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THE BIGGER PICTURE As we enter the fifth month in the fight against COVID-19, it is evident that the gov-
ernment response to the COVID-19 pandemic has been spatially and temporally diverse. As such, the role
played by the varying quarantinemeasures in different countries in shaping the infection growth curve is still
not clear. To address this need, we have developed a novel model which lies at the intersection of the fields
of epidemiology and machine learning and allows us to analyze and compare the role of quarantine control
policies globally, across the continents of Europe, North America, South America andAsia (results hosted at
https://covid19ml.org/). Such a robust, publicly available tool can be of significant value for studies looking
at the correlation between the quarantine strength evolution in a particular region with a wide range of met-
rics spanning from mortality rate to socio-economic landscape impact of COVID-19 in that region.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Wehave developed a globally applicable diagnostic COVID-19model by augmenting the classical SIR epide-
miological model with a neural networkmodule. Ourmodel does not rely upon previous epidemics like SARS/
MERS and all parameters are optimized via machine learning algorithms used on publicly available COVID-19
data. Themodel decomposes the contributions to the infection time series to analyze and compare the role of
quarantine control policies used in highly affected regions of Europe, North America, South America, andAsia
in controlling the spread of the virus. For all continents considered, our results show a generally strong cor-
relation between strengthening of the quarantine controls as learnt by the model and actions taken by the
regions’ respective governments. In addition, we have hosted our quarantine diagnosis results for the top
70 affected countries worldwide, on a public platform.
INTRODUCTION

The coronavirus respiratory disease 2019 originating from the vi-

rus ‘‘SARS-CoV-2’’1,2 has led to a global pandemic, leading to

12,552,765 confirmed global cases in more than 200 countries

as of July 12, 2020.3 As the disease began to spread beyond

its apparent origin in Wuhan, the responses of local and national

governments varied considerably. The evolution of infections

has been similarly diverse, in some cases appearing to be con-

tained and in others reaching catastrophic proportions. In Hubei
This is an open access article under the CC BY-N
province itself, starting at the end of January, more than 10

million residents were quarantined by shutting down public

transport systems, train stations and airports, and imposing po-

lice controls on pedestrian traffic. Subsequently, similar policies

were applied nationwide in China. By the end of March, the rate

of infections was reportedly receding.4

By the end of February 2020, the virus began to spread in Eu-

rope, with Italy using extraordinary quarantine measures starting

on March 11, 2020. France enacted strict quarantine measures

beginning on 17 March followed later by the UK on 23 March;
Patterns 1, 100145, December 11, 2020 ª 2020 The Authors. 1
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whereas no measures were enforced in Sweden.5 South Korea,

Iran, andSpain experienced acute initial increases, but then adop-

ted drastic generalized quarantine. In the United States, the first

infections were detected in Washington State as early as January

20, 2020,6 and now it is being reported that the virus had been

circulating undetected in New York City as early as mid-

February.7 Federal, state, and city government responses were

comparatively delayed and variable, with most states having

stay-at-home orders5 declared by the end of March. In South

America, Brazil, Chile, and Peru are the highest affected countries

as of 12 July and they used differing quarantine policies.8 Brazil’s

first case was reported in the last week of February and the coun-

try went into a state of partial quarantine on 24 March. Chile

declared a state of disaster for 90 days in the first week of March,

and the military was deployed to enforce quarantine measures. In

Peru, a nationwide curfew was used much later, on March 19.

Given the available COVID-19 data for the infected case count

by country andworldwide, it is seen that the infection growth curve

also showed significantly diverse behavior globally. In some coun-

tries, the infected case count peakedwithin amonth and showeda

subsequent decline, while in certain other countries, it was seen to

increase for much longer before plateauing. In some of the highly

affected countries, the infected count has not yet reached a

plateau and the number of daily active cases continues to increase

or remain stagnant as of July 12, 2020. The disparity of the coun-

tries’ responses is compounded by commensurate disparity in

their effectiveness in controlling the severity of infectious spread.

This, together with standard challenges in epidemiological

modeling and certain unusual features of the disease itself (such

as the possibility of individuals to remain asymptomatic yet infec-

tious for up to 2 weeks) create severe difficulty in interpreting the

policies or to draw lessons for future outbreaks.

Here, we focus on compartment-based modeling, a widely

used tool in epidemiology. The earliest version of the compart-

ment model was the SIR (Susceptible-Infected-Recovered)

model.9 Two major assumptions of this class of models are (1)

homogeneity and (2) the law of mass action, which states that

the rate of change of compartment population at the next time

step is proportional to the compartment population at the current

time step;10 hence, compartmental models typically result in a

set of coupled ordinary differential equations (ODEs) governing

the populations. These simplifying assumptions make the

compartment models weaker than the other class of models

called agent-based models, which are used to simulate autono-

mous agents and their interactions within a constrained environ-

ment (see Gallagher and Baltimore11 and references therein for a

detailed Introduction). Although it is easier to incorporate hetero-

geneity in agent-based models, the significant advantage of

compartment modeling is interpretability. This is because phys-

ically meaningful information about the system, such as the

reproduction number,12 can be extracted directly from the

ODEs. Stochastic variations of compartment-based models13–

15 and Bayesian approaches16 have also been studied.

For analyzing different aspects of the COVID-19 outbreak,

compartment-based models that are based on the SEIR (Sus-

ceptible-Exposed-Infected-Recovered) framework have been

used widely.17–22 From such studies, it is seen that, although

increasing the number of compartments results in more realistic

behavior, the model then becomes less identifiable; i.e., it be-
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comes progressively more difficult to uniquely determine param-

eters from the data.23 For example, while analyzing the COVID-

19 outbreak for Wuhan, China, it has been shown in a recent

study23 that the large number of parameters in the SEIR models

makes it less reliable than the simpler SIR models.

To deal with the aforementioned disparity between government

responses and outcomes to the COVID-19 pandemic, several

models studied the effect of quarantine/lockdown measures on

the evolution of the disease.18,21–24 Existing models generally

d lack independent estimation: using parameters based on

previous knowledge of SARS/MERS coronavirus epidemi-

ology and not derived independently from the COVID-19

data or parameters, such as rate of detection, nature of

government response fixed before running the model; or

d lack global applicability: they are not implemented on a

global scale; or

d lack interpretability, as we defined it earlier.

In this paper, we propose a globally scalable, interpretable

compartment-based model with entirely independent parameter

estimation through a novel approach: augmenting a first princi-

ples-derived epidemiological model with a data-driven module,

implemented as a neural network. Previous approaches of func-

tional quantification through data involve probabilistic methods,

such as variational inference25–34 and variational Gaussian pro-

cesses,35 which do not incorporate knowledge of the ODEs gov-

erning the system under consideration. We leverage our model

to quantify the quarantine strengths and analyze and compare

the role of quarantine control policies used to control the virus

effective reproduction number17,36–41 in the European, North

American, South American, and Asian continents. In the SEIR

model,42–44 the population is divided into the susceptible S,

exposed E, infected I, and recovered R groups, and their relative

growths and competition are represented as a set of coupled

ODEs; whereas the simpler SIR model does not account for

the exposed population E. These models cannot capture the

large-scale effects of more granular interactions, such as the

population’s response to social distancing and quarantine pol-

icies. However, a major assumption of these models is that the

rate of transitions between population states is fixed. In our

approach, we relax this assumption by estimating the time-

dependent quarantine effect on virus exposure as a neural

network informs the infected variable I in the SIR model. This

trained model thus decomposes the effects and the neural

network encodes information about the quarantine strength

function in the locale where the model is trained.

In general, neural networks with arbitrary activation functions

are universal approximators.45–47 Unbounded activation func-

tions, in particular, such as the rectified linear unit (ReLU) has

been known to be effective in approximating nonlinear functions

with a finite set of parameters.48–50 Thus, a neural network solu-

tion is attractive to approximate quarantine effects in combina-

tion with analytical epidemiological models. The downside is

that the presence of the neural network term as a component

of the ODEs results in limited interpretability. The recently

emerging field of scientific machine learning51 exploits conser-

vation principles within a universal differential equation,52 SIR

in our case, to mitigate overfitting and other related machine

learning risks.
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In the present work, the neural network is trained from publicly

available infection and population data for COVID-19 for a spe-

cific region under study; results for which are provided in the

next section followed by a Discussion. Details of the model esti-

mation procedure and parameter inference are presented in the

Experimental Procedures.
RESULTS

Standard SIR Model
The classic SIR epidemiological model is a standard tool for

basic analysis concerning the outbreak of epidemics. In this

model, the entire population is divided into three sub-popula-

tions: susceptible S; infected I; and recovered R. The sub-popu-

lations’ evolution is governed by the following system of three

coupled nonlinear ODEs:

dSðtÞ
dt

= � b SðtÞ IðtÞ
N

; (Equation 1)

dIðtÞ
dt

=
b SðtÞ IðtÞ

N
� gIðtÞ; (Equation 2)

dRðtÞ
dt

= gIðtÞ: (Equation 3)

Here, b and g are the infection and recovery rates, respectively,

and are assumed to be constant in time. The total populationN=

SðtÞ+ IðtÞ+RðtÞ is seen to remain constant as well; that is, births

and deaths (unrelated to the disease) are neglected. The recov-

ered population is to be interpreted as those who can no longer

infect others; so it also includes individuals deceased due to the

infection. The possibility of recovered individuals to become re-

infected is accounted for by SEIS (Susceptible-Exposed-In-

fected-Susceptible)models,53 but we do not use this model

here, as the negligibly few reinfection cases for COVID-19 have

been recorded as of now. The reproduction number Rt in the

SEIR and SIR models is defined as

Rt =
b

g
: (Equation 4)

An important assumption of the SIR models is homogeneous

mixing among the sub-populations. Therefore, this model cannot

account for social distancing or social network effects. In addition,

themodel assumes uniformsusceptibility and disease progress for

every individual; and that no spreading occurs through animals or

other non-humanmeans. Alternatively, theSIRmodelmaybe inter-

preted as quantifying the statistical expectations on the respective

mean populations, while deviations from the model’s assumptions

contribute to statistical fluctuations around the mean.
Augmented QSIR Model
To study the effect of quarantine control globally, we start with the

SIR epidemiological model. Figure 1A shows the schematic of the

modified SIR model, the QSIR model, which we consider. We

augment the SIR model by introducing a time varying quarantine

strength rate term QðtÞ and a quarantined population TðtÞ, which

is prevented from having any further contact with the susceptible
population. Thus, the term IðtÞ denotes the infected population still

having contact with the susceptibles, as done in the standard SIR

model; while the term TðtÞ denotes the infected population who

are effectively quarantined and isolated. Further we introduce an

additional recovery rate d which quantifies the rate of recovery

of the quarantined population. Thus, we can write an expression

for the quarantined infected population TðtÞ as
dTðtÞ
dt

= QðtÞIðtÞ � dTðtÞ: (Equation 5)

Based on the modified model, we define a COVID-19 spread

parameter in a similar way to the reproduction number defined

in the SIR model (Equation 4) as

CpðtÞ = b

g+ d+QðtÞ : (Equation 6)

Cp>1 indicates that infections are being introduced into the

population at a higher rate than they are being removed, lead-

ing to rapid spread of the disease. On the other hand, Cp<1 in-

dicates that the COVID-19 spread has been brought under con-

trol in the region of consideration. Since QðtÞ does not follow

from first principles and is highly dependent on local quarantine

policies, we devised a neural network-based approach to

approximate it.

Recently, it has been shown that neural networks can be used

as function approximators to recover unknown constitutive rela-

tionships in a system of coupled ODEs.52,54 Following this prin-

ciple, we represent QðtÞ as an n layer-deep neural network

with weights W1;W2.Wn, activation function r, and the input

vector U= ðSðtÞ; IðtÞ;RðtÞÞ as
QðtÞ = rðWnrðWn�1.rðW1UÞÞÞhNNðW;UÞ: (Equation 7)

For the implementation, we choose an n = 2-layer densely

connected neural network with 10 units in the hidden layer and

the ReLU activation function. This choice was because we found

sigmoidal activation functions to stagnate. The final model is

described by a total of 54 tunable parameters. The neural

network architecture schematic is shown in Figure 1B. The gov-

erning coupled ODEs for the QSIR model are

dSðtÞ
dt

= � b SðtÞ IðtÞ
N

; (Equation 8)

dIðtÞ
dt

=
b SðtÞ IðtÞ

N
�ðg + QðtÞÞIðtÞ

=
b SðtÞ IðtÞ

N
�ðg + NNðW;UÞÞIðtÞ; (Equation 9)

dRðtÞ
dt

= gIðtÞ+ dTðtÞ; (Equation 10)

dTðtÞ
dt

= QðtÞ IðtÞ � dTðtÞ=NNðW;UÞ IðtÞ � dTðtÞ: (Equation 11)

More details about the model initialization and parameter esti-

mation methods is given in the Experimental Procedures. In all

cases considered below, we trained the model using data
Patterns 1, 100145, December 11, 2020 3



Figure 1. Illustration of the QSIR Model and

Neural Network Architecture

(A) Schematic of the augmented QSIR model

considered in the present study.

(B) Schematic of the neural network architecture

used to learn the quarantine strength function QðtÞ.
Here, TðtÞ represents the quarantined infected

population prescribed by the quarantine strength

rate QðtÞ.
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starting from the dates when the 500th infection was recorded in

each region and up to June 1, 2020.

Interpretation of QðtÞ
QðtÞ denotes the rate at which infected persons are effectively

quarantined and isolated from the remaining population, and

thus gives composite information about (1) the effective testing

rate of the infected population as the disease progressed and (2)

the intensity of the enforced quarantine as a function of time. To

understand the nature of evolution of QðtÞ, we look at the time

point whenQðtÞ approximately shows an inflection point or a sud-

den increase in QðtÞ. An inflection point in QðtÞ indicates the time

when the rate of increase of QðtÞ, i.e., dQðtÞ=dt, was at its peak,

while a sudden increase corresponds to a sudden intensification

of quarantine policies used in the region under consideration.

Introduction ofQðtÞ in the SIR model has a similar effect as that

of having a time varying decreasing contact rate bðtÞ within the

population; which would simulate a lockdown situation. As a

result, although QðtÞ denotes infected population quarantine, the

way it is introduced in our augmented SIR model enables our

model to capture broad level population lockdown effects, without

burdening regressionwith additional parameters.Wedemonstrate

this ability of our model in the results of the subsequent sections.

Further, we define the quarantine efficiency, Qeff, as the

increase in QðtÞ within a month following the detection of

the 500th infected case in the region under consideration. Thus,

Qeff = Qð30Þ �Qð1Þ: (Equation 12)
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The magnitude of Qeff shows how

rapidly the infected individuals were pre-

vented from coming into contact with the

susceptibles in the first month following

the detection of the 500th infected case,

and is indicative of the quarantine respon-

siveness: the testing and tracing proto-

cols to identify and isolate infected

individuals.

Europe
Figure 2 shows the comparison of the

model-estimated infected and recovered

case counts with actual COVID-19 data

for the highest affected European coun-

tries as of June 1, 2020, namely: Russia,

the UK, Spain, and Italy, in that order.

We find that, irrespective of a small set

of optimized parameters (note that the

contact rate b and the recovery rate g
are fixed, and not functions of time), a reasonably good match

is seen in all four cases.

Figure 3 shows the evolution of the neural network learnt quar-

antine strength function QðtÞ for the considered European na-

tions. Inflection points in QðtÞ are seen for the UK, Spain, and

Italy at 14, 10, and 16 days, respectively, post detection of the

500th case, i.e., on March 23, March 15, and March 14, respec-

tively. This is in good agreement with nationwide quarantine

imposed on March 25, March 14, and March 9, in the UK, Spain,

and Italy, respectively.5,55,56

Figure 16A shows the comparison of the contact rate b, quar-

antine efficiency as defined in the beginning of this subsection,

and the recovery rate g. It should be noted that the contact

and recovery rates are assumed to be constant in our model,

in the duration spanning the detection of the 500th infected

case and June 1, 2020. The average contact rate in Spain and

Italy is seen to be higher than Russia and the UK over the consid-

ered duration of 2–3 months, possibly because Russia and the

UK were affected relatively late by the virus, which gave suffi-

cient time for the enforcement of strict social distancing proto-

cols before widespread outbreak. For Spain and Italy, the quar-

antine efficiency and also the recovery rate are generally higher

than for Russia and the UK, possibly indicating more efficient

testing, isolation, and quarantine, and hospital practices in Spain

and Italy. This agrees well with the ineffectiveness of testing,

contact tracing, and quarantine practices seen in the UK.57

Although the social distancing strength also varied with time,

we do not focus on that aspect in the present study, and it will



Figure 2. Europe: Infected and Recovered

COVID-19 Case Count Evolution

COVID-19 infected and recovered evolution

compared with our neural network augmented

model prediction in the highest affected European

countries as of June 1, 2020.
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be the subject of future studies. A higher quarantine efficiency

combined with a higher recovery rate led Spain and Italy to bring

down the COVID-19 spread parameter (defined in Equation 6),

Cp from >1 to <1 in 16 and 25 days, respectively, as compared

with 32 days for the UK and 42 days for Russia (Figure 4).

Quarantine Efficiency Map for Europe

Figure 5 shows Qeff for the 23 highest affected European coun-

tries. We can see that Qeff in the western European regions is

generally higher than in eastern Europe. This can be attributed

to the strong quarantine response measures implemented in

western countries, such as Spain, Italy, Germany, and France af-

ter the rise of infections seen first in Italy and Spain.58 Although

countries, such as Switzerland and Turkey did not enforce a

strict quarantine response as compared with their west Euro-

pean counterparts, they were generally successful in halting

the infection count before reaching catastrophic proportions,

due to strong testing and tracing protocols.59,60 Subsequently,

these countries also managed to identify potentially infected in-

dividuals and prevented them from coming into contact with sus-

ceptibles, giving them a high Qeff score as seen in Figure 5. In

contrast, our study also manages to identify countries like Swe-

den, which had very limited quarantine measures,61 with a low

Qeff score as seen in Figure 5. This strengthens the validity of

our model in diagnosing information about the effectiveness of

quarantine and isolation protocols in different countries, which

agrees well with the actual protocols seen in these countries.

USA
Figure 6 shows reasonably goodmatch between the model-esti-

mated infected and recovered case counts with actual COVID-

19 data for the highest affected North American states (including

states fromMexico, the United States, andCanada) as of June 1,

2020, namely: New York, New Jersey, Illinois, and California.

QðtÞ for New York and New Jersey show a ramp-up point imme-

diately in the week following the detection of the 500th case in
these regions, i.e., on March 19 for New

York and onMarch 24 for New Jersey (Fig-

ure 7). This matches well with the actual

dates: March 22 in New York and March

21 in New Jersey when stay-at-home or-

ders and isolation measures were en-

forced in these states. A relatively slower

rise ofQðtÞ is seen for Illinois, while Califor-

nia showed a ramp-up post a week after

detection of the 500th case. Although no

significant difference is seen in the mean

contact and recovery rates between the

different US states, the quarantine effi-

ciency in New York and New Jersey is

seen to be significantly higher than that of

Illinois and California (Figure 16B), indi-
cating the effectiveness of the rapidly deployed quarantine inter-

ventions in New York and New Jersey.62 Owing to the high quar-

antine efficiency in New York and New Jersey, these states were

able to bring down the COVID-19 spread parameter, Cp to less

than 1 in 19 days (Figure 8). On the other hand, although Illinois

and California reached close to Cp = 1 after the 30 day and

20 day mark, respectively, Cp still remained greater than 1 (Fig-

ure 8), indicating that these states were still in the danger zone as

of June 1, 2020. An important caveat to this result is the reporting

of the recovered data.

Compared with Europe, the recovery rates seen in North

America are significantly lower (Figures 16A and 16B). It should

be noted that accurate reporting of recovery rates is likely to

play a major role in this apparent difference. In our study, the

recovered data include individuals who cannot further transmit

infection; and thus includes treated patients who are currently

in a healthy state and also individuals who died due to the virus.

Since quantification of deaths can be done in a robust manner,

the death data are generally reportedmore accurately. However,

there is no clear definition for quantifying the number of people

who transitioned from infected to healthy. As a result, accurate

and timely reporting of recovered data is seen to have a signifi-

cant variation between countries, underreporting of the recov-

ered data being a common practice. Since the effective repro-

duction number calculation depends on the recovered case

count, accurate data regarding the recovered count are vital to

assess whether the infection has been curtailed in a particular re-

gion or not. Thus, our results strongly indicate the need for each

country to follow a particular metric for estimating the recovered

count robustly, which is vital for data-driven assessment of the

pandemic spread.

Quarantine Efficiency Map for the USA

Figure 9A shows the quarantine efficiency for 20 major US states

spanning the whole country. Figure 9B shows the comparison

between a report published in the Wall Street Journal on May
Patterns 1, 100145, December 11, 2020 5



Figure 3. Europe: Quarantine Strength Evolu-

tion in Response to COVID-19

Quarantine strength QðtÞ learnt by the neural

network in the highest affected European countries

as of June 1, 2020. The transition from the red to

blue shaded regions indicates the COVID-19 spread

parameter of value Cp<1 leading to halting of the

infection spread. The green dashed line indicates

the time when quarantine measures were im-

plemented in the region under consideration, which

generally matches well with an inflection point seen

in the QðtÞ plot denoted by the red dashed line. For

regions in which a clear inflection or ramp-up point

is not seen (Russia), the red dashed line is

not shown.
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21 highlighting USA states based on the quarantine measure

strength,63 and the quarantine efficiency magnitude in our study.

The size of the circles represents the magnitude of the quaran-

tine efficiency. The blue color indicates the states for which the

quarantine efficiency was greater than the mean quarantine effi-

ciency across all US states, while those in red indicate the oppo-

site. Our results indicate that the north-eastern and western

states were much more responsive in implementing rapid quar-

antine measures in the month following early detection; as

compared with the southern and central states. This matches

the on-ground situation as indicated by a generally strong corre-

lation, which is seen between the red circles in our study (states

with lower quarantine efficiency) and the yellow regions seen in in

the Wall Street Journal report63 (states with reduced imposition

of restrictions) and between the blue circles in our study (states

with higher quarantine efficiency) and the blue regions seen in

theWall Street Journal report63 (states with generally higher level

of restrictions). This strengthens the validity of our approach in

which the quarantine efficiency is recovered through a trained

neural network rooted in fundamental epidemiological

equations.
Asia
Figure 10 shows reasonably good match between the model-

estimated infected and recovered case count with actual

COVID-19 data for the highest affected Asian countries as of

June 1, 2020, namely: India, China, and South Korea.QðtÞ shows

a rapid ramp-up in China and South Korea (Figure 11), which

agrees well with cusps in government interventions which took

place in the weeks leading up to and after the end of January4

and February64 for China and South Korea, respectively. On

the other hand, a slow buildup of QðtÞ is seen for India, with no

significant ramp-up. This is reflected in the quarantine efficiency
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comparison (Figure 16C), which is much

higher for China and South Korea

compared with India. South Korea shows

a significantly lower contact rate than its

Asian counterparts, indicating strongly en-

forced and followed social distancing pro-

tocols.65 No significant difference in the re-

covery rate is observed between the Asian

countries. Owing to the high quarantine ef-
ficiency in China and a high quarantine efficiency coupled with

strongly enforced social distancing in South Korea, these coun-

tries were able to bring down the COVID-19 spread parameter

Cp from >1 to <1 in 21 and 13 days, respectively, while it took

33 days in India (Figure 12).

South America
Figure 13 shows reasonably good match between the model-

estimated infected and recovered case count with actual

COVID-19 data for the highest affected South American coun-

tries as of June 1, 2020, namely: Brazil, Chile, and Peru. For

Brazil, QðtÞ is seen to be approximately constant z0 initially

with a ramp-up around the 20 day mark; after which QðtÞ is

seen to stagnate (Figure 14). The key difference between the

COVID-19 progression in Brazil compared with other nations is

that the infected and the recovered (recovered healthy + dead

in our study) count is very close to one another as the disease

progressed (Figure 13). Owing to this, as the disease pro-

gressed, the new infected people introduced in the population

were balanced by the infected people removed from the popula-

tion, either by being healthy or deceased. This higher recovery

rate combined with a generally low quarantine efficiency and

contact rate (Figure 16D) manifests itself in the COVID-19 spread

parameter for Brazil to be <1 for almost the entire duration of the

disease progression (Figure 15). For Chile, QðtÞ is almost con-

stant for the entire duration considered (Figure 14). Thus,

although government regulations were imposed swiftly following

the initial detection of the virus, leading to a high initial magnitude

ofQðtÞ, the government imposition became subsequently

relaxed. This may be attributed to several political and social fac-

tors outside the scope of the present study.66 Even for Chile, the

infected and recovered count remain close to each other

compared with other nations. A generally high quarantinemagni-

tude coupled with amoderate recovery rate (Figure 16D) leads to



Figure 4. Europe: COVID-19 Spread Param-

eter Evolution in Response to COVID-19

Control of COVID-19 quantified by the COVID-19

spread parameter evolution in the highest affected

European countries as of June 1, 2020. The transi-

tion from the red to blue shaded regions indicates

Cp<1 leading to halting of the infection spread.

ll
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Cp being <1 for the entire duration of disease progression (Fig-

ure 15). In Peru, QðtÞ shows a very slow build up (Figure 14)

with a very low magnitude. Also, the recovered count is lower

than the infected count compared with its South American coun-

terparts (Figure 13). A low quarantine efficiency coupled with a

low recovery rate (Figure 16D) leads Peru to be in the danger

zone (Cp>1) for 48 days post detection of the 500th case

(Figure 15).
DISCUSSION

Our model captures the infected and recovered counts for highly

affected countries in Europe, North America, Asia, and South

America reasonably well, and is thus globally applicable. Along

with capturing the evolution of infected and recovered data,

the novel machine learning-aided epidemiological approach al-

lows us to extract valuable information regarding the quarantine
Figure 5. Europe: Quarantine Efficiency

Heatmap

Quarantine efficiency, Qeff defined in (Equation 12)

for the 23 highest affected European countries.

Note that Qeff is indicative of the quarantine

responsiveness: the testing and tracing protocols to

identify and isolate infected individuals. The map

also shows the demarcation between countries with

a high Qeff shown by a green dotted line and those

with a low Qeff shown by a red dotted line.
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Figure 6. USA: Infected and Recovered

COVID-19 Case Count Evolution

COVID-19 infected and recovered evolution

compared with our neural network augmented

model prediction in the highest affected USA states

as of June 1, 2020.

ll
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policies, the evolution of COVID-19 spread parameter Cp, the

mean contact rate (social distancing effectiveness), and the re-

covery rate. Thus, it becomes possible to compare across

different countries, with the model serving as an important diag-

nostic tool.

Our results show a generally strong correlation between

strengthening of the quarantine controls, i.e., increasing QðtÞ
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as learnt by the neural network model; actions taken by the re-

gions’ respective governments; and decrease of the COVID-19

spread parameter Cp for all continents considered in the present

study.

Based on the COVID-19 data collected (details in the Experi-

mental Procedures), we note that accurate and timely reporting

of recovered data is seen to have a significant variation between
Figure 7. USA: Quarantine Strength Evolu-

tion in Response to COVID-19

Quarantine strength QðtÞ learnt by the neural

network in the highest affected USA states as of

June 1, 2020. The transition from the red to blue

shaded regions indicates the COVID-19 spread

parameter of value Cp<1 leading to halting of the

infection spread. The green dashed line indicates

the time when quarantine measures were im-

plemented in the region under consideration, which

generally matches well with an inflection point (for

New York, New Jersey, and Illinois) or a ramp-up

point (California) seen in theQðtÞ plot denoted by the

red dashed line.



Figure 8. USA: COVID-19 Spread Parameter

Evolution in Response to COVID-19

Control of COVID-19 quantified by the COVID-19

spread parameter evolution in the highest affected

USA states as of June 1, 2020. The transition from

the red to blue shaded regions indicates Cp<1

leading to halting of the infection spread.

ll
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countries; with under reporting of the recovered data being a

common practice. In the North American countries, for example,

the recovered data are significantly lower than in the European

and Asian counterparts. Thus, our results strongly indicate the

need for each country to follow a particular metric for estimating

the recovered count robustly, which is vital for data-driven

assessment of the pandemic spread.

The key highlights of our model are: (1) it is highly interpret-

able with few free parameters rooted in an epidemiological
model, (2) its reliance on only COVID-19 data and not on pre-

vious epidemics, and (3) it is highly flexible and adaptable to

different compartmental modeling assumptions. In particular,

our method can be readily extended to more complex

compartmental models, including hospitalization rates, testing

rates, and distinction between symptomatic and asymptom-

atic individuals. Thus, the methodology presented in the pre-

sent study can be readily adapted to any province, state, or

country globally; making it a potentially useful tool for policy
Figure 9. USA: Quarantine Efficiency Heat-

map and Its Comparison with Ground Truth

Data

(A) Quarantine efficiency, Qeff defined in (Equa-

tion 12) for 20 major USA states. Note that Qeff is

indicative of the quarantine responsiveness: the

testing and tracing protocols to identify and isolate

infected individuals.

(B) Comparison between a report published in the

Wall Street Journal on May 2163 and the quarantine

efficiency magnitude in our study. A generally

strong correlation is seen between the magnitude of

quarantine efficiency in our study and the level of

restrictions actually imposed in different USA

states.
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Figure 10. Asia: Infected and Recovered

COVID-19 Case Count Evolution

COVID-19 infected and recovered evolution

compared with our neural network augmented

model prediction in the highest affected Asian

countries as of June 1, 2020.

ll
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makers in event of future outbreaks or a relapse in the cur-

rent one.

Finally, we have hosted our quarantine diagnosis results

for the top 70 affected countries worldwide on a public plat-

form (https://covid19ml.org/or https://rajdandekar.github.io/

COVID-QuarantineStrength/), which can be used for informed

decision making by public health officials and researchers

alike. We believe that such a publicly available global tool will

be of significant value for researchers who want to study the
10 Patterns 1, 100145, December 11, 2020
correlation between the quarantine strength evolution in a

particular region with a wide range of metrics spanning from

mortality rate to socio-economic landscape impact of

COVID-19 in that region.

Currently, our model lacks forecasting abilities. To do robust

forecasting based on previous data available, the model needs

to be further augmented through coupling with real-time metrics

parameterizing social distancing, e.g., the publicly available Ap-

ple mobility data.67 This could be the subject of future studies.
Figure 11. Asia: Quarantine Strength Evolu-

tion in Response to COVID-19

Quarantine strength QðtÞ learnt by the neural

network in the highest affected Asian countries as of

June 1, 2020. The transition from the red to blue

shaded regions indicates the COVID-19 spread

parameter of value Cp<1 leading to halting of the

infection spread. The green dashed line indicates

the time when quarantine measures were im-

plemented in the region under consideration, which

generally matches well with a ramp-up point seen in

the QðtÞ plot denoted by the red dashed line. For

regions in which a clear inflection or ramp-up point

is not seen (India), the red dashed line is not shown.

https://covid19ml.org/
https://rajdandekar.github.io/COVID-QuarantineStrength/
https://rajdandekar.github.io/COVID-QuarantineStrength/


Figure 12. Asia: COVID-19 Spread Parameter

Evolution in Response to COVID-19

Control of COVID-19 quantified by the COVID-19

spread parameter evolution in the highest affected

Asian countries as of June 1, 2020. The transition

from the red to blue shaded regions indicates Cp<1

leading to halting of the infection spread.
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EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources should be directed towards

Professor George Barbastathis, MIT. Email: gbarb@mit.edu.

Materials Availability

All the results of our work are hosted publicly at covid19ml.org. Preliminary

versions of this work can be found at medRxiv 2020.04.03.20052084

and arXiv:2004.02752.
Data and Code Availability

Data for the infected and recovered case count in all regions was obtained

from the Center for Systems Science and Engineering (CSSE) at Johns Hop-

kins University. All code files are available at https://github.com/

RajDandekar/MIT-Global-COVID-Modelling-Project-1. All results are publicly

hosted at https://covid19ml.org/or https://rajdandekar.github.io/COVID-

QuarantineStrength/.

Augmented QSIR Model: Initial Conditions

The starting point t = 0 for each simulation was the day at which 500 infected

cases were crossed, i.e., I0z500. The number of susceptible individuals
Figure 13. South America: Infected and

Recovered COVID-19 Case Count Evolution

COVID-19 infected and recovered evolution

compared with our neural network augmented

model prediction in the highest affected South

American countries as of June 1, 2020.
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Figure 14. South America: Quarantine

Strength Evolution in Response to COVID-19

Quarantine strength QðtÞ learnt by the neural

network in the highest affected South American

countries as of June 1, 2020. The transition from the

red to blue shaded regions indicates the COVID-19

spread parameter of valueCp<1 leading to halting of

the infection spread. The green dotted line indicates

the time when quarantine measures were im-

plemented in the region under consideration.
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was assumed to be equal to the population of the considered region. Also, in all

simulations, the number of recovered individuals was initialized from data at

t = 0 as defined above. The quarantined population TðtÞ is initialized to a small

number Tðt = 0Þz10.
Augmented QSIR Model: Parameter .Estimation

The time-resolved data for the infected, Idata and recovered, Rdata for each

locale considered were obtained from the CSSE at Johns Hopkins University.

The neural network augmented SIRODE systemwas trained byminimizing the

mean square error loss function
12 Patterns 1, 100145, December 11, 2020
LNNðW; b;g; dÞ =
�
�
�

�
�
�logðIðtÞ + TðtÞÞ� logðIdataðtÞÞ

�
�
�j2 +

�
�
�

�
�
�logðRðtÞÞ � logðRdataðtÞÞ

�
�
�
�j2;

(Equation 13)

which includes the neural network’s weights W. For most of the regions

under consideration, W; b;g; d were optimized by minimizing the loss func-

tion given in (Equation 13). Minimization was employed using local adjoint

sensitivity analysis54,68 following a similar procedure outlined in a recent

study52 with the ADAM optimizer,69 with a learning rate of 0.01. The
Figure 15. South America: COVID-19 Spread

Parameter Evolution in Response to COVID-

19

Control of COVID-19 quantified by the COVID-19

spread parameter evolution in the highest affected

South American countries as of June 1, 2020. The

transition from the red to blue shaded regions in-

dicates Cp<1 leading to halting of the infection

spread.



Figure 16. COVID-19 Spread and Subsequent

Response ofMajorly AffectedContinents and

Countries Therein

Global comparison of infection, recovery rates, and

quarantine efficiency.
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iterations required for convergence varied based on the region considered

and generally ranged from 40,000 to 100,000. For regions with a low

recovered count: all US states and the UK, we used a two-stage optimi-

zation procedure to find the optimal W; b; g; d. In the first stage, (Equa-

tion 13) was minimized. For the second stage, we fix the optimal g; d found

in the first stage to optimize for the remaining parameters: W; b based on

the loss function defined just on the infected count as LðW; bÞ =�
�
�

�
�
�logðIðtÞ +TðtÞÞ� logðIdataðtÞÞ

�
�
�j2. In the second stage, we do not include

the recovered count RðtÞ in the loss function, since RðtÞ depends on g;

d, which have already been optimized in the first stage. By placing more

emphasis on minimizing the infected count, such a two-stage procedure

leads to much more accurate model estimates; when the recovered

data count is low. The iterations required for convergence in both stages

varied based on the region considered and generally ranged from 30,000

to 100,000.

Parameter Inference: Gaussian Process Residue Model

To validate the robustness of the model and the uniqueness of the param-

eters recovered by the model, we consider a Gaussian process residue

model for uncertainty quantification. Gaussian processes have emerged

as a useful tool for regression, classification, clustering, and uncertainty

quantification.70,71 Gaussian process regression can be viewed as a

Bayesian inference problem where we want to recover the posterior for

the regression function that best approximates the training data. The nov-

elty of such an approach stems from using the previous probability distri-
bution over a function space rather than from a finite parametric system.

Each realization of such a function is a multivariate normal distribution,

which allows for exact estimation of the posterior distribution. The covari-

ance underlying the function space distribution is specified by the kernel

function. The kernel function affects the shape and noise of the resulting

posterior distribution. In the present study, we fit a Gaussian process

regression model between the error resulting from the best fit model

(described in earlier in the section on the augmented QSIR model and

optimized using the method described in the previos section) and the

data. For the previous over the function space, we use a mean of zero

and variance described by a squared exponential kernel with a lengthscale

of 1 and a significantly high signal standard deviation of Oð104Þ, which al-

lows for noisy estimates of the posterior. Such a fitted model for the in-

fected and recovered case count for Russia is shown in Figure 17. It

should be noted that the recovered optimal posterior is not a deterministic

function, but a distribution over function spaces. Subsequently, we

sampled 500 error residues from this model and superimposed them on

the best fit predictions to simulate 500 samples of the infected and recov-

ered case count data. Finally, we applied our model described in the sec-

tion on the augmented QSIR model and optimized using the method

described in the previous section for these samples. Figure 18 shows in-

ferred parameters for 500 realizations of the Gaussian process residue

model superimposed on the best fit model prediction applied to Russia

and shown for (1) the quarantine strength functionQðtÞ, (2) the contact

rate b, and (3) the recovery rate g+ d. It can be seen that, for all
Figure 17. Gaussian Process Residue

Regression Model

Gaussian process residue model fitted to (A) the

infected case count and (B) the recovered case

count for Russia.
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Figure 18. Parameter Inference to Demonstrate Robustness of QSIR Model Recovered Parameters

Inferred parameters for 500 realizations of theGaussian process residuemodel superimposed on the best fit model prediction applied to Russia and shown for (A)

the quarantine strength function QðtÞ, (B) the contact rate b, and the recovery rate g+ d. A total of 30 million iterations were performed on the MIT Supercloud

cluster to generate parameter histograms for one country.

ll
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realizations, QðtÞ is seen to follow a similar behavior, which lies close to

the best fit model prediction. In addition, the inferred histograms for the

contact rate b and the recovery rate g+ d show a peak that is close to

the best fit model prediction. This further validates the robustness of the

model and strengthens the uniqueness of the parameters recovered by

the model. Similar figures for all other countries are shown in the Supple-

mental Information.

A total of 30 million iterations were performed on the MIT Supercloud

cluster to generate parameter histograms for one country.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100145.
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