
Towards real-time image deconvolution:
application to confocal and STED
microscopy
R. Zanella1, G. Zanghirati2, R. Cavicchioli3, L. Zanni3, P. Boccacci4, M. Bertero4 & G. Vicidomini5

1Laboratorio delle Tecnologie per Terapie Avanzate, Università di Ferrara, Ferrara, Italy, 2Dipartimento di Matematica e
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Although deconvolution can improve the quality of any type of microscope, the high computational
time required has so far limited its massive spreading. Here we demonstrate the ability of the
scaled-gradient-projection (SGP) method to provide accelerated versions of the most used algorithms in
microscopy. To achieve further increases in efficiency, we also consider implementations on graphic
processing units (GPUs). We test the proposed algorithms both on synthetic and real data of confocal and
STED microscopy. Combining the SGP method with the GPU implementation we achieve a speed-up factor
from about a factor 25 to 690 (with respect the conventional algorithm). The excellent results obtained on
STED microscopy images demonstrate the synergy between super-resolution techniques and
image-deconvolution. Further, the real-time processing allows conserving one of the most important
property of STED microscopy, i.e the ability to provide fast sub-diffraction resolution recordings.

I
mage deconvolution is a computational technique that mitigates the distortions created by an optical system.
Agard first applied image deconvolution to fluorescence microscopy in the early 1980s1. In this seminal paper
Agard proposed different algorithms for deconvolving images acquired as three-dimensional (3D) stacks

using wide-field microscopy (WFM). In a nutshell, the focal plane of the objective lens moves along the thickness
of the specimen and for each position the microscope generates a bi-dimensional (2D) image. Due to the
diffraction phenomena, each 2D image, also called optical section, includes considerable out-of-focus light
originating from regions of the specimen above and below the focal plane. Image deconvolution uses information
describing how the microscope produces the image (forward model) as the basis of a mathematical transforma-
tion that reassigns the out-of-focus light to the points of origin.

Later, many new optical methods have been proposed to remove out-of-focus light and to generate directly true
optical sections. Without pretending to be exhaustive, we mention confocal laser scanning microscopy (CLSM)2,3,
two-photon excitation microscopy (TPEM)2,4 and selective plane illumination microscopy (SPIM)5,6. All these
methods remove out-of-focus light by rejecting such light before it reaches the detector or by precluding its
generation. Further hybrid techniques, which remove out-of-focus light by combining optical and computational
methods are 4Pi microscopy7,8 and structured illumination microscopy (SIM)9,10.

Since CLSM, TPEM and SPIM have considerably smaller contribution of out-of-focus light they are sometimes
considered as pure alternatives to the deconvolution and WFM combo. However, it has been shown that also
these techniques can strongly benefit from image deconvolution11–14. Although out-of-focus background is
reduced, the images produced by such systems are still blurred versions of the specimen’s structures in the focal
plane and are contaminated by noise, thereby deconvolution can improve their contrast and signal-to-noise ratio.
Similarly, also single 2D image can benefit of deconvolution, especially when obtained from thin specimen, where
out-of-focus background vanishes.

More recently new super-resolution fluorescence microscopy approaches (usually referred to as nanoscopy)
have enlarged the portfolio of tools for investigating biological samples15. The nanoscopy techniques have
effectively break the diffraction barrier and moved the spatial resolution of fluorescence microscopy down to
the nanoscale16. Importantly, also in these cases image deconvolution can help to improve the quality of their
images. This has been demonstrated both for stimulated emission depletion (STED) microscopy17, which at
moment can be considered as the method of choice between the targeted nanoscopy techniques, and, more
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recently, also for stochastic nanoscopy techniques18. As a matter of
fact, all microscopy techniques that include directly or indirectly a
convolution in their image formation processes can benefit from
image deconvolution. It is also important to remember that any
quantitative analysis on fluorescence images, e.g. colocalization ana-
lysis or volume/area estimations, are significantly improved if per-
formed on deconvolved images19,20.

In this scenario, one expects that any 2D or 3D image obtained
from almost any fluorescence microscope is deconvolved before
being analyzed. This unfortunately is not true. The main disadvant-
age that precludes this massive spreading of deconvolution is the
high computational demand which leads to long waiting time before
producing the result. As a consequence in many applications image
deconvolution is not used to avoid strong delay in the data analysis
pipeline. The situation becomes almost prohibitive in the case of
large-scale images. For the above mentioned reasons, several meth-
ods to increase the speed of the deconvolution process have been
proposed.

Two main directions have been followed. The first one relays on
the implementation of the algorithms, i.e., parallelization of the
calculus and/or implementation on graphics processing units
(GPUs)21–24. A second approach, which found a strong attraction
in the 90s, relays on the development of schemes to accelerate the
deconvolution algorithms25,26. Even if linear deconvolution, e.g.,
Wiener filtering, is extremely fast, its application to noisy images
provides in general poor results; on the other side non-linear decon-
volution methods, and in particular iterative methods (with or with-
out regularization), lead to excellent results but their convergence is
very slow, requiring hundreds or thousands of iterations. The major
representative algorithms for non-linear deconvolution in fluor-
escence microscopy are based on the maximum-likelihood (ML)
approach and, for the regularized version, on the maximum a poster-
iori (MAP) approach27. These algorithms can take advantage from
prior information about the image formation process and the spe-
cimen, effectively reducing the ill-posedness of the problem. Most of
this algorithms are iterative first-order methods, hence their imple-
mentation is easy (basically computation of a matrix-vector mul-
tiplication at each iteration), but, as already mentioned above, their
convergence is very slow. In this paper we present a deconvolution
package that combines both strategies.

Recently, Bonettini et al.28 developed an optimization method,
which they called scaled-gradient-projection (SGP) method, able to
fundamentally speed-up the algorithms based on ML and MAP. In
this paper we use the SGP method to derive a more efficient version
of the Richardson-Lucy (RL) algorithm29,30, which represents the
most famous non-regularized algorithm for deconvolution on
microscopy images. Moreover, the SGP method is also used to derive
an acceleration for another important widely used regularized
deconvolution algorithm based on a quadratic regularization term31.
Finally, both algorithms can be integrated by a boundary effect cor-
rection according to the approach proposed by Bertero and
Boccacci32. This correction allows the application of these algorithms
also to images of cropped structures.

We have first implemented the algorithms for classical central-
processing-unit (CPU)-based calculation, in order to quantify the
effective speed-up obtained by the proposed SGP method with
respect to RL. Later, we implemented the algorithm for GPU-based
calculation to further reduce the time of the deconvolution process.
Importantly, codes for the CPU-based implementation will be
freely distributed, as well as the executable files for the GPU-based
implementation.

The purpose of this paper is not only to illustrate the features of the
SGP method to the microscopy community but also to provide them
quasi real-time deconvolution algorithms able to drastically reduce
the time for the pipe-line image analysis. We used both CLSM and
STED microscopy images to demonstrate the speed-up of the SGP

based algorithms. However, the very same algorithms can be applied
to any other fluorescence microscopy technique by simply providing
the relative point-spread-function, or more generally the relative
forward model.

Results
Maximum-likelihood and maximum a-posteriori approaches reduce
the deconvolution problem into the minimization of a suitable func-
tional (equations (2) and (3)). This functional includes most of the
information about the image formation process and, when possible,
information about the object to restore, thereby its design represents
an important step for the quality of the deconvolution results. On the
other hand, the speed of a deconvolution algorithm strictly depends
on the scheme used to minimize the functional. Since in this work we
focused our attention mainly on the speed issue, we compared the
performance of the algorithms when they minimize the very same
functionals.

We first used bi-dimensional (2D) CLSM and STED microscopy
synthetic images for comparing the well-known RL algorithm with
the SGP-based algorithm (both minimizing the functional described
in equation (2)). Realistic phantoms are crucial when robustness of
algorithms has to be evaluated. For this reason, we implemented a
routine able to generate pseudo-randomly phantoms which mimic
the micro-tubule cytoskeleton of a cell (see Methods). We simulated
the images of the two microscopy modalities by using the same
random microtubule network specimen (Fig. 1a) and the same
imaging conditions (see Methods), but two different point-spread-
functions (PSFs) (Insets Fig. 1b) for mimicking the different spatial
resolutions. In particular, we assumed a Gaussian shaped PSF (see
Methods) with a full-width at half-maximum (FWHM) of 220 nm
for CLSM (sr 5 93 nm) and a Gaussian-Lorentzian shaped PSF (see
Methods) with a FWHM of 100 nm for STED microscopy (sr 5

93 nm, y 5 3.22?1023 nm21, z 5 7). Figure 1e–l shows a side-by-
side comparison of RL- and SGP-based restorations. Clearly, the
STED microscopy image reveals superior details compared to the
CLSM image because their differences in spatial resolution
(Fig. 1b,c,d, Fig. S1). Importantly, we deconvolved the synthetic
images by means of the very same PSFs used for their generation
(inverse crime). Thereby the results were not fundamentally biased
by the choice of the PSF. After deconvolution we obtained excellent
contrast improvement and noise reduction that help distinguishing
more structural details into the CLSM restored images (Fig. 1e,g,i,k),
as well as, into the STED microscopy restored images (Fig. 1f,h,j,l).

More interesting for the scope of this work is the comparison
between RL- and SGP-based restorations. Both algorithms led to
similar results (Fig. 1e,f,i,j). However close looks to the restorations
(Fig. 1h,l,g,k) depict slight differences. For example the SGP-based
images offers higher contrast with respect to the RL-based counter-
part. A quantitatively analysis confirmed such improvement (Fig.
S1). Even if RL and SGP algorithms converge to the same minimum,
they follow different approximation paths and the restorations sat-
isfying the stopping rule can present marginal differences.

Whereas RL and SGP algorithms are similar in terms of restora-
tion quality they have strong differences in terms of speed. Figure 2
plots the time and the number of iterations requested for obtaining
optimal (in terms of restoration accuracy (see Methods)) restored
images as function of the image size (number of pixels). We con-
firmed robustness of the algorithms against noise and object struc-
tures by running the algorithms with different noise realizations and
different random tubulin network realizations. Moreover, we care-
fully maintained the concentration of filaments constant for all
image sizes, in order to remove any dependency of the iterations’
optimal number on the image size. On the other side, the optimal
number of iteration changes between the two microscopy tech-
niques. However, the reason is not connected to the microscopy
technique itself, but to the different intensity-dynamic of their
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images (Color bars Fig. 1a) and the different size of the their PSFs. As
a rule of thumb the optimal number of iterations increases for
increasing intensity-dynamic (number of photons collected per
pixel) and blurring of the image (size of the PSF with respect to the
pixel size).

More interesting for SGP and RL algorithms comparison is that
SGP reduces the optimal number of iterations (,87% for CLSM and
,51% for STED microscopy). This is in agreement with the main
feature of the SGP method, i.e., the ability to find optimal direction
toward the minimum of the functional and thereby to reduce the
number of iterations needed. However, a fair comparison of the
speed-up of SGP algorithm has to take into account that a single
SGP iteration needs more computation than a single RL iteration.
Thereby, the overall time speed-up obtained with the SGP algorithm
is ,20% for STED microscopy and ,80% for CLSM. Similarly to the
RL algorithm, also the SGP algorithm decreases the optimal number
of iterations when the signal-to-noise ratio (SNR) decreases. Thus, in
a regime of very low SNR the speed-up of the SGP-based algorithm
with respect to the RL algorithm can reduce (Fig. S2).

After estimating the speed-up related to the SGP algorithm alone,
we evaluated the further speed-up obtained by implementing the
SGP algorithm for GPU (instead of CPU). Figure 3 shows the time
needed to obtain optimal restoration as a function of the image size.
The GPU-based algorithm works ,10 times faster for small images
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(126 3 126 pixels) and ,100 times faster for large images (4096 3

4096 pixels) when compared to the CPU-based algorithm. Notably,
this speed-up has to be added to the speed-up provided by the SGP
algorithm, for example for large CLSM images (4096 3 4096 pixels)
the GPU-based SGP algorithm need ,8 s, that is ,690 times faster
then the CPU-based RL algorithm. If we consider that to achieve
adequate SNR a modern CLSM need a pixel-dwell time of at least
1 ms, in this example the deconvolution process is at least 2 times
faster then the time to collect the image.

Next, motivated by the promising results on synthetic images we
applied the SGP algorithm to real images of tubulin network (Fig. 4).
In contrast to results on synthetic images, results on real images
strictly depend on the PSF. Thereby, even if any method which estim-
ate the PSF is fully compatible with the proposed algorithms, one has
to pay particular attention to the PSF choice. A PSF may be empirical,
i.e., measured33 or theoretical, i.e., calculated34. Empirical PSF is gen-
erally obtained by imaging of sub-resolved structures in the same
system conditions (i.e. optics and specimen’s environment) used to
image the specimen. Whereas calculated PSF is generated by using
analytical models which require parameters like wavelength config-
urations, objective lens details, refractive indexes of immersion and
mounting media, etc. Both methods present advantages and disad-
vantages. Briefly, an empirical PSF is contaminated by noise and has
to be measured exactly in the same conditions that will be used to
image the specimen, on the other side, a measured PSF takes into
account any kind of aberration that can arise in the whole system,
including aberration introduced by the specimen itself; a theoretical
PSF is noise-free, but, its computation requires many information that
are not easy to known and complex models. Also, a third option exists
where the PSF is estimated from the image together with the
unknown object, i.e., blind deconvolution35. In this paper we adopted
an hybrid method (see Methods): we used a rather easy PSF para-
metric model whose parameters are directly extracted from the image
of sub-resolved structures contained in the very same specimen (sr 5

93 nm, y 5 3.22?1023 nm21, z 5 5.2). Importantly, in the case of
deconvolution for STED microscopy is extremely important to estim-
ate the PSF directly from the image being deconvolved since the PSF

strictly depends also by the properties of the fluorescent marker. For
example, the use of fluorescent beads can result in a wrong estimation
of the PSF, since in most of the case the fluorescent marker used for
the beads is different from the one used for labeling the specimen.

The superior resolution of STED microscopy clearly highlights
filaments intersection that can not be resolved in the CLSM counter-
part (Fig. 4a–d). By strongly improving the contrast and reducing the
noise, the SGP algorithm is able to recover many structural details
from the raw CLSM image, as well as from the raw STED microscopy
images. These results fully confirm the importance of applying
deconvolution also to super-resolution techniques, such as STED
microscopy. Moreover, this example clarifies which are the benefits
of using algorithms based on equation (2), like RL and SGP. It is well
known that minimization of equation (2) leads to pointwise (sparse)
restorations. For this reason many regularization methods have been
proposed by different groups in order to apply deconvolution also for
imaging of piecewise structures. In this work we applied deconvolu-
tion on tubulin network images, which is a rather sparse structure.
SGP algorithm offers superior results when it is applied to recon-
struct single isolated tubulin filaments. There are almost no differ-
ences between CLSM and STED microscopy restoration when
comparing the intensity profile through a single isolated filaments
(Fig. 4j), i.e., deconvolution on CLSM can, in these particular cir-
cumstances, substitutes STED microscopy. On the contrary, when
more convoluted structures are imaged, the lower resolution offered
by CLSM microscopy can not be compensated by deconvolution.
STED microscopy, especially when combined with deconvolution,
easily resolves two close (,100 nm) tubulin filaments (Fig. 4i), but
CLSM, even if combined with deconvolution, fails on the same task
(Fig. 4i). The GPU-based SGP algorithm provided the restoration in
,0.07 s (21 iterations) and ,0.16 s (45 iterations) for CLSM and
STED microscopy, respectively. Indeed, ,37 (STED) and ,16
(CLSM) time faster than the time that the microscope need to pro-
duce the images. The advantages of using the GPU-based algorithm
becomes plain for 3D data set. We tested the SGP algorithm on a 3D
CLSM image of the entire cytoskeleton of a cell (Fig. 5a) which took
180 s to be collected. Despite the huge data set (1024 3 1024 3
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33 voxel) the GPU-based implementation of the SGP algorithm
obtained an excellent restoration (Fig. 5b) after 20 iterations taking
,35 s, which is about a factor ,5 and ,35 faster than the collection
time and the time need by the CPU-based implementation, respect-
ively. Finally, we remark that we obtained all the results working with
double precision, thereby a further reduction of running time is
expected when using single precision. For example, when working
in single precision the entire cytoskeleton 3D restoration needed
,17 s, thereby ,2 time faster. Importantly, we observe that in the
microscopy contest running the deconvolution algorithms in single
and double precision we obtained similar qualitative results.

Discussion
Image deconvolution can potentially improve image quality for any
fluorescence microscopy technique, including the new emerging
nanoscopy techniques. However, the amount of computational time
required, which characterizes any high performance algorithm, has
so far limited the massive spreading of image deconvolution. In this
paper we describe a framework able to efficiently reduced the com-
putational time for solving both the ML (un-regularized) and the
MAP (regularized) deconvolution problem. This framework uses
the SGP method for solving the minimization problem associated
to deconvolution. As an example, we use this framework to derive an
efficient alternative to one of the most used deconvolution algorithm
in fluorescence microscopy, the RL algorithm. Further, we compared
CPU-based and GPU-based implementations of this algorithm. The
synergy between the SGP method and the GPU-based implementa-
tion achieves an improvement which ranges from about a factor of 25
to 690 (when compared to a CPU-based implementation of the RL
algorithm), without loosing in quality of the reconstruction.

The executable files for the GPU-based implementation can be
freely downloaded (http://www.unife.it/prisma), as well as the codes
for the CPU-based implementation. Moreover, as an example of the
SGP method applied to regularized deconvolution, the software pro-
vides a GPU-based algorithm which can efficiently substitute the
widely used regularized algorithms based on Tikhonov regulariza-
tion. Last but not least, the software includes a boundary effect cor-
rection, which allows the application of the algorithms to images of
cropped structures.

It is important however to point out the limitations of the SGP
method which, in this paper, is mainly applied to the ML problem
because we are focusing on possible real-time applications. As prev-
iously remarked, the SGP method can also be applied to the solution
of regularized problems (and one example is provided in this paper),
but only if the regularization function is differentiable. This is an
important limitation because, in general, the SGP method can not
be applied to the important case of sparse reconstruction schemes,
i.e. ‘1-norm regularization. More precisely, it can be applied to the
case of edge-preserving regularization if a smoothed TV-norm is
used36, but not to the case of sparsity of the object with respect to a
suitable wavelet transform, such as a dual-tree complex wavelet
transform or a dictionary composed of curvelets and un-decimated
wavelet transform37,38, an approach already proposed for confocal
microscopy.

In the case of a piece-wise object with sharp edges, regularization
by early stopping of un-regularized SGP or RL can produce a
smoothing of the edges and therefore edge-preserving regularization
is required. This over-smoothing effect does not appear in the res-
toration of tubulines networks because, as we already remarked, this
is essentially a sparse object and the ML solutions are sparse in the
pixel space.

In the case of regularized methods an important point is the
choice of the regularization parameter. For any selection criterion
the solution of several minimization problems is in general required
so that a real-time application is not possible. A way could be the
approach proposed in38, where the choice of the parameter is
reduced to the solution of a unique constrained minimization prob-
lem with an additional constraint related to the selection criterion.
We believe that also this constrained minimization problem is too
much time-consuming to enable real-time deconvolution with the
available GPU technology. A more practical way could be to calibrate
off-line the regularization parameter for a given class of objects (for
instance tubulines) and a given value of the signal-to-noise ratio.
Then the estimated value could be used for real-time SGP-based
deconvolution.

We conclude by highlighting the advantages of image deconvolu-
tion on STED microscopy imaging. The question if conventional
microscopy combined with image deconvolution alone (without
using prior information about the object to reconstruct) can recover
object’s frequencies beyond the cut-off frequency of the system (i.e.
achieve sub-diffraction resolution) is still controversial. In the case of
STED microscopy the situation is rather different. In a STED micro-
scope the response of the object’s emission rate to the illumination is
nonlinear (exponential). Roughly speaking, this property allows to
the STED microscope system to transfer all the object’s frequencies
(no cut-off frequency exists), thus permitting theoretically unlimited
resolution39,40. However, the strength of the frequencies declines
rapidly with the increases of the order, leaving the practical resolu-
tion finite due to signal-to-noise concerns. On the other side, in a
STED microscope the strength of the high frequency can be
enhanced by increasing the intensity of the illumination, which
unfortunately can also introduce photodamage effects on the spe-
cimen. In this scenario, image deconvolution can efficiently help
recovering high frequencies which are transmitted by the microscope
system but hindered by the noise, thereby improving the practical
resolution without increasing the intensity of the illumination.
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Methods
Scaled-gradient-projection (SGP) algorithm. Let us assume that the image detected
values yi (here i is an index labeling the pixels or voxels of the image) are realizations of
independent Poisson random variables, with unknown expected values (Hx 1 b)i,
where x is the unknown object, H is the imaging matrix given in terms of the known
PSF of the microscope h by

H xð Þi~
X
j[S

hi{jxj,
X
i[S

hi~1, ð1Þ

and b is the known background emission. Then, the maximum-likelihood (ML)
approach to the image deconvolution problem is equivalent to minimize the
following generalized Kullback-Leibler (KL) divergence (or Csiszár I-divergence)27,
given by

f0 x; yð Þ~
X
i[S

yi ln
yi

H xzbð Þi
z H xzbð Þi � yi

� �
: ð2Þ

As shown in41, an iterative algorithm converging to nonnegative minimizers of the KL
divergence is the well-known Richardson-Lucy (RL) algorithm29,30, recalled in the
Supplementary Information.

Since it is known that the nonnegative minimizers of the generalized KL divergence
consist of a set of bright spots over a black background, the so-called night-sky
solutions42, the algorithm can not be pushed to convergence and early stopping of the
iterations is required for obtaining a sort of ‘‘regularization’’ effect. Recently a few
stopping criteria have been proposed43,44,38, but their utility in practice has still to be
tested.

Regularization can also be obtained in a Bayesian framework by assuming that the
unknown object x is a realization of a random variable. If the probability density
(prior) is of the Gibbs type, by taking the negative logarithm of the posterior prob-
ability one finds that the maximum a-posteriori (MAP) estimates are the nonnegative
minimizers of the function

fb x; yð Þ~f0 x; yð Þzb f1 xð Þ, ð3Þ

where the second term is the negative log of the prior. In the following we will call f1(x)
the regularization function and b the regularization parameter. Examples of f1(x)
considered in microscopy are, for instance, the square of the ‘2 norm of x31 or edge-
preserving functions of x45,46.

In the case of a differentiable penalty function f1(x) several iterative methods have
been proposed for the minimization of the function fb(x; y) defined in equations (3)
and (2). For our purposes two methods are interesting: the one-step late (OSL)
method proposed in47 and the split-gradient method (SGM) proposed in48. The first is
used for instance in45 for total variation (TV) regularization and the second in46 for
Markov random field (MRF) regularization.

It is easy to show that both OSL and SGM are scaled gradient methods; however
only in the case of SGM the scaling is nonnegative for any regularization function f1(x)
and any value of the regularization parameter b (see Supplementary Information).
Therefore our reference algorithms are RL for the maximum-likelihood approach and
SGM for the Bayes approach.

Motivated by the large application of these algorithms in microscopy, we derived
new algorithms based on the scaled gradient projection (SGP) method28 which use the
scaling suggested by the RL (Eq. (S3)) and the SGM (Eq. (S6)) algorithms. In the first
case SGP is able to provide a very efficient solution of the ML image deconvolution,
hence an acceleration of the RL method; in the second case an efficient solution of the
MAP image deconvolution with f1 xð Þ~ xk k2

2, hence an acceleration of the algorithm
proposed in31. For the purpose of this paper, we describe the SGP algorithm in the case
of diagonal positive definite scaling matrices and nonnegativity constraint. The
general case of arbitrary convex constraints and/or non-diagonal positive definite
scaling matrices is given in28.

The considered ML and MAP problems are particular cases of the following
general convex optimization problem

min f xð Þ, sub: to x§0, ð4Þ

where f is a continuously differentiable convex function. The SGP algorithm for
solving this problem can be stated as in Table 1.

Here we denote by Pz the projection onto the nonnegative orthant, i.e., the
operator setting to zero the negative components of a vector, and by C the compact set
of the diagonal positive definite matrices whose diagonal entries have values between
two positive constants L1 and L2, 0 , L1 , L2.

As a gradient projection algorithm, SGP involves two standard elements: the choice
of a descent direction (Step 3.) by means of the projection onto the feasible region and
a line-search along the descent direction (Step 5.). For the latter, a classical monotone
line-search technique is considered but, as described in28, nonmonotone strategies
could be also exploited. The main feature of SGP consists in the definition of the
search direction, that is obtained by combining diagonally scaled gradient directions
with special step-length selection rules with the aim of accelerating the path toward
the minimum without losing the simplicity and low computational cost of each
iteration. In particular, the choice of the step-length ak is usually inspired by quasi-
Newton properties, but without the need of computing any second-order informa-
tion. In our implementations we use an adaptive alternation strategy based on the two
Barzilai-Borwein (BB) rules which, in the case of a scaled gradient directions, are as
follows28

a
B B1ð Þ

k ~
s k{1ð ÞT D{2

k s k{1ð Þ

s k{1ð ÞT D{1
k w k{1ð Þ

and a
B B2ð Þ

k ~
s k{1ð ÞT Dkw k{1ð Þ

w k{1ð ÞT D2
kw k{1ð Þ

ð5Þ

where s(k21) 5 x(k) 2 x(k21) and w(k21) 5 = f(x(k)) 2 = f(x(k21)). When Dk is equal to the
identity matrix, one obtains the standard BB rules49. More details on the adaptive
step-length alternation rule used in SGP are given in the Supplementary Information
and we refer to50–52 for discussion on the rationale behind the step-length alternation.
Concerning the choice of the scaling matrix Dk, it takes into account the special form
of the function f(x) we are minimizing and needs to be faced separately for each
application considered in the paper. In the case of the minimization of the KL
divergence we use the scaling suggested by Equation (S3), corrected with a threshold
assuring that the scaling matrix belongs to C

Dk~diag min L2, max L1,x kð Þ
i

n on o� �
: ð6Þ

Similarly, the analysis of SGM suggests the following scaling in the application of SGP
to the minimization of fb(x; y)

Dk~diag min L2, max L1,
x kð Þ

i

1zb V1 x kð Þð Þð Þi

( )( ) !
: ð7Þ

where V1(x(k)) is a nonnegative array/cube defined by an appropriate splitting of
=f1(x(k)). In the case of quadratic (or Tikhonov) regularization, we recall that V1(x(k))
5 x(k) (see Supplementary Information). Here it is also shown that, as far as the SGP
algorithm concerns, the boundary effect correction is incorporated in the scaling
matrix while all the other steps remain unchanged.

We conclude by recalling that global convergence of the algorithm is proved in28,
for every choice of the step-length ak in the closed interval [amin, amax] and of the
scaling matrix Dk in the compact set C. Further useful implementation suggestions on
the variables initialization, the parameter setting and the stopping rules can be found
in the Supplementary Information.

Point spread function. It has been shown by53 that a confocal PSF is well modeled by
a radially symmetric Gaussian function as:

Table 1 | Scaled-gradient-projection (SGP) algorithm

Initialization.

Choose the starting point x(0) $ 0, set the parameters b, h g (0, 1), 0 , amin , amax, 0 , L1 , L2.

FOR k 5 0, 1, 2, … do the following steps:
1 Choose the parameter ak g [amin, amax] and the scaling matrix Dk[C;
2 Projection: z kð Þ~Pz x kð Þ{akDk+f x kð Þ� �� �

; IF z(k) 5 x(k) THEN stop: x(k) is a minimum point; ENDIF
3 Descent direction: d(k) 5 z(k) 2 x(k);
4 Set lk 5 1;
5 Backtracking loop:
IF f(x(k) 1 lkd(k)) # f(x(k)) 1 blk=f(x(k))Td(k) THEN
go to Step 6;
ELSE
set lk 5 hlk and go to Step 5;
ENDIF
6 Set x(k11) 5 x(k) 1 lkd(k).
END
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hCLSM r,zð Þ~exp {r2
�

2s2
r

� �� �
exp {z2

�
2s2

z

� �� �
, ð8Þ

where s is related to the full-width at half-maximum (FWHM) by
FWHM~2

ffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

s. We estimated both sr and sz from the detected confocal image
by using intensity profiles of sub-resolved structures into the image, like
unspecifically bound single antibodies or nanosize sub-cellular compartments,
together with Gaussian fits for obtaining sr and sz. Similarly, it has been shown that
the PSF of a STED microscope operating with continuous-wave (CW) lasers (also
called CW-STED microscope) is well modeled by54,55:

hCW{STED r,zð Þ~hCLSM r,zð Þ1
�

1z4y2r2z
� �

, ð9Þ

where: y is a constant that depends on the shape of the doughnut-like STED intensity
distribution at the focus56; z is the so called saturation factor, which is defined as z 5

ISTED/Is, ISTED being the maximum value of the STED intensity distribution at the
focus and Is being the effective saturation intensity, which can be defined as the
intensity at which the probability of fluorescence emission is reduced by half. In the
most general case, Is is a function of the orientation distribution and rotational
behavior of the fluorescent marker, as well as of the wavelength, temporal structure
and polarization of the inhibition light56,57. We estimated y by using scattering images
of single isolated 80-nm gold bead. Importantly, z 5 0 and hCW2STED 5 hCLSM if the
STED beam intensity is null. Thereby, by taking advantage of having the CW-STED
and confocal images of the very same specimen, we estimated the s values as
described above. Next, given s and y, the saturation factor z was estimated using
equation (9) and the intensity profiles through sub-resolved structures in the CW-
STED image. Finally, we mention that the Gaussian-based models for the PSF can fail
in the case of thick specimen. In this case images are affected by a depth-variant blur
due to spherical aberrations induced by refractive index mismatch between the
different media composing the system as well as the specimen58. Nevertheless, in
practice it is difficult to obtain such a PSF, in spite of the existence of theoretical
models accounting for spherical aberrations, because these models depend on some
unknown acquisition parameter, such as the refractive index of the specimen.
Therefore one needs blind or semi-blind restoration algorithms (see, for instance59,
where an alternating minimization scheme is used in conjunction with SGP as
minimization algorithm for depth-variant image deconvolution in confocal
microscopy).

Synthetic images. To generate pseudo-random phantoms which mimic the micro-
tubule network of a cell we randomly selected the starting positions of a given and
fixed number of filaments and successively we used a stochastic process for
choosing iteratively the directions of growth. The growth has been performed in a bi-
dimensional or three-dimensional space to obtain 2D or 3D phantom, respectively.
We assumed filaments having tubular structure with radius 30 nm and we introduced
heterogeneity of protein concentration between different filaments by associating to
each filament a value in the range [0, 1]. Successively, to obtain the ideal image we
convolved the phantom ~x with the system PSF, i.e., H~x. Importantly, the PSF of the
STED system becomes narrower respect to the confocal counterpart as the saturation
factor z increases, but the intensity value at the peak stays constant. Thereby, in the
convolution process, we used Equations (8) and (9) without any normalization to the
sum of the pixels/voxels.

To obtain the ideal image in terms of average detected photons, we multiplied the
convolved object by a factor t which depends on several multiplicative factors, such as
the emission rate of the fluorophore, the collection efficiency of the system and the
pixel dwell-time. Since we assumed that photon counting noise represents the major
source of noise for the detection process, and a constant background b can further
degrade the image, we obtained the final image by corrupting every pixel/voxel i with
a Poisson process with mean t H~xð Þizb. Thus by increasing t, the average number of
detected photons increases and hence the signal-to-noise ratio (SNR) increases. The
relation between SNR and t is

SNRdb~10 log max
i

t Hxð Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t Hxð Þizb

p
 !

: ð10Þ

Since in simulation we know the object ~x used to generated the simulated image, we
can numerically evaluate the quality of the deconvolved images at each iteration k. In
particular, we used the Kullback-Leibler divergence of the reconstructed image x(k)

from the known object ~x (see Supplementary Information). Notably, we computed
the KL divergence by using the phantom ~x scaled with the effective photons emitted
from each pixel/voxel. In the case of simulated data, we stopped the algorithms when
they reached the minimum of the KL divergence (see Supplementary Information).

Real images. To test the proposed algorithms we imaged the micro-tubule
cytoskeleton of fixed PtK2 cells. We used two different protocols for labeling two
different proteins of the filament systems. The first protocol localizes the b-tubulin
protein; it involves a primary antibody (antib-tubulin mouse IgG, Sigma) and a
secondary antibody (sheep anti-mouse IgG, Dianova) labeled with ATTO 647N
(Atto-Tec). The second protocol localizes keratin protein and uses the Citrine yellow
fluorescent protein. The samples were examined using a Leica TCS STED-CW
microscope (Leica Microsystems) equipped with a 1003/1.40 OIL STED orange
objective (Leica Microsystems). The system is able to perform both confocal and
STED imaging. We excited (with a regular Gaussian beam) ATTO 647N and Citrine
fluorophores at 635 nm and 488 nm, respectively, and we collected emitted light in

the 650–750 nm and 495–580 nm spectral windows, respectively. For STED imaging
on Citrine tagged sample fluorescence we depleted with a doughnut shaped beam at
592 nm. In the case of real data, we stopped the algorithms when they reached
convergence with a tolerance of 1023 (Eq. (S26)).

Computational features. Our test platform consists of a workstation equipped with 2
Intel Xeon Six-Core CPUs at 3.1 GHz, 188 GB of RAM and 4 GPUs Nvidia Fermi
C2070. It is managed by a CentOS Linux distribution. Each GPU is highly parallel: 14
streaming multiprocessors for a total of 448 64 bit computing cores, a high-speed
RAM block shared among the 448 cores and a cache. Additional hardware details are
available in the last section of the Supplementary Information.

Two implementations of SGP are available: one in Matlab (CPU-based) and
another one in C/CUDA (GPU-based). The GPU implementation is developed in
mixed C and CUDA languages, the latter being a manufacturer-provided framework
for C-like GPU programming (see Supplementary Information). We used Matlab
v. 7.11 and CUDA v. 4.3.

The main computational cost in both the RL and the SGP iterations is a pair of
forward and backward FFTs for computing the image convolutions.

In the GPU framework, these operations were faced by means of the Nvidia CUFFT
library, while Matlab exploits a multi-threaded implemetation of FFTW libraries: a
real-to-complex FFT is followed by a component-wise multiplication between the
transformed iterate and the PSF and, at the end, a complex-to-real inverse FFT gives
the convolution. A few additional component-wise operations are needed, which only
depend on each single pixel/voxel (which is good for the GPU implementation), so
that the complexity per iteration remains essentially unaffected. The SGP algorithm
also requires a few products between long vectors, to update the steplengths: these are
‘‘reduction’’ operations, involving communications in the GPU case. They are per-
formed by calling dedicated and optimized library routines (see Supplementary
Information).
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