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Optical cryptography with 
biometrics for multi-depth objects
Aimin Yan1, Yang Wei1, Zhijuan Hu1, Jingtao Zhang1, Peter Wai Ming Tsang2 &  
Ting-Chung Poon3

We propose an optical cryptosystem for encrypting images of multi-depth objects based on the 
combination of optical heterodyne technique and fingerprint keys. Optical heterodyning requires 
two optical beams to be mixed. For encryption, each optical beam is modulated by an optical mask 
containing either the fingerprint of the person who is sending, or receiving the image. The pair of optical 
masks are taken as the encryption keys. Subsequently, the two beams are used to scan over a multi-
depth 3-D object to obtain an encrypted hologram. During the decryption process, each sectional image 
of the 3-D object is recovered by convolving its encrypted hologram (through numerical computation) 
with the encrypted hologram of a pinhole image that is positioned at the same depth as the sectional 
image. Our proposed method has three major advantages. First, the lost-key situation can be avoided 
with the use of fingerprints as the encryption keys. Second, the method can be applied to encrypt 
3-D images for subsequent decrypted sectional images. Third, since optical heterodyning scanning is 
employed to encrypt a 3-D object, the optical system is incoherent, resulting in negligible amount of 
speckle noise upon decryption. To the best of our knowledge, this is the first time optical cryptography 
of 3-D object images has been demonstrated in an incoherent optical system with biometric keys.

Information security has become a practical and serious issue with the increasing growth of internet and tel-
ecommunications. Optical information encryption techniques have attracted the interest of many researchers 
because of their unique advantages, such as multi-dimensional capability1,2. Since double random phase encoding 
(DRPE)3 was proposed, many encryption methods, such as fractional Fourier transform4, Fresnel transform5, 
digital holography6 and polarization7, have been further developed in order to enhance cryptosystem security. 
However, DRPE has been found to be quite vulnerable8,9. Recently, optical asymmetric cryptosystems, such as 
phase-truncated fractional Fourier transform10 and Yang-Gu algorithm11, have been proposed to solve the inher-
ent issue in symmetric cryptosystems. Optical asymmetric key cryptosystems break the linearity of the DRPE 
technique and make the security system more reliable. Subsequently, asymmetric cryptosystems based on gyrator 
wavelet transform, fractional Fourier transform and joint transform correlator architecture12–14 have been devel-
oped and optical cryptosystem security is further improved.

Biometric information authentication is also emerging as an important research field in the domain of opti-
cal security. Tashima et al.15 and Takeda et al.16 have proposed the encryption methods using fingerprint keys 
with DRPE to avoid some attacks and improve security. In traditional cryptography, key is not strongly linked 
with its owner. This results in difficulty for the user to remember a long decryption key or in the situation where 
the private key is lost and hence a new set of private and public keys have to be generated again in the case of 
asymmetrical cryptography. Biometrics, such as fingerprint, face and iris, is one of the most trustworthy con-
cerns with high degree of assurance for person verification. Hence, researchers are trying to integrate biometrics 
with cryptography. However, most of the biometric authentication techniques are geared towards encrypting 
2-D information such as image and digital data. Practically, there is a growing demand to utilize 3-D information 
of the object with the advent of 3-D imaging. For example, 3-D information can be encrypted by use of digital 
holography17–20. But it is difficult to encrypt a large 3-D object by conventional digital holography because of the 
finite size of pixels in a recording CCD camera21. Chen et al.22 have demonstrated asymmetric cryptography using 
3-D space-based model, and it was shown that conventional 2-D processing can be converted into 3-D space. 
Yang et al.23 introduced an encryption algorithm for 3-D information using optical asymmetric keys and digital 
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interferometry. However, most of the optical encryption techniques have been coherent optical techniques which 
inherently have poor signal-to-noise ratio (S/N) compared to their incoherent counterparts24. Poon et al.25 have 
proposed optical scanning cryptography (OSC) to encrypt information incoherently based on optical scanning 
holography (OSH)26. Its first experiment has been demonstrated recently together with biometric encryption and 
decryption9. Although the S/N of the decrypted image is enhanced, the method has been developed only to the 
encryption of 2-D planar images.

In this work, we propose novel optical cryptography with biometric keys for encrypting multi-depth 3-D 
objects. The proposed system is also incoherent, meaning speckles noise is absent from its encryption and decryp-
tion of the 3-D object. To our knowledge, it is the first time an optical encryption system with such capabilities 
is successfully developed and reported. Organization of the paper is given as follows. In the next section, the 
framework and theory of our cryptographic system are described. Subsequently, we shall describe our proposed 
method for encrypting 3-D object images based on the cryptographic framework. Next, experimental results are 
shown to demonstrate the feasibility of our approach, and finally in the last section, we make some concluding 
remarks.

General theory on proposed cryptosystem
In Fig. 1, we show an overall cryptosystem, where the optical system on the top presents a subsystem of optical 
encoding or encryption when the switch is at K1, and the optical system on the bottom shows an optical subsys-
tem for decryption when the switch is at K2. Note that the two subsystems basically are the same except that in the 
encryption system, 3-D object image of complex amplitude T(x, y; zc) to be encrypted, at coding distance zc away 
from the xy scanner, is scanned with the switch at K1, whereas in the decryption system, a pin hole, δ(x, y; zd), at 
zd away from the xy scanner, is scanned when the switch is at K2. The parameter zd is referred to as the ‘decoding 
distance’. In what follows, we discuss the general principle of the optical system.

Encryption theory. In the encryption system shown in Fig. 1, we have two encoding masks, p(x, y) and q(x, 
y). In practice, they can be loaded on spatial light modulators in the optical system. p(x, y) and q(x, y) are illu-
minated by plane waves at temporal frequencies ω0 and ω0 + Ω, respectively. The two fields after the two masks 
are combined by beamsplitter (BS) and projected onto input represented by complex amplitude distribution T(x, 
y; zc), which is located 2 f + zc away from p(x, y) with f being the focal length of Lens L. Again, zc is the coding 
distance. The distance from q(x, y) to the input is given by zq = zq0 + zc. The input is 2-D scanned by the combina-
tion of the two fields and this can be done, for example, by projecting the combined optical beams through an xy 
mirror-scanner onto the input, which is shown in Fig. 1. In the system, we have utilized different transforms for 
the two different encoding masks in order to add complexity to the overall system. We have Fresnel transform of 
q(x, y) along one optical path and then on the other optical path, we have Fourier transform of p(x, y), that is the 
spectrum of p(x, y) through Lens L. Therefore, the use of Fresnel transform of q(x, y) and the Fourier transform 
of p(x, y) are combined to encode the input. Mathematically, the field on input T(x, y; zc) due to p(x, y) is, besides 
some constant terms,
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Figure 1. Overall cryptosystem: BPF@Ω is an electronic bandpass filter tuned at frequency Ω.



www.nature.com/scientificreports/

3SCiENTifiC REPORTs | 7: 12933  | DOI:10.1038/s41598-017-12946-8

where the definition of Fourier transform is
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with kx and ky denoting spatial frequencies. Symbol * denotes convolution between the two functions21,26 and 
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 is the free space impulse response in Fourier optics21,26. Now, for the 

field on input T(x, y; zc) due to q(x, y), according to Fresnel diffraction, is
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where we have assumed equal optical path length (OPL) for both p x y( , ) and q x y( , ) for simplicity, i.e., we let 
zq = zq0 + zc = 2 f + zc.

The total scanning field on the object, according to equations (1) and (2) is, therefore, given by

ω ω= + + + + ΩS x y z P x y f z j t Q x y f z j t( , ; ) ( , ; 2 )exp( ) ( , ; 2 )exp[ ( ) ], (3)c c c0 0

and the field after the input transparency is S(x′, y′; zc)T(x′ + x, y′ + y; zc), where x = x(t) and y = y(t) represent the 
instantaneous 2-D position of the object during the action of xy-scanning. Finally, the photodetector (PD) gives 
the current output by spatially integrating the intensity:
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where A is the active area of the PD. After bandpass filtering of i(x, y; zc) at the heterodyne frequency Ω, the het-
erodyne current is
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is the current phasor, which contains the amplitude and phase information of iΩ(x, y; zc).
The phasor current above can be expressed in terms of correlation as follows:

= + + ⊗ | |Ω
⁎i x y z P x y f z Q x y f z T x y z( , ; ) ( , ; 2 ) ( , ; 2 ) ( , ; ) , (7)p c c c c

2
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Taking the Fourier transform of equation (7), we have
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We can now define the optical transfer function (OTF) of the system as

I I

I⁎ ⁎
= | |

= + +
.ΩOTF k k z i x y z T x y z

P x y f z Q x y f z
( , ; ) { ( , ; )}/ { ( , ; ) }

{ ( , ; 2 ) ( , ; 2 )} (8)
x y c p c c

c c

2

So the output heterodyne current from the PD can be expressed as, using equation (8),
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The amplitude and phase of the above current can be extracted conveniently by a lock-in amplifier as shown in 
Fig. 1 and the two final outputs, the in-phase component iI(x, y; zc) and the quadrature component iQ(x, y; zc) are 
as follows:
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A complex record of the coded or encrypted object can be constructed in a computer according to the follow-
ing complex relation:
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c  is called the encrypted hologram of the 3-D object, |T(x, y; zc)|2. It is clear from the above that the 
object intensity distribution, i.e., |T(x, y; zc)|2, is being processed and, therefore, the optical system is incoherent. 
The spectrum of the object is now processed or encrypted by the OTF given by equation (8).

The OTF in equation (8) can be expressed in terms of the two coding masks, p(x, y) and q(x, y), by using 
expressions P(x, y; 2f + zc) and Q(x, y; 2f + zc) from equations (1) and (2), respectively into equation (8). After 
some lengthy manipulations, we have
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This OTF is able to record holographically the encrypted object, located at a distance of zc + f distance away from 
Lens L, as indicated by the quadratic phase term, ++

e j k k( )zc f
k x y

2
2 0

2 2
, in front of the integral26. The remaining integral 

term is responsible for coding or encrypting the object, and the degree of encryption can be manipulated by 
masks p(x, y) and q(x, y). The overall effect is that we have an encrypted complex hologram, H x y z( , ; )C

en
c , of object 

|T(x, y; zc)|2 according to equations (11) and (12).

Decryption theory. The decryption process for recovering the object image |T(x, y; zc)|2 from the encrypted 
hologram H x y z( , ; )C

en
c  is outline as follows. To begin with, we have assumed the unity condition given by OTF*(kx, 

ky; zd) OTF(kx, ky; zd) = 1, where zd is the decoding distance and ∈z zc d, i.e., zc belongs to zd. As such, it can be 
easily inferred from equation (11) that the original object |T(x, y; zc)|2 can be recovered by multiplying the Fourier 
transform of the encrypted data H x y z( , ; )C

en
c  with the conjugate of the optical transfer function evaluated at  

decoding distance zd = zc, i.e.,
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The function OTF*(kx, ky; zc), which encapsulates the pair of masks p(x, y) and q(x, y), is needed in order to 
decrypt the information. To determine OTF*(kx, ky; zc) (assuming, p(x, y), q(x, y), zc are available) for recovering 
|T(x, y; zc)|2, we first obtain a pin hole hologram Hδ(kx, ky; zd = zc) by scanning a pin hole with the system shown 
in Fig. 1 when the switch is at K2. From equation (11), it can be seen that the pin hole hologram can be derived by 
replacing the term |T(x, y; zc)|2 with the pin hole function denoted by δ(x, y; zd), i.e., |T(x, y; zc)|2 = δ(x, y; zd) with 
zc = zd, resulting in a pin hole hologram given by
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thus giving
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Hence, OTF*(kx, ky; zd), to be used in equation (13), is derived from the pin hole hologram. From the above 
equation and equation (13), we can infer that the encrypted image can be recovered by convolving the encrypted 
hologram, H x y z( , ; )C

en
c , with the pinhole hologram, Hδ(x, y; zc), i.e., it can be shown readily that
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where ⊗ denotes correlation involving x and y21,26. Equation (14) expresses the essential feature of the proposed 
technique succinctly. We simply obtain two holograms, H x y z( , ; )C

en
c  and δH x y z( , ; )c , experimentally for the over-

all encryption and decryption process.
In this Section, we have discussed the encryption and decryption of a planar image. In the next Section we 

shall describe how our proposed method can be extended to optical cryptography of 3-D object images with the 
incorporation of biometrics information.
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Optical cryptography with biometrics on 3-D object images
To start with, we would like to explain the extension of our proposed method to biometric optical cryptography.

Optical cryptography with biometrics. In order to allow for biometric authentication, in the encryption 
system the encryption key q(x, y), is derived from the product of the message sender’s fingerprint FP1(x, y), and a 
random phase mask RPM1(x, y), i.e., q(x, y) = FP1(x, y) RPM1(x, y). This can be realized optically if we stack two 
spatial light modulators together, one for the fingerprint and the other for the phase mask. The other mask, p(x, y), 
again can be treated the same way as p(x, y) = FP2(x, y) RPM2(x, y), where FP2(x, y) is the message receiver’s fin-
gerprint, and RPM2(x, y) is another random phase mask. RPM1(x, y) and RPM2(x, y) are two independent random 
functions that allow the system to be of high security. Both random phase masks can be preset in the encryption 
and decryption systems, so that the message sender and the message recipient do not have to remember or keep 
them to avoid the lost-key situation.

To further enhance the security of the cryptographic system, the message sender’s fingerprint information q(x, y)  
(hereafter referred to as the 1st key) is shared in advance with the message receiver. The 2nd key p(x, y) is only sent 
to the sender when the recipient request the sending of an encrypted image. With this additional measure, the 
encrypted hologram cannot be decrypted even if one possessed the 1st key from the sender through theft or other 
illegitimate means.

Since fingerprints, FP1(x, y) and FP2(x, y), are of amplitude information, the use of p(x, y) = FP2(x, y) RPM2(x, y)  
and q(x, y) = FP1(x, y) RPM1(x, y) in Eq. (12) will not meet the unity condition as the obtained OTF will have 
amplitude distribution. To overcome the issue, let us work on Eq. (14) by noticing that the OTF given by Eq. (12) 
is complex in general and we could write OTF(kx, ky; zc) = A(kx, ky; zc)ejθ((kx, ky; zc)). In light of this, by taking the 
Fourier transform of Eq. (14), we have

= ⊗ = | |δI IH x y z z H x y z T x y z k k z{ ( , ; ) ( , ; )} { ( , ; ) }A ( , ; ),d c C
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Under this situation, we need to know the encrypted hologram, H x y z( , ; )C
en

c , the pinhole hologram, Hδ(x, y; zc) 
as well as k k zA ( , ; )x y c

2  in order to perfectly decrypt | |T x y z( , ; )c
2. The knowledge of A(kx, ky; zc) can be obtained 

experimentally through the pin hole hologram Hδ(x, y; zd = zc) as
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Hence with the inclusion of the term k k zA ( , ; )x y c
2  in order to perfectly decrypt the image, we call this process as 

the compensation process.

Optical cryptography on 3-D object images. We model a 3-D object images as a collection of planar 
objects as ∑ | |= T x y z( , ; )m

M
m m1

2, where |Tm(x, y; zm)|2 is the 2-D intensity distribution at various axial depths, zm, 
i.e., it is the sectional images of the 3-D object. Hence, for 3-D objects, H x y( , )C

en  becomes, according to Eq. (11),
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So in the case of encrypting a 3-D object, we have many decoding distances zm. To extract or decrypt a specific 
transverse plane at zk, where k = [1, M], we first record the pinhole hologram Hδ(x, y; zk) at zd = zk in the decryp-
tion stage, and then correlate it with the encrypted hologram as
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From equation (18), the first term of the expression on the right-hand-side is the full recovery of the sectional 
image of the original object image at zk, while the rest of the terms are defocused noise. By repeating the above 
process from k = 1 to k = M, all the sectional images of the object can be recovered. We will show experimental 
results in the next section.

Experimental results
In order to verify the feasibility of the proposed optical cryptosystem, the proof-of-principle experiment has been 
implemented. The experimental setup is shown in Fig. 2.

A laser at frequency ω0 is used to split into two beams. The laser’s wavelength is 632.8 nm with laser power 
of 15 mW. The two masks q(x, y) and p(x, y) are illuminated by the laser at frequency ω0 + Ω1 and ω0 + Ω2, 
respectively. Two acousto-optic modulators, AOM1 and AOM2, operating at frequencies Ω1 and Ω2, are used 
to upshift the laser beam frequency at ω0, to ω0 + Ω1 and ω0 + Ω2, respectively. The heterodyne frequency is at 



www.nature.com/scientificreports/

6SCiENTifiC REPORTs | 7: 12933  | DOI:10.1038/s41598-017-12946-8

Figure 2. Experimental setup for the optical cryptosystem (BS1,2: beam splitter, L1: Fourier transform lens, L2: a 
lens for collecting all the optical energy onto photodetector PD1, which gives the scanned heterodyne signal. The 
output of photodetector PD2 gives a heterodyne frequency as a reference signal to the lock-in amplifier).

Figure 3. (a) 3-D object to be encrypted, (b) message sender’s fingerprint (c) message receiver’s fingerprint, (d) 
Real part of encrypted complex hologram H x y( , )C

en , (e) Imaginary part of encrypted complex hologram 
H x y( , )C

en , and (f) intensity distribution of the encrypted complex hologram.
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(Ω1 − Ω2)/2π = 25 kHz. The two masks p(x, y) and q(x, y) in general can be implemented by SLMs displaying 
the fingerprint images and random phase masks. However, owing to the current resource limitation in our lab-
oratory, we simply make a proof-of-concept study with two lenses (La1 and La2 with focal length of fa1 = 75.6mm 
and fa2 = 150 mm, respectively) generating quadratic phase modulation instead of random phases. Hence, q(x, 
y) = FP1(x, y)exp[jπ(x2 + y2)/(λfa1)] and p(x, y) = FP2(x, y)exp[jπ(x2 + y2)/(λfa2)]. Again FP1(x, y) is the message 
sender’s fingerprint, and FP2(x, y) is the message receiver’s fingerprint. In the experiments, the fignerprints are 
in the form of transparencies. BE1 and BE2 are two expanders so that the output of them will give uniform plane 
waves illuminating the two masks q(x, y) and p(x, y). The size of fingerprint images is a transparency of about 
1.4 cm × 1.8 cm, and the focal length of Fourier transform lens L1 is 300 mm.

Figure 3(a) shows a 3-D object to be encrypted, consisting of a triangle and a square separated by 5.5 cm 
along the depth of the object. “Δ” is located at z = 30 cm and “□” at z = 35.5 cm. The 3-D object is approxi-
mately 1 × 1 × 5.5 cm3 and is transmissive on an opaque background with an opening linewidth of about 100 μm. 
Figure 3(b) shows the message sender’s fingerprint. Figure 3(c) shows the message receiver’s fingerprint, and 

Figure 4. (a) Real part, and (b) imaginary part of the pinhole hologram measured at decoding distance 
zd1 = 30 cm, i.e., Hδ(x, y; zd1 = 30 cm).

Figure 5. (a) Real part, and (b) imaginary part of the pinhole hologram measured at decoding distance 
zd2 = 35.5 cm, i.e., Hδ(x, y; zd2 = 35.5 cm).
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Fig. 3(d),(e),(f) show the real part, the imaginary part and the intensity of the encrypted complex hologram, 
respectively, which are generated from the in-phase and quadrature-phase signals [see Eq. (11)]. It can be seen 
from Fig. 3(f) that the pattern of the object is seriously disturbed and no useful information about the original 
object can be identified.

From the developed decryption theory, in the decryption stage, we need to find the pin hole hologram. In 
light of it, we use a pinhole of 0.28 mm in diameter to replace the object and record the pinhole holograms at the 
corresponding decoding distances of zd1 = 30 cm and zd2 = 35.5 cm. In this case, the message sender’s fingerprint 
(see Fig. 3b) has been sent to the decryption stage and the message receiver’s fingerprint [see Fig. 3(c)] is the 
decryption key. Each pinhole hologram at different decoding distances becomes the decrypting hologram for that 
distance as shown in Eq. (18). The real and imaginary parts of the pin holograms for zd1 = 30 cm and zd2 = 35.5 cm 
are shown in Figs 4 and 5, respectively.

Figure 6 shows the decrypted sectional images at the decoding distances zd1 = 30 cm and zd2 = 35.5 cm. For 
Fig. 6(a),(b), since the fingerprint images do not satisfy the unity condition, i.e., OTF*(kx, ky; zd = zc)OTF(kx, ky; zc) 
≠ 1, the effect of low contrast of the decrypted images is obvious. In obtaining Fig. 6(a),(b), we simply correlate 
the pin hole hologram, =δH x y z z( , ; )d c , with the encrypted hologram, H x y z( , ; )C

en
c . Figures 6 (c),(d) show the 

processed decrypted image according to Eq. (15) to overcome the fact that the unity condition is not met for fin-
gerprint images, in that k k zA ( , ; )x y c

2 , derived from the pin hologram hologram [see Eq. (16)], is used to perform 
the compensation process we discussed in Eq. (15). Note that pattern “Δ” is focused at the location of zd1 = 30 cm 
and the decrypted image is blurred elsewhere, corresponding to out-of-focus haze in 3-D imaging. Similarly, 
pattern “□” is focused at the location of zd2 = 35.5 cm with out-of-focus haze around the focused image. Hence, 
we have demonstrated that 3-D object can be encrypted and its sectional images can be decrypted in the proposed 
cryptosystem.

We have also examined experimentally the proposed system by using different fingerprints for decryption. 
In the experiment, the encryption system and encryption parameters are exactly the same as before. But, in the 
decryption process, different fingerprint image is used along with Lens La2 taken away. Figure 7(a) shows the 
wrong fingerprint image used in the decryption system. Figure 7(b),(c) show the decrypted images using the 

Figure 6. Decrypted sectional images using the pinhole holograms measured at (a) zd1 = 30 cm and (b) 
zd2 = 35.5 cm for unprocessed decrypted images when the unity condition is not met for fingerprint images, and 
at (c) zd1 = 30 cm and (d) zd2 = 35.5 cm for processed decrypted images.

Figure 7. (a) Fingerprint as wrong decryption key, the decrypted images using the pinhole holograms 
generated by the wrong decryption key at the position of (b) zd1 = 30 cm, and (c) zd2 = 35.5 cm.
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pinhole holograms generated by the wrong fingerprint at two positions of zd1 = 30 cm and zd2 = 35.5 cm, respec-
tively. We notice that although the decoding distance is correct, the object cannot be correctly decrypted and 
reconstructed because the wrong fingerprint key generates the wrong pinhole holograms for decryption. The 
original secret image cannot be deciphered even the encryption key is known by attackers. As a result, high secu-
rity against illegal attacks can be obtained by the proposed cryptosystem.

We would also like to make a brief evaluation and assessment on the vulnerability of our method towards 
plaintext attacks. From Eq. (11) we can infer that theoretically, the encryption key will be deduced based on a pair 
of known, planar images T x y z( , ; )c1

2 and T x y z( , ; )c2
2, and their encrypted holograms H x y z( , , )C

en
c1  and 

H x y z( , , )C
en

c2 . Both holograms are assumed to be encrypted at the same distance zc. The process of deducing the 
encryption key is outlined as follows. First we compute the difference between the two encrypted holograms, each 
represented with Eq. (11), as

I I I I

= −

= | | − | |
.− −

H H x y z H x y z

T x y z OTF k k z T x y z OTF k k z

( , , ) ( , , )

{ { ( , ; ) } ( , ; )} { { ( , ; ) } ( , ; )} (19)

diff C
en

c C
en

c

c x y c c x y c

1 2
1

1
2 1

2
2

Next we apply Fourier transform to both sides of the above equation, which results in

I I I= | | − | | .H T x y z OTF k k z T x y z OTF k k z{ } { { ( , ; ) } ( , ; )} { ( , ; ) ( , ; )} (20)diff c x y c c x y c1
2

2
2

Rearranging the terms in Eq. (20), the encryption function can be deduced, as given by

I

I I
=

| −
.OTF k k z

H

T x y z T x y z
( , ; )

{ }

{ ( , ; ) } { ( , ; ) } (21)
x y c

diff

c c1
2

2
2

As such if the intensity images are accidentally exposed through theft or other hacking activities, there is a good 
chance that the encryption key will also be deduced with Eqs (19–21). However, this kind of attack is difficult, if 
not impossible to achieve in practice, as the object that is being encrypted is directly converted into the encrypted 

Figure 8. Occlusion results for the decrypted images with different degrees of occlusion. (a) with 25% occlusion 
(blanking the second quadrant of the hologram), (b) corresponding decrypted image from (a) at decoding 
distance z1, (c) corresponding decrypted image from (a) at decoding distance z2, (d) with 50% occlusion, i.e., 
blanking half (left side) of the hologram, (e) corresponding decrypted image from (d) at decoding distance z1, 
and (f) corresponding decrypted image from (d) at decoding distance z2.
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hologram with the proposed system. In another words, the intensity image of the object is never recorded physi-
cally, and hence unknown even to the person who is performing the encryption.

While resistance to occlusion is, in general, not mandatory in encryption, in any case, we have performed 
a couple of cases rather than exhaustive investigation to provide some indication of the robustness of the pro-
posed technique. According to our actual situation in the experiment, the decrypted images at decoding distance 
z1 = 30 cm and z2 = 35.5 cm are shown in Fig. 6(c),(d)). We define the mean square error (MSE) as

∑∑=
×

| − |
= =

z
M N

I i j z I i j zMSE( ) 1 [ ( , ; ) ( , ; ) ] ,
(22)i

M

j

N

o r
1 1

2

where Io(i, j; z) is a part of the decrypted image from the encrypted hologram without occlusion, Ir(i, j; z) is a part 
of the decrypted image from the occluded encrypted hologram with z = z1 or z2 based on the decoding distance; 
(i, j) denotes pixel positions. (M × N) denotes the total number of pixels of the image we have selected on the 
reconstruction plane. In our calculation, we have used M = N = 64. Figure 8 shows the results for two kinds of 
occlusion.

When one-fourth of the encrypted hologram occluded at the top left corner (Fig. 8(a)), the calculated MSE(z1) 
and MSE(z2) values between the decrypted images without occlusion (Fig. 6(c),(d)) and the corresponding 
decrypted images with occlusion (Fig. 8(b),(c)) using all the correct keys are 0.264 and 0.199, respectively. It 
is shown that the decrypted images using the pinhole holograms at z1 and z2 can be recognized in the case of 
25% occlusion of the encrypted hologram. When half of the encrypted hologram is occluded (Fig. 8(d)), the 
corresponding decrypted images with occlusion have the MSE values of MSE(z1) = 3.478 and MSE(z2) = 0.195, 
respectively for Fig. 8e,f). In this case, we observe that the object (triangle) cannot be decrypted at the decoding 
distance z1 in the case of 50% occlusion because most of the hologram of the “triangle” has been occluded. But at 
the decoding distance z2, the decrypted image of the “square” can be recognized but with some errors.

Concluding remarks
We have proposed a cryptosystem for 3-D object images based on the optical heterodyne technique and biometric 
fingerprint keys. With our proposed method, a 3-D multi-depth object image can be encrypted into a complex 
encrypted hologram. Subsequently, the 3-D object image can be recovered from the encrypted hologram by 
correlating the encrypted hologram with a set of pinhole holograms, each located at a specific depth plane. We 
have applied the optical cryptosystem we have built to encrypt and decrypt 3-D object images. When the cor-
rect biometric keys are available, all the sectional images are recovered from the encrypted hologram with only 
mild defocused noise, and practically free from speckle noise. If the incorrect biometric keys are presented, the 
decrypted images are completely different from the original ones. As a concluding remark, our proposed method 
has successfully extended conventional optical scanning cryptography (OSC)25 to biometric cryptography of 3-D 
object images. We have also enhance security against illegal attacks with a double key arrangement, whereby 
the key representing the fingerprint of the recipient is passed to the sender only when an encrypted image is 
requested by the recipient.
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