple comparison problems were
corrected using the Tukey–Kramer method.

3. Results
3.1. Classification Performance Depending on Undersampling or Oversampling

The balanced accuracies of RF and AdaBoost when using the original dataset with
imbalanced classes were compared with those after applying the undersampling approach
using random sampling and the oversampling approach using SMOTE methods (Figure 2).
When using a wrist-worn sensor, the performances of both RF and AdaBoost in the clas-
sification of four PAs, including walking on level ground, descending stairs, ascending
stairs, and driving, were highly affected (Figure 6). When using RF, the balanced accuracies
in undersampling and oversampling were 80.45% and 79.36%, respectively, which were
significantly larger than 70.55% with a non-balanced dataset (Figure 6a). When using Ad-
aBoost, significant improvement after undersampling and oversampling was also observed
(Figure 6c). Since deterioration of the classification performance with an imbalanced dataset
was mainly observed in the minority classes, we examined the recalls (sensitivities) for
ascending and descending stairs. The average recall of these two PAs in RF was 43.18%
without the undersampling or oversampling methods. It significantly increased to 72.95%
with the undersampling method and 69.14% with the SMOTE methods (Figure 6b). The
average recalls were also significantly higher with undersampling (71.81%) and SMOTEs
(70.34%) compared with that with unbalanced data (42.66%) (Figure 6d).

Figure 6. Classification performance of RF and AdaBoost depending on the undersampling and
oversampling approach. (a) Balanced accuracies of RF. (b) Average recall of RF for two minority
classes: ascending stairs and descending stairs. (c) Balanced accuracies of AdaBoost. (d) Average
recall of AdaBoost for two minority classes. The asterisk (*) denotes p < 0.05 after post hoc analysis.

When using a hip-worn sensor, balanced accuracies were also enhanced with the under-
sampling and oversampling methods, but no significant difference was found (Figure 6a,c).
The maximum accuracy was found in RF with undersampling, whose balanced accuracy
was 80.45%. This result was approximately 10% larger than the accuracy with unbalanced
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data. The average recalls of the minority classes (i.e., ascending stairs and descending stairs)
increased by approximately 30% when undersampling methods were applied (Figure 6b,d).
In particular, the average recall with undersampling was significantly larger than that
without balancing techniques when using AdaBoost (Figure 6d).

However, with an ankle-worn sensor whose classification performance between four
activities was larger than 95% in most cases, the undersampling and oversampling methods
did not affect classification performance significantly. Although the balanced accuracy
in AdaBoost was the highest at 97.70% using SMOTE methods, it was not significantly
larger than that with unbalanced data or with the undersampling method, which resulted
in 97.47% and 97.48% accuracy, respectively (Figure 6b). The balanced accuracies of RF,
whose best accuracy was 96.90%, also exhibited similar tendencies (Figure 6a).

To compare the computational costs of undersampling and oversampling, the time
spent to train the two ensemble models was recorded for each eight times. The function
fitcensemble was used to train RF and AdaBoost in MATLAB version 2021b. The number
of learning cycles, which denotes the number of trees, was fixed at 100. The detailed
specifications of the PC used for training are as follows: Microsoft Windows 10, AMD
Ryzen 7 3800XT 8-core processor, 32 GB RAM, and an NVIDIA GeForce RTX 3060 Ti
GPU. The number of epochs oversampled with the SMOTE method (138,310 on average)
was approximately 22.3 times that of the random undersampling (6016.5 on average)
and 2.8 times that of the non-balanced data (48,720 on average). When RF was utilized,
the average computational cost of oversampling was 66.97 s, which was approximately
27.2 times that of undersampling, which was 2.46 s (Figure 7). As for AdaBoost, the ratio
of computational costs between oversampling and undersampling was approximately
18.51. Furthermore, computational cost can be reduced in the undersampling approach
compared with the originally unbalanced data. The computational cost of AdaBoost was
approximately twice that of RF in the oversampling approach and three times that of RF in
the undersampling approach.

Figure 7. The computational cost of RF and AdaBoost when using the undersampling and oversam-
pling approaches. The asterisk (*) denotes p < 0.05 after post hoc analysis.

3.2. Comparison of ML and DL Classifiers

Ensemble methods including RF and AdaBoost were compared to other ML models
that are frequently exploited for various classification tasks. Six ML classifiers, including DT,
k-NN, LDA, QDA, SVM, and MLP, utilized the same feature set used in RF and AdaBoost.
For the k-NN algorithm, through optimization of the model, k was set to three. For the
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SVM, the linear kernel was selected instead of the Gaussian and the polynomial kernel
through the optimization process. MLP only adopted a single layer because it utilizes the
extracted feature set. On the other hand, three DL classifiers including GRU, BiLSTM, and
a 1D CNN utilized the raw accelerometer data as input data. Through hyperparameter
optimization, all three DL classifiers had two layers, while the number of filters and kernel
size were 32 and 15 for the CNN, respectively, and the number of hidden units was 100 for
GRU and BiLSTM. The maximum number of epochs was 100 for oversampling and 300
for undersampling.

Most feature-based ML classifiers exhibited the best performance with the ankle
accelerometer (Figure 8). When using an ankle-worn sensor, as described in Section 3.2., the
balanced accuracies in all ML classifiers except DT and k-NN were larger than 90% with or
without data balancing techniques. With the undersampling approach, the performance
of the DL classifiers, including BiLSTM, GRU, and the 1D CNN, significantly decreased
compared with that of the feature-based ML classifiers, including RF, AdaBoost, LDA, QDA,
and SVM (Figure 8a). With the oversampling approach, the classification performance of
BiLSTM and GRU was similar to that of LDA, RF, and AdaBoost (Figure 8b). Although
the classification performance of the wrist and hip accelerometers was relatively lower
than that of the ankle accelerometer, several ML classifiers achieved approximately 80%
balanced accuracy. When a wrist sensor was utilized, RF resulted in the largest balanced
accuracy of 80.45% with an undersampling approach (Figure 8a). Similar to the results
of the ankle-worn sensor, those of the wrist-worn sensor showed that RF outperformed
three DL classifiers with an undersampling approach. With the oversampling approach,
the performance of DT, k-NN, QDA, and the 1D CNN was significantly lower than that
of RF. When a hip-worn sensor was utilized, LDA exhibited the best balance accuracy of
84.43% with the oversampling approach. However, it was not significantly different from
the results of other ML models such as RF (82.84%) and AdaBoost (81.43%). When the
undersampling approach was adopted, LDA also exhibited the best accuracy of 84.27%,
while RF and AdaBoost exhibited 83.34% and 83.28% accuracy, respectively.

Figure 8. Balanced accuracies of eight feature-based ML classifiers and three DL classifiers in the
(a) undersampling approach and (b) oversampling approach. The cross mark (+) denotes the classifier
that exhibited the best performance. The asterisk (*) denotes the classifiers which were significantly
different (p < 0.05) from the best classifier after post hoc analysis.
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3.3. Feature Importance Depending on Sensor Location

In this study, the PA classification was performed using three different sensor locations:
the ankle, wrist, and hip. Furthermore, we extracted various types of features from the
temporal, spectral, and nonlinear domains for the x, y, and z axes, which are widely used
in PA classification and time series analysis. Because the four PAs included walking types
and sedentary behaviors, which are highly associated with the ankle motion, classification
performance was the best with the ankle-worn sensors. Meanwhile, the hip- and wrist-
worn sensors exhibited relatively lower performance compared with the ankle-worn sensor
because the mechanisms of the hip and wrist during walking activities were different from
that of the ankle. To investigate the difference depending on sensor location and the types
of features, we examined the features that highly affected the classification performance of
each classifier. Since both RF and AdaBoost adopt DT, which uses multiple binary decision
criteria (leaf nodes) to split data into two subsets (branches), the feature importance could be
estimated with the criterion. The leaves and branches of each DT are grown by minimizing
the Gini impurity. The Gini impurity of a node Nk is defined as follows:

Gini(Nk) = ∑i pi(1− pi) = 1−∑i pi
2, (8)

where pi is the probability of the samples belonging to class i. If all samples belong to only
one class, the Gini impurity in this node is zero; otherwise, it has a positive value. Then,
the feature importance I can be obtained by examining the difference in the Gini impurity
between the parent node and the two child nodes as follows:

I(Nk) =
(pk × Gini(Nk)− pkl × Gini(Nkl)− pkr × Gini(Nkr))

Total Number o f Nodes
, (9)

where pk, pkl , and pkr refer to the probability at the parent node Nk and two child nodes
Nkl and Nkr.

In this study, the average importance level of each feature was evaluated from the RF
model with an undersampling approach, which was accurate and fast. In general, the y
axis of the accelerometer data played an important role when the wrist-worn or ankle-worn
sensor was adopted (Figure 9). In the classification using the wrist accelerometer, the
standard deviation (σ) and Hurst exponent of the y axis exhibited the largest importance
scores (Figure 9a). The importance scores of the spectral features on the y axis such as the
peak power (PP) and total energy (TE) were larger than those on other axes. In particular,
the TE and spectral entropy (SpecEn) in the range of 0–2.5 Hz exhibited large scores on the
y axis. In the classification using ankle accelerometer data, spectral features including the
PPs, TE, and SpecEn along with the y axis showed the largest importance scores (Figure 9b).
Similar to the results from the wrist-worn sensors, the TE and SpecEn in the range of
0–2.5 Hz along the y axis played important roles in PA classification. Unlike the wrist and
ankle accelerometers, where the features along the y axis were significant, when the hip
accelerometer was utilized, those along the x and z axes were also useful for classification
(Figure 9c). Although the spectral features of the y axis, particularly in the range of 0–2.5 Hz,
were still useful, the features of the x and z axis also exhibited similar importance scores. In
particular, the Hjorth parameters of the x axis resulted in a large importance score.
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Figure 9. Feature importance of RF binary-class classification depending on the sensor location:
(a) wrist-worn sensor, (b) hip-worn sensor, and (c) ankle-worn sensor. The indices in the horizontal
line indicate (1) RMS, (2) σ, (3) skewness, (4) kurtosis, (5) the number of ZC, (6) PTP, (7) Hjorth
mobility, (8) Hjorth complexity, (9–11) three PPs, (12–14) three DFs, (15) TE, (16) SpecEn, (17–20) PP,
DF, TE, and SpecEn in the range of 0–2.5 Hz, (21) Hurst exponent, (22) AMI, (23) FNN, (24) Lyapunov
exponent, and (25) SampEn.

4. Discussion

This study aimed to distinguish four PAs using raw accelerometer data collected from
three different body parts: the wrist, hip, and ankle. Two ensemble learning methods of
RF and AdaBoost were compared with other comparative ML and DL models in terms of
differentiating sedentary behavior (driving) and three types of walking modalities (walking
on level ground, ascending stairs, and descending stairs). Since the previous study on this
dataset reported lower performance in the group-level classification compared with that in
the subject-specific paradigm, this study aimed to improve the classification performance
in the group-level paradigm [39]. Furthermore, to overcome the data imbalance problem
in different PA types which deteriorates the classification performance, undersampling
and oversampling methods were adopted in this study (Figure 2). Feature-based ML
classifiers including RF and AdaBoost exhibited enhanced performance by solving the
data imbalance problem using undersampling and oversampling methods (Figure 6). In
the previous study that utilized the same dataset with DT, the sensitivity of the minority
class was poor despite the high sensitivity of the majority class [39]. They reported that
the sensitivities of ascending stairs and descending stairs in the group-level paradigm
were approximately 40–55% when using wrist or hip sensors. The sensitivities of these
minority classes ranged between 60% and 70% even with the data from the ankle-worn
sensor. In this study, we demonstrated that the balanced accuracy and average recall
of the minority classes were much higher than in the previous study. When using the
ankle accelerometer, both the balanced accuracy and average recall were higher than 90%.
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When using the wrist or hip accelerometer, the balanced accuracy was approximately
80%, and the average recall of the minority classes was larger than 70%. Alharbi et al.
also suggested that oversampling methods, including SMOTE and its variations, could
enhance the classification of the minority class with different datasets [62]. For example, the
classification accuracy of ascending stairs, which accounts for 6% of the PAMAP2 dataset,
was 45.9% without oversampling but was enhanced to 60% with oversampling. However,
they did not investigate the effect of undersampling on the classification performance.

The improvement in classification was not only due to the data balancing techniques
but also the improved classifiers and the abundance of features. In Figure 8, among the
feature-based ML classifiers, DT exhibited the lowest classification performance. While
single DT is vulnerable to overfitting, ensemble methods such as RF and AdaBoost that
utilize multiple trees are robust to noise and outliers. Although other ML models like
LDA outperformed the ensemble methods with hip-worn sensors, the ensemble methods
exhibited moderate performance regardless of the sensor locations while examining the
influence of each feature on the classification criteria. Unlike the previous study on the
same dataset, which extracted features from the vector magnitude that combined the three
axes, this study extracted 25 temporal, spectral, and nonlinear features, which were used in
PA classification as well as biosignal analysis along each of the three axes. Therefore, we
utilized 75 features to train each classifier. By examining the feature importance collected
from RF, we found that the features along the y axis were useful in classifying the walking
types and sedentary behaviors when using the ankle- or wrist-worn sensors. In particular,
the standard deviation and spectral features in the range of 0–2.5 Hz played important
roles. Unlike these two sensors, where the features along the y axis were significant, when
using the hip-worn sensor, the features along all three axes played important roles. This
could be due to the more complex movement of a hip joint compared with that of a wrist
or ankle during walking activities.

The features extracted from the ankle accelerometer data resulted in a higher classifi-
cation performance than those from the hip- and wrist-worn sensors (Figure 6). Therefore,
rather than hip- or wrist-worn sensors, ankle accelerometers which can be embedded in
shoes are more adequate for differentiating different walking activities. Nonetheless, PA
classification with hip- and wrist-worn sensors can also be conveniently measured, since the
former can be embedded in a smartphone which can be placed in a pants pocket, and the
latter can be embedded in a smartwatch. Since most PAs require arm and foot movement,
the combination of multiple wearable sensors will be useful for differentiating diverse
activities. For example, a study that utilized the WISDM dataset successfully classified
18 PAs, including walking types and household activities [34].

Although many studies reported that DL approaches were useful for the multi-class
classification of PAs, the durations of each PA were balanced in most datasets. Since DL
models require a substantial amount of data for each class, it is difficult to apply them
in a free-living situation, where data imbalance between PAs is common. In a free-living
situation, a larger portion of most people’s time is spent in sedentary behaviors like driving
or walking on level ground instead of ascending or descending stairs. In this study, the
performance of the DL models severely deteriorated with the undersampling approach.
On the other hand, when using ML classifiers, the classification performance did not differ
between the undersampling and oversampling methods. Since the computational cost was
dramatically reduced with the undersampling method, ML classifiers including RF and
AdaBoost, which were robust for the undersampled data, were more efficient if relevant
features could be extracted (Figure 7). With the oversampled data, the performance of
the DL models was enhanced to a level comparable to some ML models (Figure 6). If
sufficient data were collected from each PA, the DL models would have demonstrated
great performance in various classification tasks. For example, Ronald et al. achieved
95.09% accuracy in the classification of six activities using the Inception-ResNet-based deep
learning model (iSPLInception) even in the between-subject paradigm [63]. Despite the
great performance, DL models require a high computational cost. In this study, the average
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training time of the GRU model which only used two hidden layers was approximately
74 times that of RF.

In future studies, the classification performance of ensemble learning on the accelerom-
eter data from more diverse PAs can be compared with that of other ML and DL models.
Since this study classified only four PAs highly related to lower limb motion, the clas-
sification accuracy was almost perfect using the ankle-worn sensors. Meanwhile, the
performance declined when using hip- or wrist-worn sensors. Therefore, to obtain good
performance in the classification of more diverse PAs, the development or adoption of
novel features to capture the distinct patterns of each PA is necessary. To overcome the
limitation of this study, the DL approach, which can automatically capture distinct patterns
of the data, can be applied in future studies. Since the DL approaches in this study only
utilized two layers, a more advanced DL model with varying hyperparameters must be
tested for potential improvement in performance. Finally, the DL models can be improved
with sufficient accelerometer data for each PA as well as more advanced data augmentation
techniques, such as a generative adversarial network (GAN).

5. Conclusions

This study proposes that ensemble learning methods are more robust in small datasets
and subject variability compared with other various ML and DL models. In particular, the
use of an RF classifier with an undersampling approach which has a low computational
cost exhibited high classification performance even with the reduced data size. This can
be useful in PA classification, since data imbalance problems between classes can easily
appear in the free-living situation. Automatic PA classification will contribute to the
enhancement of users’ health by providing a more precise estimation of energy expenditure
and appropriate feedback on their PA status based on the classification outcome.
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