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Abstract 
Considering the significance of progesterone receptor (PR) modulators, the 
present study is explored to envisage the biophoric signals for binding to 
selective PR subtype-A using ligand-based quantitative structure activity 
relationship (QSAR) and pharmacophore space modeling studies on 
nonsteroidal substituted quinoline and cyclocymopol monomethyl ether 
derivatives. Consensus QSAR models (Training set (Tr): nTr=100, R2

pred=0.702; 
test set (Ts): nTs=30, R2

pred=0.705, R2
m=0.635; validation set (Vs): nVs=40, 

R2
pred=0.715, R2

m=0.680) suggest that molecular topology, atomic polarizability 
and electronegativity, atomic mass and van der Waals volume of the ligands 
have influence on the presence of functional atoms (F, Cl, N and O) and 
consequently contribute significant relations on ligand binding affinity. Receptor 
independent space modeling study (Tr: nTr=26, Q2=0.927; Ts: nTs=60, 
R2

pred=0.613, R2
m=0.545; Vs: nVs=84, R2

pred=0.611, R2
m=0.507) indicates the 

importance of aromatic ring, hydrogen bond donor, molecular hydrophobicity 
and steric influence for receptor binding. The structure-function characterization 
is adjudged with the receptor-based docking study, explaining the significance 
of the mapped molecular attributes for ligand-receptor interaction in the catalytic 
cleft of PR-A. 
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Introduction 
Estrogen and progesterone are two prime female reproductive hormones, have effects on 
multiple organs beyond reproductive system. Their actions are mediated through receptor-
based gene stimulation. The human progesterone receptor (hPR) is a member of the 
intracellular receptor (IR) superfamily that includes the human androgen (hAR), estrogen 
(hER), glucocorticoid (hGR) and mineralocorticoid (hMR) receptors. Two different 
isoforms, A and B of hPR are present in various target organs of progesterone [1]. It is 
observed that hPR-B acts mainly as progesterone-responsive gene activator, whereas 
hPR-A functions as modulator of hPR-B activity and repressor for other IRs, suggesting 
hPR-A to be an important modulator for steroid hormone receptor actions [2–5]. Primary 
uses of hPR agonist and antagonist combined with estrogen are for the purpose of birth 
control, hormone replacement therapy, endometriosis, dysfunctional uterine bleeding, 
dysmenorrhoea, endometrial cancer, uterine leiomyomas, breast cancer, meningiomas 
and others [6, 7]. 

Focus on development of more selective and efficacious hPR modulators, including 
agonists and antagonists, have increased to a great extent considering the unwanted 
effects due to cross-reactivities with other IRs (hAR, hGR, hER, hMR) and GABA (γ-amino 
butyric acid) receptor [8, 9]. Binding affinity of nonsteroidal molecules in baculo-virus 
expressed hPR-A receptor analyses the interactions with the nuclear receptors to 
agonists, antagonists or partial agonists [9]. The nonsteroidal substituted quinoline 
derivatives [10] (Fig. 1a–1c) and cyclocymopol monomethyl ethers [7] (Fig. 1d) have been 
described for their interactions with PR subtype A as antagonists. The present work has 
been taken up to explore the essential chemical features of the molecular scaffold 
necessary for binding affinity to hPR-A using ligand-based molecular modeling techniques. 

Molecular modeling is one of the cheminformatics techniques providing detailed 
information of a molecular system [11]. Computer aided drug designing (CADD) covers 
enormous fields ranging from pharmacophore mapping, multi-dimensional QSAR studies, 
receptor based approaches and binary screening to compound clustering. 3-D QSAR and 
docking studies of steroidal [12] and non-steroidal [13] analogs elucidate the binding 
interaction with PR. Docking experiment substantiated as a tool for discovery of 
pyrazoline-based antagonists [14, 15], non-steroidal agonists [16, 17], and steroidal 
selective PR modulators (SPRM) [18]. Docking and molecular similarity analysis studies 
have been performed on PR ligands belonging to quinoline derivatives [13], but no 3D 
pharmacophore hypothesis for hPR-A binding affinity has yet been explored. 
Subsequently, diverse sets of nonsteroidal derivatives are taken up to build robust QSAR 
model as well as to develop pharmacophore signal for selective PR-A binding affinity, 
which is further corroborated with interactions of the active ligand with the receptor at the 
binding pocket by structure-based drug design. 

Materials and Methods 
In the present study, compounds (supplementary Table (Tab. S1)) containing nonsteroidal 
substituted quinoline [8–10, 19–22] and cyclocymopol monomethyl ether [7] derivatives 
expressing hPR-A binding affinity have been explored to generate QSAR model and 
design pharmacophore map using multiple linear regression [23] and receptor independent 
space modeling [24] techniques respectively. Binding affinity (Ki, nM) [7–10, 19–22], 
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expressed in terms of pKi (log10104/ Ki) has been considered as dependent variable for 
model generation. The common molecular scaffolds of (a) 1,2-dihydrochromeno[3,4-f] 
quinoline, (b and c) 6-aryl-1,2-dihydro-2,2,4-trimethylquinolines and (d) cyclocymopol 
monomethyl ether are depicted in Fig. 1. The models are validated by estimating R2

pred, 
R2

m and se (standard error of prediction) [25, 26] of test sets. Further the most active 
compound (cpd. 25 in supp. Tab. S1) of the data set is docked in protein crystal structure 
(pdb code: 2OVH) [27] to analyse the ligand-receptor interactions in 3-D space. 
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Fig. 1.  General structure of progesterone receptor modulators 

a: 1,2-dihydrochromeno[3,4-f]quinoline, 
b: 6-aryl-1,2-dihydro-2,2,4-trimethylquinolines (linear), 
c: 6-aryl-1,2-dihydro-2,2,4-trimethylquinolines (angular) and 
d: cyclocymopol monomethyl ether. 

QSAR study 
Energy minimization of the 3D structure of compounds is performed in MOPAC module 
using the Austin Model 1 (AM1) to locate local minima conformers. The energy minimized 
structure is used to calculate different molecular properties, including physicochemical, 
electronic (atomic charge functions, orbital energies, partial charge function [28] using 
extended Hückel approach [29]), spatial, topological (E-state indices [30] and R-state 
indices [31]) properties, molecular geometries (geometrical, WHIM, 3D-MoRSE, molecular 
profiles, etc.) and structural features of the atoms [32]. The tools used to generate 3D 
structural descriptors are Chem3D Pro [29], CAChe [33], TSAR [34], ETSA-CA [35], MOE 
2007.09 [36] and DRAGON 5.5 [37, 38]. The models are developed by standard and 
forward stepwise regression methods using Statistica 5.0 [39]. To obtain a robust and 
dependable model, the dataset of ligands is divided into modeling (n=130) and validation 
(Vs, nVs=40) sets using sphere exclusion algorithm based on Euclidean distance [40]. 
Further the modeling set is splitted into training (Tr, nTr=100) and test (Ts, nTs=30) sets 
through the same principle, considering the most active and least active compounds 
present in training set. The following statistical parameters are used to evaluate the 
statistical significance of the regression equation: correlation coefficient (R2), standard 
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error of estimate (se), explained variance (EV), variance ratio (F), degree of freedom (df) 
and average of absolute value of calculated residuals (AVRES). The predictive power of 
the model is estimated by cross-validated variance (Q2) (by leave one out method) [41], 
predictive residual sum of squares (PRESS), standard deviation error of prediction (SDEP) 
and average of absolute value of predicted residuals (Presav). The model is further 
validated with test and validation sets, estimating R2

pred and R2
m [25, 26]. 

Pharmacophore space modeling study 
Receptor-independent space modeling study [24] generates pharmacophore hypothesis 
using Catalyst 4.11 [42] that can highlight on ligand-receptor interactions. For hypothesis 
generation, the dataset division is processed through the sphere exclusion approach [40], 
except input data for number of compounds of training set is fixed to ‘26’. The whole 
dataset is splitted into training (Tr, nTr=26), test (Ts, nTs=60) and validation (Vs, nVs=84) 
sets and are fitted in the pharmacophore model and subsequently predicted the activity to 
adjudge the robustness of the hypothesis. The chemical features used for pharmacophore 
mapping are hydrogen bond (HB) acceptor (a) and donor (d), hydrophobic (p) and 
aromatic ring (r). Different control parameters employed for hypothesis generation 
(Hypogen process) are uncertainty, weight variation and spacing (minimum interfeature 
distance for hypothesis). Weight variation signifies the extent to which each feature 
contributes towards compound’s activity in the process of hypothesis generation, whereas 
uncertainty denotes the standard deviation of error cost, the deviation between the actual 
and the estimated activity of the compounds in training set. The overall cost of a 
hypothesis is obtained by summing up three cost factors: a weight cost, an error cost and 
a configuration cost. Weight cost is a value that increases as the weight variation of the 
model varies. The entropy of the hypothesis space is equal to the configuration cost, which 
is dependent on the complexity of the hypothesis space being optimized. The hypothesis 
estimates the costs of null and fixed hypothesis and the greater the difference, it is more 
likely that the hypothesis does not reflect a chance correlation. Lesser the value between 
fixed cost and total cost, better the hypothesis as it is more towards the ideal hypothesis. 
For the purpose of hypothesis optimization, the difference between total and null costs is 
considered to be 60 bits [43]. Two other factors considered for evaluating the pharma-
cophore map are rmsd and correlation. Rmsd (root mean square deviation) indicates the 
quality of prediction for training set and correlation value derived from the geometric fit 
index. The generated hypothesis is further judged to nullify over-prediction of inactive 
ligands, using hyporefine process [42], where steric feature is also considered for 
bioactivity. The selected hypothesis is validated through a cross-validation technique using 
CatScramble based on Fischer’s randomization test [23] by random reassigning the 
activity values among the training set compounds. The predictive ability of the 
pharmacophore model is further screened with the estimated activity of test and validation 
sets compounds. 

Docking study 

Receptor-based molecular docking study highlights the binding interaction at the active 
site residues [44]. Crystal structure of PR-A ligand binding domain (pdb code: 2OVH) [27] 
complexed with asoprisnil [45] and the corepressors SMRT has been obtained from RCSB 
protein data bank [46]. The docking study has been performed in Discovery Studio 1.7 [47] 
by using LigandFit of 'Receptor-ligand interactions' protocol. Pre-treatment process for 
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both the active ligand (comp 25 in supp. Tab. S1) and the receptor are performed with 
ligand preparation and binding site definition. Constraint parameters used for ligand 
preparation are ionization change, tautomer and isomer generation; Lipinski filter and 3D 
generator albeit all the duplicate structures are removed. Receptor preparation is 
accomplished by defining the active site cavity with the aid of pre-existing ligand. The 
whole receptor is selected and hydrogen atoms are added to it. pH value of the protein has 
been set in the range of 6.5 to 8.5. The receptor-ligand interaction is explored with 
LigandFit optimization utilizing dreiding as the energy grid force-field; Monte Carlo trial 
method for conformational search with consideration of electrostatic energy, torsional step 
size for polar hydrogen at 30, maximum internal energy at 104 kcal/mol and maximum 
poses of 10 in docking mode [48]. During docking of the ligands, geometry optimization of 
the receptor-ligand complex is not performed due to preserve native form of the ligand-
bound receptor. The scoring parameters (LigScore, PLP, Jain, PMF and Ludi energy 
estimate) are used for analysis. Finally the docked receptor-ligand complex is analyzed to 
investigate the type of interactions and compare dock score. 

Virtual screening and molecular docking studies 
In silico screening is a rapid technique to obtain hit compounds with desired activity 
profiles [49]. The validated pharmacophore model has been used to screen WDI (World 
Drug Index) (NCI, Maybridge, ZINC) libraries comprising ~ 10,000,000 compounds in order 
to calculate the rate of recovering the experimental hits from the primary screening library. 
Fast flexible search algorithm is used for database screening. Out of 10,000 compounds 
retrieved from each database, the hits are narrowed down to <100 compounds based on 
estimated activity (a cut off value of 0.32, Ki of comp 25). Simultaneously the virtual 
screening is conducted using validated QSAR models, and hits are identified by 
consensus agreement between these models. The predictions are categorized by model 
coverage using Z cut-off of 0.2. Consensus molecular descriptors, used for model 
generation, are generated for the set of compounds and consensus activities are predicted 
from the proposed QSAR models. In order to access the ability of models to recover the 
active compounds from the screening library, three criteria, i.e. hit rate, yield and the 
enrichment factor are used [25]. Moreover, Lipinski’s rule of five is used to eliminate non-
drug like compounds. Finally compounds of promising Ki are docked individually into the 
active site cavity of the receptor. The receptor-ligand complexes are investigated to find 
out important interactions at the receptor cavity as well as dock scores.  

Results and Discussion 
QSAR study 
Different molecular properties, including physicochemical, topological, electronic, spatial 
descriptors are used for model generation. The best models obtained in different 
permutation of descriptors are given in Tab. 1. 
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Tab. 1.  Statistical quality of best QSAR models. 
Model 

no. Descriptors Training set (nTr=100) Test set 
(nTs=30) 

Validation 
set (nVs=40) 

I 

IC3, F07[C-O], 
RDF130p, F10[F-

F], F04[F-F], 
GATS8e 

R2=0.774, EV=75.9%, se=0.451, 
F=53.05, df=6, 93, 

AVRES=0.795, PRESS=21.799, 
SDEP=0.467, Presav=0.705, 

Q2=0.740 

R2
pred=0.696 

se=0.565  
R2

m =0.708 

R2
pred=0.458 

se=0.660  
R2

m =0.422 

II 

F04[C-C], F05[C-
Cl], RDF130p, 

F07[C-O], GATS8e, 
F10[F-F] 

R2=0.737, EV=72%, se=0.474, 
F=43.35, df=6, 93, 

AVRES=0.765, PRESS=23.881, 
SDEP=0.489, Presav=0.630, 

Q2=0.699 

R2
pred=0.694 

se=0.569  
R2

m =0.692 

R2
pred=0.672 

se=0.546  
R2

m =0.668 

III 
F04[C-C], CIC3, 
nOHs, Mor03m, 

RDF125p 

R2=0.759, EV=74.6%, se=0.448, 
F=59.08, df=5, 94, 

AVRES=0.757, PRESS=21.193, 
SDEP=0.460, Presav=0.643, 

Q2=0.729 

R2
pred=0.656 

se=0.576  
R2

m =0.604 

R2
pred=0.642 

se=0.565  
R2

m =0.645 

IV 
F04[C-C], CIC3, 
nOHs, Mor03m, 

BELv2, RDF125p 

R2=0.775, EV=76.1%, se=0.440, 
F=53.53, df=6, 93, 

AVRES=0.769, PRESS=20.551, 
SDEP=0.453, Presav=0.656, 

Q2=0.744 

R2
pred=0.621 

se=0.605  
R2

m =0.545 

R2
pred=0.676 

se=0.539  
R2

m =0.677 

V 
F04[C-C], CIC3, 
nOHs, Mor03m, 

F04[N-N], RDF125p 

R2=0.773, EV=75.9%, se=0.441, 
F=52.91, df=6, 93, 

AVRES=0.765, PRESS=20.857, 
SDEP=0.457, Presav=0.658, 

Q2=0.738 

R2
pred=0.658 

se=0.577  
R2

m =0.599 

R2
pred=0.662 

se=0.547  
R2

m =0.665 

 

All the QSAR models can explain for more than 72% variance in activity and cross-
validated variance of 70%. The models have also good predictive property (R2

pred and R2
m 

> 0.50), except model I in validation set. All of the generated models are statistically 
significant and are analyzed for consensus prediction of Tr (nTr=100, R2

pred=0.702, 
se=0.487), Ts (nTs=30, R2

pred=0.705, se=0.531, R2
m =0.635) and Vs (nVs=40, R2

pred=0.715, 
se=0.496, R2

m=0.680), suggesting the robustness of models. The observed vs consensus 
predicted binding affinity of the compounds as per QSAR models is plotted in Fig. 2 and 
listed in supplementary Tab. S2. The acronyms used in the above models (I-V) for the 
descriptors are provided in Tab. 2. 
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Fig. 2.  Observed vs predicted binding affinity of QSAR consensus and 
pharmacophore models. 

Among the descriptors, IC3 and CIC3 depict the topological features of atoms based on 
neighborhood environment [38]. F07[C-O] and other 2D frequency fingerprint descriptors 
also describe topological features of molecules. 3-D arrangement of atoms, bond 
distances, ring types, planar, non-planar systems and atom types along with atomic 
polarizabilities are encoded by RDF130p and RDF125p [38]. The values of polarizability 
are dependent on the chemical environment of atoms and have great influence on bonds 
[50]. GATS8e [38] is a distance-type function that also includes atomic properties, e.g. 
electronegativity. It accounts for the correlation among atoms, weighted by atomic 
Sanderson electronegativity with a distance of eight bonds (the lag) in the molecule [51]. 
nOHs provides local chemical information that is insensitive to isomers and to 
conformational changes, and shows a high level of degeneracy [38, 52]. Mor03m, derived 
from infrared spectra simulation, suggests the relevance of atomic masses and the 3D 
atomic coordinates [38, 53]. The role of atomic information, Van der waals volumes 
relevant to the strength of ligand-receptor interaction and the molecular topology to the 
activity are described by BELv2 [38, 54]. As an inference from these complex descriptors, 
it can be suggested that presence of functional atoms, F, Cl, N and O have influence on 
ligand binding affinity depending on topology of the ligands, atomic polarizabilities and 
electronegativities, atomic masses and van der Waals volume. 
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Tab. 2.  Symbols and function of the descriptors. 
Symbols Types of descriptors Description 

IC3 Information indices information content index (neighborhood 
symmetry of 3-order) 

F07[C-O] 2D frequency fingerprints frequency of C-O at topological distance 7 

RDF130p RDF descriptors Radial Distribution Function - 13.0 / weighted 
by atomic polarizabilities 

F10[F-F] 2D frequency fingerprints frequency of F-F at topological distance 10 
F04[F-F] 2D frequency fingerprints frequency of F-F at topological distance 4 

GATS8e List of 2D autocorrelation indices Geary autocorrelation - lag 8 / weighted by 
atomic Sanderson electronegativities 

F04[C-C] 2D frequency fingerprints frequency of C-C at topological distance 4 
F05[C-Cl] 2D frequency fingerprints frequency of C-Cl at topological distance 5 

CIC3 Information indices complementary information content 
(neighborhood symmetry of 3-order) 

nOHs Functional group counts number of secondary alcohols 

Mor03m 

3D-MoRSE (3D Molecule 
Representation of Structures 
based on Electron diffraction) 
descriptors 

3D-MoRSE - signal 03 / weighted by atomic 
masses 

RDF125p RDF descriptors Radial Distribution Function - 12.5 / weighted 
by atomic polarizabilities 

BELv2 Burden eigenvalue descriptors lowest eigenvalue n. 2 of Burden matrix / 
weighted by atomic van der Waals volumes 

F04[N-N] 2D frequency fingerprints frequency of N-N at topological distance 4 

 

Pharmacophore space modeling study 
Receptor independent pharmacophore mapping of the ligands is explored through 
standardization of the training set (Tr, nTr=26) and its subsequent optimization utilizing the 
control parameters. The results of the optimization study based on the cost difference 
(∆cost), root mean square deviation (rmsd) and best correlation (Q2) are listed in Tab. 3. 

The optimized hypothesis (run no. 7) showed more than 90% correlation to binding affinity, 
whereas the hyporefine (run no. 8) of the same is observed to correlate 92.7% with activity 
with highest cost differences (∆cost) of 152.462 bits and low rmsd value of 1.455. The 
fixed and null costs are 90.748 and 270.771 bits respectively for both run nos. 7 and 8, but 
the difference between fixed and total costs is lower (27.561 bits) in run no. 8. Further the 
prediction sets for the best hypothesis (run no. 8), with nTs=60, R2

pred=0.613, se=0.426, 
R2

m=0.545 and nVs=84, R2
pred=0.611, se=0.487, R2

m=0.507, have been found to be 
superior than run no. 7. The observed and predicted binding affinities (pKi) of the 
compounds are represented in Fig. 2 and tabulated in supplementary Tab. S2. The quality 
of hypotheses generated for binding affinity are adjudged by a cross-validation technique 
using Fischer’s randomization test [23] at the 99% confidence level, but no hypothesis 
generated better parameters than the original hypothesis of run nos. 7 and 8 in either 
case. Both the hypotheses (run nos.7 and 8) are taken into consideration for describing 
the pharmacophore features of the dataset and docking interactions with the most active 
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ligand (comp 25 in supp. Tab. S1), and observed that presence of HB donor (d), 
hydrophobic (p1) and aromatic ring (r1) features in run no. 7 and two hydrophobic (p1 and 
p2), two aromatic ring (r1 and r2) features along with steric influence (e) in run no. 8 are 
essential for effective binding. The mapped pharmacophore features and inter-feature 
distances (Å) of the both hypotheses for binding affinity to hPR-A are depicted in Fig. 3. 
Both the hypotheses illustrate presence of electronegative substitution at para position of 
5-aryl ring (Fig. 1a) offers hydrophobic region. SAR study on chromeno quinolines (Fig. 
1a) also adjudged the para substitution in 5-aryl moiety is one of the essential biophore for 
hPR agonist activity [9]. Presence of N-hetero atom in ring A (Fig. 1a–1c) as HB donor has 
been found to be a significant contributor in binding affinity, which is due to overlapping 
similarity of the A-ring of quinoline with steroid D-ring [9]. However HB donor is reverted to 
steric and hydrophobic regions due to unavailability of N-atom in the ring (Fig. 1d), when 
weightage is given to excluded volume (hyporefine, run no. 8). Additionally mapping also 
demonstrates presence of aromatic rings B and D in scaffold (Fig. 1a–1c) have positive 
impact on bioactivity. Halogen substituents in D-ring are demonstrated to be critical 
pharmacophore feature for receptor binding, adjudged by the SAR study [8]. 
Pharmacophore mapping outcomes can be corroborated with the QSAR study, which also 
thrust on presence of nitrogen hetero atom in ring A, influence of para-substituted 5-aryl 
moiety as well as the rings B and D for bioactivity. The reliability of the receptor-
independent pharmacophore map is validated in light of binding site interactions of the 
most active ligand at the active site cavity of the receptor. 

 
Fig. 3.  Pharmacophore features of run nos. 7 and 8 fitted with active ligand. 

(A) Hypogen hypothesis: Q2=0.909, rmsd=1.615, Δcost=146.075; 
(B) Hyporefine hypothesis: R=0.927, rmsd=1.455, Δcost=152.462; 
Features include hydrogen bond donor (d), hydrophobic (p), Ring aromatic (r) 
and excluded volume (e). 
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Tab. 3.  Hypothesis parameters observed in pharmacophore study. 

Run 
no. UC WV 

Spac-
ing 

(pm) 

Pharmacoph. 
features in 
generated 
hypothesis 

Cost 
Q2 rmsd Null Fixed Total ∆cost Config 

1 3 0.302 300 p1, p2, r1 165.194 101.666 117.38 47.814 13.0868 0.905 1.047 
2 3 0.302 250 p1, p2, r1, r2 165.194 102.212 114.696 50.498 13.634 0.919 0.964 
3 3 1.5 300 p1, p2, r1 165.194 102.467 115.78 49.414 13.087 0.912 1.005 
4 3 2.5 300 p1, p2, r1 165.194 102.722 116.357 48.837 13.087 0.908 1.022 
5 2.5 0.302 300 p1, p2, r1 194.491 96.947 118.905 75.586 13.087 0.906 1.246 
6 2 0.302 300 p1, r1, r2 270.771 89.691 128.379 142.392 13.087 0.899 1.698 
7 2 2.5 300 d1, p1, r1 270.771 90.748 124.696 146.075 13.087 0.909 1.615 
8* 2 2.5 300 p1, p2, r1, r2, e 270.771 90.748 118.309 152.462 13.087 0.927 1.455 

Input features: Hydrogen bond donor (d), Hydrophobic (p), Ring aromatic (r), excluded volume (e); Δcost = 
Null cost – Total cost, UC = uncertainty, WV = weight variation, Config. = configuration cost, Q2=cross-
validated variance, rmsd= root mean square deviation; * Hyporefine of run no. 7. 

 

Binding interactions at the active site 

The most active ligand (comp 25 in supp. Tab. S1) of the molecular dataset is considered 
for docking in the catalytic cleft of the receptor (2OVH) [27] in order to explore the binding 
modes in relation to mapped biophore. The binding interactions of the compound are 
portrayed in Fig. 4. The amino acids responsible for vital interactions with the ligand are 
Asn719, Thr894 (polar amino acids) and Leu718, Gln725, Trp755 (non-polar amino acids). 
Nitrogen hetero atom present in the ring A (Fig. 1a) of the docked ligand forms HB 
interaction with amino acid Asn719 in the catalytic cleft at a distance of 2.842 Å, whereas 
the para-halo substituent of 5-aryl ring forms van der Waals interaction with the polar 
catalytic residue Gln725 at a distance of 2.426 Å. Electronegative substituent in D ring also 
forms HB interaction with Thr894 at distance of 2.497 Å, and steric association of D-ring is 
seen at 1.6 Å with the same amino acid residue in the binding pocket respectively. It is 
also observed that Leu718 and Trp755 interact with the hydrophobic aromatic core of rings 
A and C at 1.706 and 1.714 Å distance respectively with steric bumps. The PMF score 
(Potential of Mean Force) [55] of the docked ligand has been found to be −89.12. It is 
revealed from the analysis that the most active compound has comparable dock score as 
that of the standard ligands (progesterone −80.329, medroxy progesterone acetate 
−94.52, mifepristone −83.045 and norethindrone -65.564) and explains for good binding 
affinity of the ligand in active site of receptor. The binding interactions are further adjudged 
with the pharmacophore model that indicates the functional atoms, nitrogen in ring A of 
quinoline scaffold (Fig. 1a–1c) behaves as promising HB donor, and chlorine in 5-aryl ring 
as hydrophobic zone, have binding interactions with catalytic residues, Asn719 by 
hydrogen bonds and Gln725 by hydrophobic interaction respectively. Aromatic feature of 
ring D of quinoline offers core for hydrophobic interactions with Thr894 at the active site 
cavity. Hydrophobic interactions are also observed between rings A and C with Trp755 
and Leu718. The docking study of the ligand adjudges the pharmacophore map fairly. 
These findings are compliant with SPRM binding analysis that revealed the importance of 
electrostatic, HB donor, and hydrophobic properties of ligand for interaction with catalytic 
residues, Leu718, Asn719 and Gln725 [13]. 
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Fig. 4.  Active ligand at the binding site of 2OVH [27]. Catalytic residues are labeled. 

Virtual screening and molecular docking studies 
The hit compounds which satisfied the screening criteria using validated QSAR and 
pharmacophore models are reported in Tab. 4. Consensus predicted activity from QSAR 
and pharmacophore models of NCI0101316 are found to be 0.12 and 0.22 nM 
respectively. The mean PMF dock score is −86.41.Second compound NCI0023681 
depicts predicted activity of 0.38 and 0.18 from QSAR consensus and pharmacophore 
models, along with PMF dock score of −70.31. NCI0050131 provides consensus predicted 
activity of 0.87 and estimated activity of 0.22 from pharmacophore model and the docking 
score is −78.86. The results are further adjudged with binding interactions with the 
catalytic residues in the receptor cavity. 

Docking studies reveal crucial binding interactions at the active site cavity of the receptor. 
NCI0101316 interacts with Asn719, Cys891 (polar amino acids) and Met756 (non-polar 
amino acids), forming HB and hydrophobic interactions with Asn719 at 1.767 and 1.667 Å 
respectively, whereas catalytic amino acid residues Cys891 and Met756 interacts at 1.922 
and 1.831 Å distances respectively with steric bumps. NCI0023681 forms HB interactions 
with Asn719, Leu887 and Thr894 at distances of 1.780, 2.377 and 2.299 Å respectively 
and hydrophobic associations with Leu718, Asn719 and Met756 at distances of 1.796, 
1.415 and 1.788 Å respectively. NCI0050131 binds to catalytic residues Leu718 and 
Thr894 through van der Waals interaction and HB interaction at 1.912 and 2.202 Å 
respectively (supplementary figure Fig. F1). These interactions are found to be vital with 
respect to asoprisnil (pre-existing ligand of the receptor) as well as SPRM binding studies, 
consequently these three compounds are proposed to be showing good binding affinity to 
hPR as per the models suggested.  
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Tab. 4.  Proposed compounds obtained from virtual screening and docking studies. 

Compound  
name SMILES 

Consensus  
predicted  
activity  
(QSAR 
model)  
(Ki, nM) 

Estimated  
activity 

(Pharma-
cophore  
model)  
(Ki, nM) 

Dock  
score  
(PMF) 

Binding 
interactions 

HB inter-
action 

Hydro-
phobic  

interaction 

NCI0101316 

O=C4N([H])C(=O)[C
@]5([H])[C@]1([H])
C(=C([H])[C@@]([H
])(C1=C(C=2/N=C(/[
H])C([H])=C([H])C=2
[H])C3=C([H])C([H])
=C([H])C([H])=C3[H]
)[C@]45[H])[C@@](
O[H])(C6=C([H])C([
H])=C([H])C([H])=C6
[H])C=7/N=C(/[H])C(
[H])=C([H])C=7[H] 

0.12 0.22 −86.41 Asn719 
Asn719, 

Cys891 and 
Met756 

NCI0023681 

[H]C([H])(N([H])C([H
])([H])C1=C([H])C([H
])=C([H])C([H])=C1[
H])[C@]2([H])[C@@
]([H])(O[H])C([H])([H
])C([H])([H])[C@@]6
([H])[C@]2([H])C([H]
)([H])[C@@]5([H])C
4=C(/C3=C(\[H])C([
H])=C([H])C([H])=C3
N4[H])C([H])([H])C([
H])([H])N5C6([H])[H] 

0.38 0.18 −70.31 
Asn719, 
Leu887 

and Thr894 

Leu718, 
Asn719 and 

Met756 

NCI0050131 

O=C(O[H])[C@]2([H
])[C@]([H])(C1=C(C(
[H])=C(OC([H])([H])[
H])C(OC([H])([H])[H]
)=C1[H])[C@@]([H])
(O[H])[C@]2(O[H])C
([H])([H])O[H])C=3C
([H])=C(OC([H])([H])
[H])C(OC([H])([H])[H
])=C(OC([H])([H])[H]

)C=3[H] 

0.87 0.22 −78.86 Thr894 Leu718 

 

Conclusion 
Ligand-based molecular modeling studies are investigated on nonsteroidal quinoline and 
cyclocymopol monomethyl ether derivatives to generate models for exploring unique 
pharmacophore features of SPRMs. QSAR and pharmacophore space modeling studies 
developed statistically significant models and validated internally and externally with test 
set compounds. The space modeling map is in conformity with the molecular descriptors 
giving insight on the importance of functional atoms (O, N, Cl, F), polarizability, van der 
waals volume for presence of HB donor, hydrophobic, steric and aromatic ring attributes 
for ligand fitting in the active site cavity of the receptor with catalytic receptor residues. 
Finally three compounds are proposed to be newer analogs with significant binding affinity 
to PR-A as per the molecular modeling studies. 
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