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The emergence of several novel SARS-CoV-2 variants regarded as variants of concern

(VOCs) has exacerbated pathogenic and immunologic prominences, as well as reduced

diagnostic sensitivity due to phenotype modification-capable mutations. Furthermore,

latent and more virulent strains that have arisen as a result of unique mutations with

increased evolutionary potential represent a threat to vaccine effectiveness in terms of

incoming and existing variants. As a result, resisting natural immunity, which leads to

higher reinfection rates, and avoiding vaccination-induced immunization, which leads to

a lack of vaccine effectiveness, has become a crucial problem for public health around

the world. This study attempts to review the genomic variation and pandemic impact

of emerging variations of concern based on clinical characteristics management and

immunization effectiveness. The goal of this study is to gain a better understanding of the

link between genome level polymorphism, clinical symptom manifestation, and current

vaccination in the instance of VOCs.
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HIGHLIGHTS

- SARS-CoV-2 has evolved many variants as a result of genome-level mutations, worsening the
current pandemic situation.

- SARS-CoV-2 variants increase transmissibility, viral virulence, and reduce diagnostic sensitivity.
- The vaccine’s efficacy has been brought into question due to the emergence of variants containing

a new mutation.
- Vaccine effectiveness and clinical management vary among variants.
- Natural immunity hedging and vaccine-induced immunization evasion have become major

public health concerns.
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SARS-CoV-2 GENOME AND MUTATIONS

The largest (amid 26 kb and 32 kb) single-stranded positive-
sense RNA genome of SARS-CoV-2 shows low genome stability,
with about 1,516 nucleotide-level variations in genome-wide
annotations and over 9.8 × 10−4 substitutions/site yearly (1–
4). The genome or viral transcript of SARS-CoV-2 contains two
open reading frames (ORFs) expressing non-structural proteins
(NSPs) and four genes encoding structural proteins, namely
N (nucleocapsid), M (membrane), E (envelop), and S (spike).
ORF1a encodes 11 non-structural proteins (NSP1–11), whereas
ORF1b encodes five non-structural proteins (NSP12–16), and
ORF8, ORF7b, ORF7a, ORF6, and ORF3a genes encode six
accessory proteins, the non-structural proteins being primarily
functional proteins (enzymes) that act as a prerequisite for
viral replication in tandem with methylation to provoke host
responses during infection (5–11).

The viral transcript is notable for a large number of recurrent
mutations (>15 occurrences) in the Orf1ab region, namely in
three sites (Nsp6, Nsp11, and Nsp13 encoding sites) and one in
the spike (S) protein (4, 5, 12, 13). In comparison to the original
viral genome, a variant is a virus strain with a considerable
phenotypic alteration that exhibits unusual characteristics in
terms of virulence, transmissibility, and antigenicity (10, 14). It
results from either a complicated combinatorial aberration or an
abnormal mutation caused by the combination of three factors,
including viral replication errors, recombination between two
different viral lineages during coinfection, and the stimulation
of host RNA-editing mechanisms. Furthermore, each genetic
mutation is incapable of causing significant changes in the
essential protein for viral replication and infectivity modification
(3, 4, 15–18). The Global Initiative for Sharing Avian Influenza
Data (GISAID) managed the global SARS-CoV-2 sequence
database by submitting over 1.4 million sequences by May 2021,
with a total of 3,913 major representative variants genomes
being identified. Additionally, variants of concern (VOCs),
which include the Alpha (B.1.1.7 and Q lineages) variant,
Beta (B.1.351+B.1.351.2+B.1.351.3) variant, Gamma (P.1 and
descendent lineages) variant, Delta (B.1.617.1, B.1.617.2 and
AY lineages) variant, the and Omicron (B.1.1529 and BA
lineages) variant, predominately emerge from the mutation of
the spike gene, where ORF1a region of the genome operates
as a pre-eminent NSP mutations site (https://www.gisaid.org/
hcov19-variants/). There are two VOIs abbreviated as variants
of interest: Lambda (C.37+ C.37.1) andMu (B.1.621+B.1.621.1),
as well as one variant under monitor or VUM, which includes
an unidentified (B.1.640 and descendent lineages) variant.
However, according to CDC, only omicron and delta variants
are considered as the VOCs whereas Alpha, Beta, Gamma, and
Mu in conjunction with Eta (B.1.525) variant, Lota (B.1.526)
variant, Kappa (B.1.617.1) variant, Epsilon (B.1.427 and B.1.429)
variant, Zeta (P.2), and an unknown (B.1.617.3) variant are
listed as variants being monitored or VBM (https://www.
cdc.gov/coronavirus/2019-ncov/variants/variant-info.html). Of
these, kappa is the most recent significant variant evolved from
the second COVID-19 wave. (https://www.axios.com/variants-
tracker). Our primary emphasis will be the VOCs, VOIs, VUM,

or VBMs that play significant roles in SARS-CoV-2-related public
health issues (Table 1).

SPIKE MUTATIONS

The homo-trimeric spike protein (S) of SARS-CoV-2 is
similar to an obligatory protein that conducts viral entry for
virus attachment during infection by recognizing receptors
[angiotensin-converting enzyme (ACE2)] in conjunction with
cell membrane fusion form. The spike protein is divided
into two subunits: S1 subunit comprises the receptor-binding
domain (RBD), which can bind to the PD (peptidase domain)
of ACE2, and S2 subunit conducts cell membrane fusion
via the explicit two-heptad repeat region using the six-helical
bundle generation (9, 30–33). The RBD’s most important
operative motif, known as the receptor-binding motif (RBM;
Figure 1) evolves the interface between hACE2 and the S
protein while maintaining RBD structural stability. As a result,
the S1 subunit, which is considered a mutation hotspot
with significant clinical relevance, including host immune
evasion, transmissibility, and virulence, provides a common
key for antibody (Ab) neutralization, as well as future cross-
reactive antibody recognition (34–37). The Alpha variant
identified in the UK in September 2020 has numerous spike
glycoprotein alterations, including K1191N, D1118H, S982A,
T716I, P681H, D614G, A570D, N501Y, S494P, E484K, 144del,
70del, 69del, T478I, F490S, E484Q, T478K, T478A, S477N, L455F,
Y449S, Y449H, and K417T (https://www.cdc.gov/coronavirus/
2019-ncov/variants/variant-info.html); (https://www.gisaid.org/
hcov19-mutation-dashboard/).

The N501Y mutation of the alpha variant denotes the
substitution of asparagine (N) for tyrosine (Y) at amino acid
residue 501; similarly, K417N mutations denote the substitution
of lysine (K) for asparagine (N) at amino acid residue 417.
However, an Alpha (B.1.1.7) descending evolving variation
occupies the E484K mutation, which results in the glutamic
acid E being replaced by lysine K at the 484 residues. The
Beta variation has the E484K mutation, but the Gamma
variant has the K417T mutation in tandem with the E484K
mutation, indicating that Beta has numerous substitutions in
combination with N501Y, as discovered in South Africa in
October 2020 and Brazil/Japan in December 2020 (https://
www.gisaid.org/hcov19-variants/). Spike protein substitutions
such as A701V, D614G, N501Y, E484K, K417N, 243del,
242del, 241del, D215G, and D80A are provided by the Beta
variants, whereas the Gamma variants provide T1027I, H655Y,
D614G, N501Y, E484K, K417T, R190S, D138Y, P26S, T20N,
and L18F spike protein substitutions (https://www.cdc.gov/
coronavirus/2019-ncov/variants/variant-info.html). Delta and
Kappa variants, which were first identified in India in December
2020 and are notable as recent influential variants with constant
mutations, include E484Q, which refers to the substitution of
E (glutamic acid) by Q (glutamine) at the 484 residues, and
L452R, which refers to the substitution of L (leucine) by R
(arginine) at the 452 residues (https://www.gisaid.org/hcov19-
variants/). Additionally, The Delta variant occupies diverse spike
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TABLE 1 | History and major characteristics of SARS-CoV-2 variants.

SARS-CoV-2

variant

Variant

type

First identified Major

geographic

distribution

Predominant

spike

mutations

Effects on

transmissibility

Effects on

virulence

References

Alpha VOC UK, September

2020

Worldwide N501Y Increased Increased (10)

Beta VOC South Africa,

October 2020

Africa K417N, E484K,

N501Y

Increased Increased (10)

Gamma VOC Japan and

Brazil,

December 2020

South

America

K417T, E484K,

N501Y

Increased Increased (10)

Delta VOC India, December

2020

Worldwide L452R, E484Q,

T478K

Increased Increased (10)

Omicron VOC South Africa,

December 2021

Worldwide N501Y, K417N,

T478K, E484A,

D614G

Increased Reduced (19, 20); (https://www.gisaid.org/

hcov19-variants/); (https://www.cdc.

gov/coronavirus/2019-ncov/variants/

variant-info.html)

Eta VOI United Kingdom/

Nigeria,

December 2020

North

America

E484K, D614G,

Q677H

No evidence No evidence (21); (https://www.ecdc.europa.eu/

en/covid-19/variants-concern)

Lota VOI United States

(New York),

November 2020

North

America

E484K, D614G,

A701V, L452R,

S477N

No evidence No evidence (22); (https://www.ecdc.europa.eu/

en/covid-19/variants-concern)

Kappa VOI India, December

2020

Asia L452R, E484Q,

D614G, P681R

Increased No evidence (23, 24); (https://www.ecdc.europa.

eu/en/covid-19/variants-concern)

Epsilon VOI California, July

2020

North

America

L452R, D614G Unclear No evidence (25); (https://www.ecdc.europa.eu/

en/covid-19/variants-concern)

Zeta VBM Brazil, January

2021

South

America

E484K, D614G Reduced No evidence (21, 26); (https://www.ecdc.europa.

eu/en/covid-19/variants-concern)

Lambda VOI Peru, August

2020

South

America

L452Q, F490S,

D614G

Increased Increased (27, 28); (https://www.gisaid.org/

hcov19-variants/); (https://www.

ecdc.europa.eu/en/covid-19/

variants-concern)

Mu VOI Colombia,

January 2021

South

America

R346K, E484K,

N501Y, D614G,

P681H

Increased No evidence (29); (https://www.ecdc.europa.eu/

en/covid-19/variants-concern)

glycoprotein substitutions including D950N, P681R, D614G,
T478K, L452R, K417N, W258L, A222V, R158G, G142D, T95I,
V70F, T19R, G504D, V503F, N501Y, N501T, P499L, S494P,
S494L, Q493E, Q493L, F490W, F490L, Y489L, N487T, F486Y,
E484Q, E484K, S477C, S477N, S477I, A475T, K458N, L455F,
G446V, V445I, and K417T (https://www.cdc.gov/coronavirus/
2019-ncov/variants/variant-info.html); (https://www.gisaid.org/
hcov19-mutation-dashboard/). The T478K mutation, which
refers to the substitution of T (threonine) for K (lysine) at amino
acid position 478, is a strange Delta variant mutation.

In addition, numerous spike protein substitutions are
notable concerning the Eta (F888L, Q677H, D614G, E484K,
144del, 70del, 69del, and A67V), Lota (Q957R, D950H, T859N,
A701V, D614G, E484K, S477N, L452R, D253G, F157S, T95I,
D80G, and L5F), and Kappa (Q1071H, T95I, P681R, D614G,
E484Q, L452R, E154K, and G142D) variants according to the
CDC (https://www.cdc.gov/coronavirus/2019-ncov/variants/
variant-info.html). T76I, L452Q, G75V, F490S, D614G, and
T859N substitution for the lambda (C.37) variant (37) and
S13I, W152C, D614G, and L452R substitution for the epsilon

(B.1.427/B.1.429) variant were recognized in the spike gene titled
S gene (https://covdb.stanford.edu/page/mutation-viewer/#sec_
epsilon). The recent variant named “Omicron” first identified
in South Africa has several spike protein substitutions such
as del142-144, Y145D, del211, A67V, del69-70, T95I, L212I,
ins214EPE, G339D, K417N, N440K, G446S, S371L, S373P, S375F,
S477N, T478K, E484A, Q493R, Y505H, T547K, D614G, G496S,
Q498R, N501Y, H655Y, N679K, P681H, Q954H, N969K, L981F,
N764K, D796Y, and N856K. The omicron mutation N501Y is
identical to the mutations mentioned in alpha, beta, gamma,
and delta variants. K417N mimics the substitution of alpha and
beta variants that differ from gamma and delta variants, and
it has the T478K strange delta variant substitution in tandem
with E484A substitution that is not observed in any of the
above-mentioned-variants, and notable D614G substitution is
also present. (https://www.gisaid.org/hcov19-variants/);(https://
www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.
html). However, on 26 November 2021, the World Health
Organization (WHO) designated this “Omicron (B.1.1.529)” as a
Variant of Concern due to its high transmissibility and danger of
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FIGURE 1 | Functional subunits of the spike glycoprotein (S) of SARS-CoV-2.

immunological deficiency (38). Table 1 shows the most common
spike mutations for SARS-CoV-2 variants.

However, the alterations in the S1 subunit result in a
significant increase in S RBD binding affinity for the ACE2
receptor, as well as a decreased affinity for antibody (Ab)
neutralization. For example, the B.1 lineage of Beta variants
with the D614G mutation in the spike protein shows a 4.3-fold
antibody reduction and a 3.5-fold antibody neutralization rebate
on average. However, a new Beta variation (501Y.V2), capable
of reinfection in COVID-19 convalescent patients, resides in the
E484K spike proteinmutation, demonstrating the ability to evade
first-wave anti-SARS-CoV-2 neutralizing antibodies.

Furthermore, the presence of E484K or N501Y mutations
in the S1 subunits causes greater virulence and transmissibility,
as well as a higher fatality rate and morbidity (39–42). The

indicated D614G mutation at non-RBD sites alters the spike
protein structure, leading to monoclonal antibody neutralization
and increased SARS-CoV-2 replication via virion infectivity
enhancement is notable as a prominent spreading mutation
extant in more than 99% prevalent variants. Despite not being
capable of boosting binding affinity for ACE2 or neutralization
sensitivity, the D614G improves infectivity by increasing the
amount of functional S protein, as well as improved spike
density due to S1 shedding escape and spike integrity shielding.
As a result, the presence of the D614G mutation is associated
with more agile transmission in vivo and increased replication
during an in vitro investigation (43–47). The L452R mutation,
which was discovered in the spike RBM of SARS-CoV-2,
allows the virus to escape HLA-A24-restricted cellular immunity,
resulting in increased fusogenicity and viral infectivity, as well as
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increased viral replication (48). Recurrent deletion areas (RDRs)
encompassing (90%) four separate regions in the NTD show an
Ab-recognizing neutralization domain with increasing deletions
remaining in the S1 subunit (N-terminus). Deletions occurring in
RDRs is notable in maximum in Alpha-originated variants (e.g.,
S: 1HV 69–70, S: 1Y144 in 1RDR1, and 1RDR2 respectively),
in tandem with Beta-stemmed variants (e.g., S: 1LAL 242–
244, 1RDR4) and B.1.36 (e.g., S: 1I210, 1RDR3), which ends
in the resistance for antibody neutralization, wiped epitopes,
support in host’s immune evasion together with vaccines, or
Abs neutralizing declination (10, 49). Furthermore, the top 10
RBD region mutations comprise S494P, T478K, E484K, N501Y,
K417N, L452R, K417T, N439K, F490S, and S477N substitutions,
observed in 2385, 83587, 19505, 96499, 1129, 83717, 8646, 1930,
499, and 6102 SARs-CoV-2 isolated sequence among 298,376
sample sequences, respectively. Notably, the most prevailing
mutations N501Y were detected majorly in the Unites States
during April 2021, while L452R and T478K were identified in the
United Kingdom during June 2021 (https://www.cbrc.kaust.edu.
sa/covmt/index.php?p=top-rbd-variants-heatmap).

Among the rapidly disseminating arising variants that include
alpha, beta, gamma, delta, kappa, eta, lota, epsilon, lambda,
mu, and omicron variants, the most well-known D614G
mutation (44, 46, 50) provides a reasonable benefit in terms
of infectivity (47, 51, 52) and improves transmissibility (53),
implying a higher fatality and infectivity rate (54–56). Similarly,
the N501Y alteration observed in alpha, beta, gamma, delta,
and omicron imparts better ACE2 binding, demonstrating (57–
59) the massive increase in ACE2 affinity with a single RBD
mutation (57). Furthermore, the E484K mutation in alpha,
beta, gamma, delta, kappa, eta, zeta, and lota stimulates escape
from multiple mAbs [monoclonal antibodies; (60–62)], as well
as antibodies against convalescent plasma (61–63). Again, the
K417N/T mutations in the RBD show immune evasion from
antibodies and vaccines produced by natural infection (50, 64,
65). Furthermore, both the omicron, delta, and beta variants
of K417N and the delta, gamma, and alpha variants of K417T
are anticipated to have a lower ACE2-binding affinity (57).
Furthermore, the L18F mutation of gamma is responsible
for the escape of certain NTD-binding mAbs, resulting in
reduced antibody neutralization (66). Similarly, the appearance
of the S477N mutation in alpha, delta, lota, and omicron
is responsible for resistance to RBD-targeting mAbs-derived
neutralization, as well as improved affinity to a lesser extent for
the ACE2 receptor. Among the top 10 RBD region mutations,
the N439K change improves affinity, but to a lower level in
the case of the ACE2 receptor (57, 66). However, an antigenic
consequence of the Y144 mutation, which is found in the
alpha, eta, and omicron variants, has been observed to prevent
neutralization by a number of neutralizing antibodies (66).
Furthermore, delta variants with p. 475 (Ala to Val), delta,
lota, kappa, and epsilon variants with p. 452 (Leu to Arg),
and delta variants with p. 490 (Phe to Leu) increase resistance
to a variety of neutralizing antibodies (55). Figures 2–4 show
the prominent residues of spike glycoprotein where various
mutations occur, resulting in the evolution of different SARS-
CoV-2 variants.

NSP MUTATIONS

ORF8 downregulates host cell major histocompatibility
complex class I (MHC-I) in addition to NSP1 positioned in
ORF1a/ORF1ab antagonizing activation of type I interferon in
host cells, which is associated with SARS-CoV-2 transmissibility
and virulence. It is established that the potent suppression of
IFN-I signaling causes antiviral activity by combating viral
reproduction via nsp 1 and nsp 6 in concert with antagonization
of the IFN-I response via nsp 6, nsp 13, and (ORF6), resulting
in the avoidance of the host immune response. The D500-532
mutation in Nsp1 reduces IFN-I response in SARS-CoV-2-
infected host cells, as well as during transcription and protein
translation in transfected cell lines [HEK293T and A549;
(63, 67)]. Additionally, an ill-timed stop codon identified in the
Alpha version at position 27 is found in the immune-evasive
ORF8 protein, which conducts evasion functions and unique
immunological suppression.

However, the most recent major African variants, ORF8:
382 variant and NSP1: 500–532 variant, both of which
affect around 5% of global infections and were found in
Singapore and China, respectively, contain both ORF8 and
NSP1 partial deletions, resulting in lower SARs infection with
the CoV-2 virus [https://www.gisaid.org/hcov19-variants/; (68–
70)]. Furthermore, 382 SARS-CoV-2 moderate infection variants
shorten ORF7b and abolish ORF8 transcription, reducing severe
COVID-19-associated proinflammatory cytokines, chemokines,
and growth factors (70–72). Important mutations in nsp 2
(T265I), nsp 12 (P4715L), and nsp 13 (P5828L and Y5865C),
which serve as helicase or replicase, have also been identified
in the United States (73). However, V121D destabilizing NSP-1,
G1691C reducing NSP-3 flexibility in combination with V843F,
A889V substitution, and V843F dominating substitution in
combination with A889V in PLPro has indicated the possibility
of an attenuated vaccine in combination with PLPro inhibitors
(74, 75).

PROBABLE CLINICAL IMPACTS OF
SARS-CoV-2 VARIANTS

Increased Transmissibility and Viral
Virulence
The Delta variation was linked to a high viral load, high
transmission rates, and reinfection (PANGO lineage: B.1.617.2).
Unlike the Alpha variant and monoclonal antibodies used
in SARS-COV-2 medicines, this version increases rather than
decreases susceptibility to the virus (76, 77). In comparison to
the Alpha VOC, the Delta (B.1.617.2) VOC was predominantly
observed in the younger age group, putting patients at risk of a
second hospitalization if they had more than five comorbidities.
In vitro neutralization experiments using convalescent serum
and monoclonal antibodies, and a subject testing of immunized
serum show that the Delta variation increases vaccination
resistance, especially in individuals with one dosage (76–78).

The Delta SARS-CoV-2 mutant was shown to be 60% more
infectious than the wild type and able to evade adaptive
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FIGURE 2 | (A-D) The most common spike glycoprotein residues (N501, K417, E484, L452), where diverse mutations occur, resulting in different SARS-CoV-2

VOCs, VOIs, and VBMs.

immunity in half the time. The S-protein mutation D614G of
the Delta variant has been shown to affect virulence and virus
transmissibility by preserving a stronger affinity for olfactory
epithelium and enhanced virion stability (10, 79). On the other
hand, because of their increasing transmissibility and massive
mutations in the spike gene, both the alpha variant B.1.1.7 and
the beta variant B.1.351 are gaining popularity. It is turbulent
for monoclonal antibodies to neutralize the N-terminal region of
the spike protein in the B.1.1.7 variant. Evidence suggests that
the transmission rate of Alpha and Beta variants of concerns is
growing by about 50% in children and younger people (10, 65,
80).

When comparing clinical outcome records, it appears that
B.1.1.7 infection has a 30% higher fatality rate than other
SARS-CoV-2 variants, which could be attributable to alterations
in the receptor-binding domain that make them immune to
neutralizing antibodies (10, 81, 82). Furthermore, the B.1.351
variant improves the neutralization of many monoclonal

antibodies against the RBD at receptor-binding sites, resulting
in an E484K substitution mutation and a 9.4-fold increase
in resistance through plasma convalescence (65, 83). Several
studies show that the B.1.1.7 variation is around 35–45% more
transmissible across the country and gains frequency at a double
pace every one and a half weeks (82).

The Epsilon variant, CAL.20C (B.1.427/B.1.429), is
characterized by three mutations: L452R mutation in the
RBD, and W152C and S13I mutations in the N-terminal domain
(NTD). In conjunction with higher viral shedding, these variants
increase transmissibility by up to 24% (10, 84, 85). In response
to the currently circulating strains, various genome sequences
of B.1.427/B.1.429 variants arrayed a rapid increase in viral
prevalence, with 50% exceeding the transmissibility rate (85, 86).
The Gamma variant P.1 (originating in Brazil) indicated a
20.0% increase in hospitalizations compared with non-VOC
patients, and spike mutations may have increased virulence,
raising ACE2 rapport, although significant information about
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FIGURE 3 | (A-D) The most common spike glycoprotein residues (T478, D614, Q677, A701) where diverse mutations occur, resulting in different SARS-CoV-2 VOCs,

VOIs, and VBMs.

viral pathogenicity is currently unavailable in these genotypes
(10, 83, 87).

Decreased Diagnostic Sensitivity
Several studies (13, 88, 89) have described a transitory genetic
evolution as a result of the geographical viral transmission
of SARS-CoV-2 since the genomic sequence of SARS-CoV-2
became easily accessible. Newly arising variants of concerns
can impair the sensitivity of RT-PCR-based identification if a
mutation arises in a region where both primers and probes may
bind. In the RT-PCR experiment, 79% of the primer binding
sites are utilized, but the genome has altered in the meanwhile,
with the most important GGGAAC substitution (10, 23). During
the expanding SARS-CoV-2 outbreak, novel genetic variants may
reduce the specificity and sensitivity of RT-PCR-based detection.
Active viral recombination and mutation rates, in particular,
might undoubtedly disrupt oligonucleotide annealing and impact
sensitivity or inclusiveness. An analysis of genetic variants in the

widely distributed SARS-CoV-2 genomes reveals a total of 27
probe- or primer-binding sites with a variant frequency of < 1%
(89–91).

Diagnostic failures are implicated in the Alpha (B.1.1.7)
lineage as considerably higher false-negative results by RTPCRs
that target the spike (S) gene. Diagnostic performance was
unaffected by the Berlin–Charité technique, with nearly 98% of
the sequences being detected using contemporary primers/probe
sets because the S protein-producing gene was never used
as a target in this procedure. For detection tests, expensive
qPCR equipment that relies on signal absences rather than
the positive indication for a variant presence is required (92,
93). Sequencing the entire variant’s genome for both alpha
(B.1.1.7) and beta (B.1.351) variant identification in the next
generation sequencing (NGS) approachmay result in incorrect or
inconclusive detection. Several tests on the Delta B.1.1.7 variant
reveal that in the three-target gene of RT-PCR diagnostic assay,
where positive cases of SARS-CoV-2 infection are on the rise, this
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FIGURE 4 | (A-D) The most common spike glycoprotein residues (S477, P681, F490, R346) where diverse mutations occur, resulting in different SARS-CoV-2 VOCs,

VOIs, and VBMs.

variant exhibits an increase in S-gene target failure rather than
positive ORF1ab, N target genes (94–96). An exploratory study
of the B.1.1.7. lineage revealed the presence of polymorphisms
in the amplified sequences, indicating the discovery of new
haplotypes. These haplotypes have a low frequency of single
nucleotide polymorphisms (SNPs) that affect oligobinding site
areas, hindering accurate identification and resulting in false-
negative test findings (93, 97).

In France, a novel variant of concern 202012/01 (VOC) with
the deletion of the spike (S) at H69–V70 (H69/V70) location
was detected, which is also 43–82% transmissible compared with
other SARS-CoV-2 variants. This deletion process is linked to
an S-gene target failure in (ORF) 1ab, S, and nucleocapsid (N)
gene targets, according to an RT-PCR assay (TaqPath kit) (98).
The findings from the TaqPath RT-PCR kit uncovers 0.6% of
overall prevalence, indicating a limited variations circulationwith
H69/V70 during the second wave. Three RBD mutations, Y453F,
N501Y, and N439K, have been linked to the H69/V70 gene,

which reduces SARS-CoV-2 antibody sensitivity (98, 99). Several
laboratories experimented with diagnostic primers or probes
alignment with a short viral sequence exhibiting mismatches
that led to false-negative results due to a worldwide pandemic
emergency (100).

Mutant viruses or genetic diversity were shown to have
potential mismatches in the primer or probe binding region
of the viral genome, resulting in false-negative results. While
a single mismatch has little impact, two or three mismatches
reduce technique sensitivity, and having more than three
mismatches can result in a complete reaction failure (100,
101). SARS-CoV-2 has newly emerged variants of concern,
as well as likely mismatches, indicating the importance of
molecular surveillance and providing fresh diagnostic tools
for future prevalence. On the other hand, it also provides
an identification scheme with high sensitivity and specificity,
allowing the CRISPR-based diagnostic tools to be developed
(10, 102).
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Potential Influence on Vaccination
Spike protein plays a key role in the pathogenicity of SARS-
CoV-2, and vaccines based on targeting this spike protein
are being developed (10). Meanwhile, B.1.1.7 (Alpha), B.1.351
(Beta), P.1 (Gamma), and B.1.526 (Delta) forms of SARS-CoV-
2 are propagating over the world (103, 104). In this part,
we will explore the effectiveness of numerous vaccines against
these variants.

Genetic Vaccines
Pfizer-BioNTech and Moderna developed two anti-SARS-CoV-
2 vaccines, “BNT162b2” and “mRNA-1273”, both mRNA-based
vaccines that were previously licensed (10). According to several
studies, the BNT162b2 vaccination was projected to be 89.5%
effective against the Alpha variant and 75.0% effective against
the Beta form (105). BNT162b2 was found to be 84% effective
against the Gamma version (103), and 88% effective against the
Delta variant (106). The mRNA-1273 vaccination was shown to
be 94.1 % (107–109) effective for the Alpha variant and 96.4
% effective for the Beta form (110). mRNA-1273, on the other
hand, had a lower neutralization rate against Gamma and Delta
variants (111). According to multiple studies, the effectiveness of
BNT162b2 and mRNA-1273 vaccines against Omicron was only
36% after the second dose but increased to 61% after the third
dose (38).

Another study looked into whether using various vaccines
as booster doses could increase the immunological response to
Omicron. Two doses of BNT162b2 vaccination plus one booster
dose of BNT162b2 vaccine, as well as two doses of CoronaVac
vaccine plus one booster dose of BNT162b2 vaccine provided
protection against Omicron. The vaccine effectiveness of these
two groups increases by 95% after a booster dose against this
variation (112).

Adenovirus-Based Vaccines
Adenovirus-based vaccines have been approved for both
emergency and routine use (10). Among them, the University
of Oxford and AstraZeneca’s ChAdOx1 nCoV-19 (chimpanzee
adenovirus type Y25 vector) or the AZD1222 vaccine was
74.5% effective against the Alpha variant (106, 113, 114) and
10.4% effective against the Beta variant (115). Though the
ChAdOx1 nCoV-19 vaccine has yet to be proved to be effective
against the Gamma version, it has shown to be 59.8% effective
against the Delta form (116). Another Ad26.COV2.S vaccine
which is a recombinant, replication-incompetent human
adenovirus type 26 vector encoding full-length and stagnates
SARS-CoV-2 spike protein (JANSSEN) was found to have
about 86% decreased efficiency against Alpha variant (117, 118)
as well as a 64% protection against the Beta variant (119).
Furthermore, this vaccination appears to be quite practical
against the Gamma variation, although no information on its
efficacy against the Delta variant has been released. (https://www.
covid19immunitytaskforce.ca/literature-review-effectiveness-
of-the-covid-19-vaccines-approved-for-use-in-canada-against-
circulating-variants-of-concern/). The Gamaleya Research
Institute’s Sputnik V vaccine has a high virus-neutralizing

efficiency against B.1.351, B.1.617.2, and P.1, as well as other
variations (115).

Subunit Vaccines
The recombinant NVX-CoV2373 (Novavax) vaccine contains
prefusion, full-length spike protein with 85.6 % and 51%
effectiveness against Alpha and Beta variants, respectively (10,
106, 111). None of the protein-based vaccines, on the other hand,
have been approved for widespread use.

Inactivated Virus-Based Vaccines
BBIBP-CorV, BBV152, and CoronaVac are three inactivated
virus-based vaccines that have been approved and are
widely used in China, India, and Brazil, respectively (10).
Among them, BBIBP-CorV is a vaccine manufactured by
Sinopharm (Beijing, China), producing vaccine antisera
that are compatible for neutralizing the Beta variant (120).
BBV152 (Bharat Biotech, India) is a vaccine that showed
efficacy against Alpha and Beta variants and was 652%
effective against Delta variant (121, 122), whereas CoronaVac
(Sinovac Biotech) is 42% efficient against the Gamma
variant (123).

To put an end to this discussion about vaccines, it appears that
none of them are effective against all SARS-CoV-2 variants, but
the majority of the licensed vaccines are partially effective against
the Alpha and Beta types.

LIMITATIONS

According to CDC (https://www.cdc.gov/coronavirus/2019-
ncov/variants/variant-info.html), previously called VOCs
(epsilon, alpha, beta, and gamma) are now designated as the
VBMs in the USA, while alpha, beta, and gamma are still
mentioned as VOCs according to GISAID (https://www.
gisaid.org/hcov19-variants/) because variants are classified
based on their potential impact on critical SARS-CoV-
2 countermeasures, including vaccines, treatments, and
diagnostics, as they are important for public health. As a result,
the viewpoint of variant monitoring is at a conflict with time
and research data. Furthermore, new spike protein mutations,
in combination with genetic and host predisposition, impact
the current vaccination efficacy (124). Furthermore, as new
strains appear, the need to reexamine vaccination efficiency
by experimenting with in vivo reduction of viral infection,
as well as antibody quantification obtained from in vitro
exposure reveals a dearth of understanding about vaccine
efficacy (125). Furthermore, as SARS-CoV-2 is constantly
mutating, accumulating around one new mutation every
2 weeks in the genome (126), Delta Plus is observed with
several new mutations concerning ORF1a (A1146T, A3209V,
P1604L, T3750I, and V3718S) evolving from delta variant
(127), and RBD-ACE2 system analysis of newly emergent
variants such as Omicron revealed 32 mutations in S protein,
raising significant concern for its transmissibility. As a result,
the shifting variations identified through dynamic research in
mutation findings necessitate more investigation for vaccination
efficacy and variant tracking (128). As a result, it may be
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inferred that our understanding of variation mutation and the
impact of a variant in conjunction with vaccination efficacy
data is evolving, and that, while our analysis depicts the
current landscape of variant tracking perfectly, it may alter
over time.

CONCLUSION

When spike protein mutations are combined with non-
structural protein mutations reported in emerging VOCs,
VOIs, and VBMs, the clinical relevance of each variance
changes. As a result, a potentially devastating global health
catastrophe occurs from either a novel variant of concern
or a variant of interest that has the potential to worsen
the infected individual’s clinical status. Furthermore, changes
in either the spike protein or the NSP protein has a
conceivable impact on vaccination, which is an important
problem in vaccine efficacy. As a result of this review, it
appears that more vaccine development research is needed
to ensure that vaccines are effective against all SARS-CoV-
2 variants.
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