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Abstract: The objective of this study was to determine the presence and persistence of antimicrobial-
resistant enterobacteria and their clonal distribution in hospital wastewater. A descriptive cross-
sectional study was carried out in wastewater from two Mexico City tertiary level hospitals. In
February and March of 2020, eight wastewater samples were collected and 26 isolates of enterobacteria
were recovered, 19 (73.1%) isolates were identified as E. coli, 5 (19.2%) as Acinetobacter spp. and 2
(7.7%) as Enterobacter spp. Antimicrobial susceptibility profiles were performed using the VITEK
2® automated system and bacterial identification was performed by the Matrix-Assisted Laser
Desorption/Ionization-Time of Flight mass spectrometry (MALDI-TOF MS®). ESBL genes were
detected by polymerase chain reaction (PCR) and clonal distributions of isolates were determined
by pulsed-field gel electrophoresis (PFGE). E. coli susceptibility to different classes of antimicrobials
was analyzed and resistance was mainly detected as ESBLs and fluoroquinolones. One E. coli strain
was resistant to doripenem, ertapenem, imipenem and meropenem. The analysis by PCR showed
the presence of specific β-lactamases resistance genes (blaKPC, blaCTX-M). The PFGE separated the
E. coli isolates into 19 different patterns (A–R). PFGE results of Acinetobacter spp. showed the presence
of a majority clone A. Surveillance of antimicrobial resistance through hospital wastewater is an
important tool for early detection of clonal clusters of clinically important bacteria with potential
for dissemination.
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1. Introduction

Antimicrobial resistance (AMR) is a growing public health problem worldwide due to
the presence of multidrug-resistant (MDR) bacterial pathogens in healthcare settings [1].
The World Health Assembly issued the “Global Action Plan on Antimicrobial Resistance” to
address the AMR problem [2], urging countries to strengthen surveillance to direct targeted
research and interventions appropriated for each country or even institutions. In 2017,
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the World Health Organization published a list of pathogens of priority attention, among
which are carbapenem-resistant and extended-spectrum β-lactamase Enterobacteriaceae [3].

Antimicrobial-resistant enterobacteria producers of extended-spectrum β-lactamase
(ESBL) are the most frequently isolated microorganisms in healthcare units; these are
highlighted by the presence of several enzymes that can hydrolyze penicillin and inhibit
penicillin and broad-spectrum beta-lactam antibiotics, such as third- and fourth-generation
cephalosporins and monobactams. Different variants of ESBL (e.g., TEM, TLA, SHV, CTX-
M) have been described with worldwide dissemination, including Mexico [4,5]. Despite
the availability of a few antibiotics treatments for ESLB-producing enterobacteria, there is
emerging resistance, which limits patients’ therapeutic options and is associated with high
morbidity and mortality [6].

The presence of antimicrobial-resistant enterobacteria is frequently described in hos-
pital settings; however, their presence in other locations or settings, such as community,
agricultural, and environmental settings, demonstrates the ability of enterobacteria to
spread beyond healthcare settings [7,8]. Some studies carried out in hospitals in Mexico
report data on E. coli resistant to beta-lactams with alarming values (50%), as well as an
increase in resistance to carbapenems in Enterobacter spp. isolates [9,10]. In this regard,
hospital wastewater plays an essential role in the spread of antimicrobial-resistant bac-
teria, including Enterobacteriaceae, because wastewater carries and receives both bacteria
and resistance genes and antibiotic concentrations from healthcare institutions. Therefore,
investigating the presence of antimicrobial-resistant bacteria in hospital and/or community
wastewater through an epidemiological surveillance system makes it possible to monitor,
prevent, alert and control the spread of antibiotic resistant bacteria both in the hospital
environment and in the environment [11–13].

Some hospitals have wastewater treatment plants (WWTPs), and different authors
have described that WWTP treatments significantly reduce the abundance of bacteria.
The main objective of WWTPs is to remove organic matter and most environmental mi-
croorganisms [14]. Unfortunately, WWTPs do not eliminate all antibiotic-resistant bacteria
and their resistance genes, so the persistence of pathogenic bacterial after treatment is
feasible. This poses a paradigm for public health epidemiological surveillance based on
hospital wastewater as an alternative approach and rapid assessment due to the excretion
of AMR and partially metabolized antimicrobials in patients’ urine and feces through the
sewer [15,16].

In this paper we describe the antibiotic resistant and clonal profiles of Escherichia coli,
Acinetobacter spp. and Enterobacter spp. in raw and treated wastewater from two hospitals.

2. Results
2.1. Enterobacteriaceae Isolates

Eight wastewater samples were collected from the influent and affluent of the WWTPs
of two third-level attention hospitals in Mexico. A total of 26 enterobacteria were presump-
tively identified using selective chromo-agar and subsequently confirmed by MALDI-TOF
MS ® and VITEK 2®; 19 (73.1%) isolates were identified as E. coli, 5 (19.2%) as Acinetobacter
spp. and 2 (7.7%) as Enterobacter spp. Half of the isolates were isolated from raw wastewater
and the other half were from treated wastewater. In Hospital A, eight Escherichia coli and
one Entererobacter cloacae were isolated from the raw wastewater and three E. coli, one E.
bugandensis and five Acinetobacter spp. (A. haemolyticus and A. modestus) were isolated from
the treated wastewater. At Hospital B, four E. coli were isolated from the raw wastewater,
four E. coli were isolated from treated wastewater, and no isolates of other enterobacteria
were detected in this hospital.

2.2. Antimicrobial Susceptibility

Antimicrobial susceptibility results detected by VITEK 2® showed that 11 strains
were resistant to ampicillin-sulbactam (MIC90 of >32 mg/L); five strains were resistant to
piperacillin-tazobactam (MIC90 of >128 mg/L); and eight strains were resistant to cefoxitin,
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ceftazidime, ceftriaxone and cefepime (second-, third- and fourth-generation cephalosporin)
(MIC90 of >64 mg/L). In addition, one E. coli strain was resistant to doripenem, ertapenem,
imipenem and meropenem (MIC90 of ≤0.12, ≤0.5, ≤0.25 and ≤0.25 mg/L, respectively);
eleven strains were resistant to ciprofloxacin (MIC90 of >4 mg/L) and two strains were
resistant to gentamycin (MIC90 of <1 mg/L). Both Enterobacter spp. isolates were resistant to
cefoxitin (MIC90 of >64 mg/L). All Acinetobacter spp. isolates were susceptible to tygecyline
and colistin, and three isolates were amikacyn-resistant (MIC90 of >64 mg/L) (Table 1).

Table 1. Phenotyping properties of E. coli, Acinetobacter spp. and Enterobacter spp. isolated from the
hospital wastewater treatment plants (WTTP).

Hospital Wastewater Code Isolated Genes ESBL AMP TZP FOX CAZ CTX CEF DOR ERT IPM MEM AMK GEN CIP TIG COL

A

Raw

9C-1 E. coli -
9D-1 E. coli -
9D-2 E. coli -
10B-1 E. coli -
17C-2 E. coli -
17D-1 E. coli -
20-1 E. coli blaKPC

20-2 E. coli blaCTX-M +
17C-3 E. cloacae

Treated

21C-3 E. coli blaKPC,blaCTX-M +
21D-2 E. coli -
24-3 E. coli -

21A-2 A. haemolyticus
21D-3 A. modestus
23-2 A. haemolyticus
24-1 A. haemolyticus
24-2 A. haemolyticus

13D-3 E. bugandensis

B

Raw

1C-1 E. coli -
1D-1 E. coli -
1D-2 E. coli -
4-2 E. coli -

Treated

5C-1 E. coli +
5C-3 E. coli blaKPC,blaCTX-M -
5D-1 E. coli -
5D-2 E. coli -

Green: Susceptible; Red: Resistant; Yellow: Intermediate; White: Not performed/Not determined. Ampicillin-
sulbactam (AMP), piperacillin-tazobactam (TZP), cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone (CTX), cefepime
(CEF), doripenem (DOR), ertapenem (ERT), imipenem (IPM), meropenem (MEM), amikacin (AMK), gentamycin
(GEN), ciprofloxacin (CIP), tigecycline (TIG) and colistin (COL).

2.3. Detection of β-Lactamases Resistance Genes

The molecular analysis by PCR showed the presence of specific β-lactamases resistance
genes (blaKPC, blaCTX-M); it was observed that one E. coli strains carried blaKPC, and another
harbored blaCTX-M. Two isolates were also observed to harbor more than one gene (Table 1).

2.4. Molecular Typing by Pulsed-Field Gel Electrophoresis (PFGE)

The PFGE separated the E. coli isolates into 19 different patterns (A–R) without sub-
types; the patterns A–K were from Hospital A and the patterns L–R were from Hospital B.
The patterns A–H and L–Ñ were present in E. coli isolates from raw wastewater, whereas
the patterns I–K and O–R were isolates from treated wastewater. The PFGE separated
the Enterobacter spp. into two patterns (S and T): one pattern in raw wastewater and one
pattern in treated wastewater from Hospital A (Figure 1).
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PFGE results of Acinetobacter spp. isolates showed the presence of a majority clone
A (n = 4) and an unrelated pattern (B); these clones were detected in strains collected in
treated wastewater from Hospital A (Figure 2).
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Figure 2. Dendrogram based on pulsed-field gel electrophoresis (PFGE) patterns after digestion with
enzyme Apa I of Acinetobacter spp. isolates isolated from hospital wastewater.

The PFGE patterns analysis showed similarity percentages from 73% to 38% in E.
coli and Enterobacter spp. and similarity percentages that were from 100% to 28% in
Acinetobacter spp.

When PFGE patterns were compared with antimicrobial susceptibility profiles, it was
observed that E. coli strains with patterns F, G, I, K, L, M, O and P showed resistance to a
higher number of antimicrobials tested, whereas strains with patterns A, C, E, J, N, Ñ and
R were sensitive to all antimicrobials tested. The patterns T and S of Enterobater spp. had
the same resistance profile. On the other hand, in Acinetobacter spp. clone A, resistance to
amikacin was observed in three of the four strains tested, whereas clone B was sensitive to
all antimicrobials tested.

3. Discussion

The high frequency of E. coli strains in raw and treated hospital wastewater samples,
compared to other bacteria, would be expected in some extent, mainly because it is one
of the bacterial species that are part of the microbiota of the digestive tract of healthy and
sick humans and is widely distributed in the environment. However, its dissemination and
spread in hospital wastewater highlights the risk of contamination of aquatic environments
or bodies of water by possible pathogenic strains of E. coli resistant to antimicrobials [17].
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Although the objective of this study was not to determine whether E. coli strains isolated
from hospital wastewater were pathogenic or not, it was revealed that they were the main
bacterial species showing multidrug resistance (n = 7) and there was a presence of extended-
spectrum beta-lactamases in three E. coli strains tested. The E. coli resistance patterns were
relatively similar between the two hospitals studied (Table 1).

Resistance of E. coli to different classes of antimicrobials, such as beta-lactams and
fluoroquinolones, mainly amoxicillin and ciprofloxacin, was evident in raw and treated
wastewater samples from both hospitals (A and B), which may be due to the selection
pressure of antimicrobial-resistant strains in the clinical hospital environment and their
persistence through the treatment processes in the wastewater treatment plants. Several
studies in different countries have reported a similarly high rate of resistance among E. coli
strains to beta-lactams of clinical and environmental origin [18,19]. This is associated with
the antimicrobial resistance mechanism generated by beta-lactamase enzymes, encoded
by resistance genes and carried on plasmids, which can be exchanged between different
bacterial species by horizontal transmission of genes (HTG) and mobile genetic elements
(MGE) [20].

The two isolates of the Enterobacter spp. isolated in this study were resistant to second-
generation cephalosporins (Table 1). Barraud et al. [21] reported one strain of Enterobacter
cloacae resistant to quinolones, beta lactams, aminoglycosides and tetracycline obtained
from hospital residual water. A carbapenem-resistant strain of E. coli was detected in the
raw wastewater at Hospital B. Although resistance to carbapenems due to the presence of
carbapenemase enzymes has been widely described in Enterobacteriaceae, mainly in genera
such as K. pneumoniae, it has also been reported in E. coli and Enterobacter spp. isolated
from sewage. This is of concern because Enterobacteriaceae are responsible for infectious
outbreaks and carbapenem antibiotics are generally used as a last resort in the treatment of
diseases caused by bacteria resistant to other classes of antibiotics [7]. Enterobacter spp. has
been claimed to be a bacterial genus that serves as a reservoir of antimicrobial resistance
genes through HTG and MGE [8].

Only isolates of the Acinetobacter spp. were evaluated against colistin, and they
were found to be sensitive (Table 1). Overall, the highest proportion of isolates was
sensitive to aminoglycosides and fully sensitive to tigecycline and this differs from the
findings of Wang et al. [22] and Zhang et al. [23], who reported one and ten strains of
Acinetobacter spp., respectively, with a resistance profile to cephalosporin and carbapenems.
In this work we reported three strains of A. haemolyticus with resistance to amikacin (MIC
range 32–64 mg/L). Similar results were reported by Zong et al. [23], Bardhan et al. [19]
and Kovacic et al. [24], who detected amikacin-resistant Acinetobacter spp. in hospital
wastewater.

Although in this study, eight primers were used for the detection of β-lactamases
resistance genes including a mixture of the AmpC gene, we only detected the presence of
blaKPC and blaCTX-M genes in E. coli strains. Compared to K. pneumoniae isolates, blaKPC
producing E. coli strains remain less frequent [25]. However, blaCTX-M producing E. coli
were more frequently reported. The first report on the blaCTX-M gene was in 1989, with
CTX-M being the most prevalent ESBL in the world [26]. We found that two strain of E. coli
carried blaKPC and blaCTX-M, and this differs from the findings of Kutilova et al. [27], who
reported a high prevalence of blaCTX-M (>95%) in strains of E. coli isolated from raw hospital
wastewater. Xu et al. [25] reported similar results to ours in samples of river water where
wastewater is discharged, reporting three strains of E. coli carrying blaKPC and blaCTX-M.
This is in agreement with the results reported by Zumaya et al. regarding the excess use of
cephalosporins and carbapenems in the medical prescription of the hospitals included in
this study [28].

Molecular typing by PFGE was performed to investigate the clonal relationship be-
tween the E. coli strains, Enterobacter spp. and Acinetobacter spp. (Figures 1 and 2). In our
study, we detected a remarkable diversity of patterns in E. coli strains and Enterobacter spp.
(n = 21); this heterogenicity of patterns has been observed in other studies, such as those
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published by Galvin et al. [29] and Zhao et al. [30], who found 18 PFGE patterns among
the 23 isolates analyzed and 7 PFGE patters in 9 strains studied isolated from hospital
WWTPs. However, it is remarkably interesting that antimicrobial resistance profiles are
highly similar in the different clones. Thus, these data suggest that these antimicrobial
resistance genes are highly selected in Enterobacteriaceaes in the hospital environment. An-
other of our important findings was that the strains of A. haemolyticus that carried the
same PFGE pattern were found in treated wastewater, showing its ability to persist in its
passage through the WWTP. The clonality of Acinetobacter spp. has been document in other
studies. In studies carried out in Croatia and India, PFGE revealed related patterns among
A. baumannii strains [19,31]. In another works in China, PFGE analysis showed pattern
heterogeneity, this being different from our results [23,32].

4. Materials and Methods
4.1. Study Sites and Samples Collection

The study was conducted in two third-level hospitals in the Mexico City Metropolitan
Zone in February and March 2020. One is a national referral hospital (Hospital A) with
119 beds, the other is a regional hospital (Hospital B) with 246 beds located in the State
of Mexico, which provides specialized care to people from several states in the center of
the country. Single samples of raw wastewater and treated wastewater were the primary
sampling sources. Wastewater released from both hospitals flows directly to a wastewater
treatment plant, and then to the city sewer.

Hospital wastewater samples were collected from the influent and effluent of each
wastewater treatment plant (WWTP). A total of eight wastewater samples were collected
over three weeks, two raw and two treated wastewater samples each from Hospital A
and B. Wastewater simple samples were obtained by the “grap” technique in sterile 1 L
containers [14], and transported at <4 ◦C to the Research Center for Infectious Disease at the
National Institute of Public Health in Cuernavaca, Morelos within two hours of collection
for processing.

4.2. Microbial Culturing and Identification

Microbial culturing of the Enterobacteriaceae family was performed by taking an aliquot
of 100 mL of raw wastewater and 200 mL of treated wastewater in 50 mL conical bottom
propylene tubes, which were centrifuged for 20 min at 5000 revolutions per minute (rpm).
After decanting the supernatant, the pellet was dissolved in 10 mL of phosphate buffer
solution (PBS) to homogenized by shaking.

After homogenization and prior to plating, the samples were diluted 1:1000 with
PBS, the following agar plates were plated by single streaking: Hi-Crome™ ECC (HiMedia
Laboratories, Mumbai; India), Koser Citrate Medium® and Hi-Crome™ Acinetobacter Agar
Base (HiMedia Laboratories, Mumbai; India) inoculating 100 µL of solution. The plates
were labeled with the type of wastewater, sampling location, date and sample number.
Plates were incubated at 37 ◦C, and results were read after 18 hours. Different presumptive
colonies of each bacterial species were selected based on the color patterns described
by the manufacturer on chromogenic agars. They were then transferred to MacConkey
agar at 37 ◦C for 18 h for purification and identification. The isolates were identified
by mass spectrometry, using the Microflex MALDI-TOF MS® (Bruker Daltonics, Bremen,
Germany) equipment.

4.3. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility profiling of strains was carried out by a VITEK 2® auto-
mated system (BioMe’rieux, Marcy l’Etoile, France), according to the break point established
by the CLSI 2021 guidelines [33]. Fourteen antimicrobials were tested: ampicillin-sulbactam,
piperacillin-tazobactam, cefoxitin, ceftazidime, ceftriaxone, cefepime, doripenem, ertapenem,
imipenem, meropenem, amikacin, gentamicin, ciprofloxacin and tigecycline.
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4.4. Detection of β-Lactamases Genes

The presence of β-lactamases genes in Enterobacteriaceae isolates was confirmed by PCR.
The assay included primers to detected the following β-lactamases genes: blaCTX-M, blaSHV,
blaAMPc, blaGES-2, blaKPC, blaOXA-48-like, blaNDM-1 and blaIMP described previously [34–41].
DNA templates were used by PCR analysis and the products were visualized in 1%
agarose gel.

4.5. Molecular Typing of PFGE and Computer Fingerprint Analysis

After digestion with Xba I and Apa I endonucleases, the DNA was separated using a
CHEF-DR II system (BioRad, Birmingham, UK) [42,43]. The Salmonella serotype Braenderup
strain (H9812) was included in each PFGE gel as an internal control. Computer analysis of
PFGE profiles was done using the Gel Compar II software, v.6.6.11 (Applied Maths, Inc.;
Sint-Martens-Latem, Belgium) after visual inspection using the criteria of Tenover [44]. The
Dice coefficients were calculated and were then transformed into an agglomerative cluster
by the unweighted pair group method with arithmetic average (UPGMA).

5. Conclusions

Our results highlight the potential threat of extended-spectrum beta-lactamase re-
sistance gene transmission in raw and treated hospital wastewater, as well as the risk of
dissemination to environmental reservoirs such as rivers and other water bodies. The
wide heterogeneity of PFGE pathways shown by E. coli strains may favor the selection
of several genotypes, mainly those that showed resistance to the antibiotics tested. The
clonality shown in A. haemolyticus strains isolated from treated wastewater suggests that
this bacterium has a genetic potential to survive hospital WWTP treatment systems. Surveil-
lance of antimicrobial resistance through hospital wastewater is an important tool for early
detection of clonal clusters of clinically important bacteria with potential for dissemination.
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