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1 | INTRODUCTION

Alkaptonuria (AKU, OMIM: 203500) is a rare autosomal
recessive disorder of tyrosine metabolism resulting from a defect
in homogentisate-1,2-dioxygenase (HGD, E.C.1.12.11.5),
which leads to a marked increase in the circulating concentration
of homogentisic acid (HGA)." The pathological hallmark of
AKU is “ochronosis,” which is a consequence of the deposition
of a dark pigment in connective tissue, mainly cartilage, which
alters its physicomechanical properties. The exact composition
and structure of this pigment is unknown, but is known to result
from the accumulation of HGA (Figure S1 ).2

Treatment options for AKU are conservative in large
focusing on supportive and palliative measures.”> The HGA
lowering agent nitisinone (Figure S1) has been shown to
completely prevent ochronosis in AKU mice® and is being
evaluated as a potential treatment in AKU patients'*®; it is
however not without its own challenges as it is well docu-
mented to result in significant hypertyrosinemia in AKU"+'°
and hereditary tyrosinaemia type 1 (HT1, OMIM: 276700).' "3
The consequences of this are largely unknown in AKU; in HT1
it has been suggested this may contribute to the neu-
rodevelopmental delay that is frequently observed in children
treated with nitisinone.'* Several mechanisms have been pro-
posed for this including altered metabolism of the monoamine
neurotransmitters.'> Davison et al.'®!” demonstrated in a cohort
of AKU patients that nitisinone therapy resulted in altered uri-
nary excretion of dopaminergic and serotoninergic neurotrans-
mitter metabolites. However, these findings are limited as they
are not a direct reflection of neurotransmitter metabolism in the
central nervous system. A recent study in an animal model of
HT1 suggested that the disease itself and not treatment with
nitisinone is likely to be responsible for slower learning and
altered behavior in mice.'®

Recently, changes in the urine metabolome of an AKU
mouse model and patients with AKU treated with nitisinone
were reported.'® This study demonstrated novel changes in the

Conclusions: Evaluation of the serum metabolome of patients with AKU showed
a significant difference in the abundance of several metabolites following treatment
with nitisinone, including a number that have not been previously reported; several

of these were not related to the tyrosine metabolic pathway.

Nitisinone therapy has a significant impact on several metabolites beyond the tyro-

sine metabolic pathway, several of which appear to be related to the redox state of

alkaptonuria, metabolomics, nitisinone, tyrosine

tyrosine metabolic pathway, and unexpectedly in tryptophan
and purine metabolism. While these changes in the urine
metabolome provide insight into how nitisinone alters
metabolism, one may postulate that changes observed in
the serum are more relevant as they are a more direct reflec-
tion of internal homeostasis. Gertsman et al.*° reported on
the impact of nitisinone therapy on the serum metabolome
of patients with AKU. In addition to the expected decrease
in HGA and increase in tyrosine, significant increases in
acetyl- and y-glutamyltyrosine were also observed. In a
separate publication®! in the same cohort of patients, novel
disturbances in tryptophan metabolism were reported.
Herein for the first time we report the impact of nitisinone
(2 mg daily) therapy on the serum metabolome in the largest
cohort of AKU patients to date over a 2-year period at the
National AKU Centre (NAC) in the United Kingdom.

2 | MATERIALS AND METHODS

2.1 | Reagents

Water for mobile phases was purified in-house (DIRECT-Q
3UV Millipore water purification system). Methanol, acetoni-
trile, and isopropanol were purchased from Sigma-Aldrich
(Dorset, UK). Formic acid and ammonium formate were
obtained from Biosolve (Netherlands) and Fisher Scientific
(Germany), respectively. All reagents were liquid chromatog-
raphy (LC)-mass spectrometry (MS) grade. Acetyl-tyrosine
was purchased from Sigma-Aldrich, UK.

3 | PATIENTS AND SERUM SAMPLE
COLLECTION

3.1 | Ethical approval

Data collection and sample analyses at the NAC have approval
from the Royal Liverpool and Broadgreen University Hospital
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Trusts Audit Committee (Audit no. ACO3836), this approval
includes the use of patient data and biological material for met-
abolomics evaluation. As data and samples were collected as
part of the clinical service, ethical approval was not required.
Patients are informed verbally and through patient information
leaflets about the clinical and research activities of the NAC
and are informed that data may be used for publication. For a
detailed protocol see Milan et al.’

3.2 | Sample collection

Serum samples (S-monovette; Sarstedt, Germany) were col-
lected from patients after an overnight fast (>8 hours). Patients'
dietary intake of protein was managed through a 7-day food
diary by a combination of lower protein in diet and phen-
ylalanine/tyrosine-free meal exchanges. Samples were cen-
trifuged at 1500g for 10 minutes at 4°C; and then deproteinized
with perchloric acid (60% 5.8 M; 1:10, perchloric acid:serum),
vortexed and centrifuged at 1500g for 10 minutes. Supernatant
was stored at —20°C until analysis.

4 | PATIENT AND QUALITY
CONTROL SAMPLE PREPARATION

Patient samples were prepared by diluting 150 pL of serum
with 450 pL. of deionized water (DIRECT-Q 3UV Millipore
water purification system). Diluted samples were then trans-
ferred into a 96-well plate which was then agitated on a plate
shaker (MTS 2/4 m IKA, Germany) at 600 rpm for 10 minutes.

Patient group quality control (QC) samples were pro-
duced by adding 50 pL of each patient sample into a single
pool. In total four group QC pools were made ([a] baseline,
[b] 12-months, [c] 24-months, and [d] overall—containing
serum from all patients and visits; this acted as a system
QC). QC samples were prepared as per patient samples.

The analytical sequence of samples was performed as per
published guidance.** Each run commenced with 20 replicate
injections of the overall pooled sample to condition the sys-
tem. The order of individual samples was randomized com-
putationally. Pooled samples were interspersed throughout
the analytical sequence every tenth injection.

S | ANALYTICAL METHOD

5.1 | Chromatographic conditions

Liquid chromatography was performed on an Agilent 1290
Infinity I LC system. An Atlantis dCg column (3.0 X 100 mm,
3 pm, Waters, UK) was maintained at 60°C with a flow rate of
0.4 mL/min. Mobile phases were (A) water and (B) methanol
both containing 5 mmol/L. ammonium formate and 0.1% formic
acid. The elution gradient started at 5% mobile phase B at
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0-1 minute increasing linearly to 100% B by 12 minutes, held at
100% B until 14 minutes, returning to 95% A for 5 minutes to
recondition the column. Injection volume was 1 pL.

5.2 | Quadrupole time-of-flight MS conditions

An Agilent 6550 quadrupole time-of-flight MS (QTOF-MS)
equipped with a dual jet stream electrospray ionization
source was operated in 2 GHz mode, over the mass range of
50-1700, in negative and positive polarities. A reference
mass correction solution was continually infused at a flow
rate of 0.5 mL/min via an external isocratic pump (Agilent,
UK) for constant mass correction (see Supporting Informa-
tion 1 for additional details of QTOF-MS operating parame-
ters and composition of reference ion solution).

6 | METABOLITE
IDENTIFICATION, DATA QC, AND
STATISTICAL ANALYSES

Metabolite identification was carried out using an established
accurate mass retention time (AMRT) database to match chemi-
cal entities.'® The database included theoretical accurate mass,
measured retention time, and empirical formula. This was mod-
ified to include acetyl-tyrosine, y-glutamyltyrosine, and indole-
3-lactate (I-3-L). AMRT data for acetyl-tyrosine were verified
following the analysis of an analytical standard. AMRT data
for y-glutamyltyrosine and I-3-L were based on the elution time
associated with theoretical monoisotopic mass of each com-
pound and were not verified using an analytical standard. Data
and statistical analyses were performed using the MassHunter
software suite (Agilent, UK). For additional details on data and
statistical analyses, see Supporting Information 1.

7 | RESULTS

Twenty-five patients (13 female, mean age[+SD] 55.3[15.3]
years [range 22-75]; 12 male, mean age 44.2[15.8] years
[range 22-70]) were included at baseline and after treatment
with nitisinone at 12 and 24 months.

Raw data from LC-QTOF-MS analysis showed that reten-
tion time and accurate mass ranges were 1.15-13.93 minutes
and 75.0318-730.5955 Da, in positive and 1.03-14.67 minutes
and 75.0318-722.6247 Da in negative polarity, respectively.
Principal components analysis (Figure 1) showed clear separa-
tion between the AMRT-matched profiles of AKU patients
pre- vs post-nitisinone therapy.

One hundred fifty-one of 469 and 249 of 469 metabolites
were aligned across all samples in positive and negative
polarities (for matched compounds see Table S2), respec-
tively, at baseline, and after nitisinone treatment at 12 and
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24 months. After filtering entities based on their frequency
and variability across replicate injections of pooled QC sam-
ples from each experimental group, 123 and 209 entities
were retained from positive and negative polarity profiling
experiments, respectively. Of these, 60 and 121, respectively,
were shown to be significantly different (P < .05) following
nitisinone therapy. Those with a log, fold change (FC) >2 at
12 and/or 24 months are summarized in Table 1. Applying
this cut-off, eight (6.5%) entities were considered to increase
in abundance and 13 (10.7%) decrease in abundance.

Nine (43%) of the 21 metabolites that were affected follow-
ing treatment with nitisinone relate to tyrosine metabolism.
Many of the other metabolites that had altered abundance
following nitisinone therapy did not follow a clear theme apart
from tryptophan, citric acid cycle, and purine/pyrimidine
metabolism.

8 | DISCUSSION

Over the last two decades, there have been several reports on
the use of nitisinone to treat AKU. Its inhibition of HPPD
(Figure S1) has been shown to dramatically reduce the circu-
lating concentration of HGA,"*® but leads to marked hyper-
tyrosinemia."*'° Beyond hypertyrosinemia, there is very little
reported on the biochemical consequences of nitisinone ther-
apy. Herein, we report the impact of nitisinone therapy on the
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FIGURE 1 Principal component analysis of raw data from

LC-QTOF-MS profiling experiments of serum samples from patients at
baseline (pre-nitisinone, brown circle), 12-months (2 mg daily
nitisinone, red circle), and 24-months (2 mg daily nitisinone, blue
circle) x-axis—component 1, 22.09%; y-axis—component 2, 9.66%;
z-axis—component 3, 7.78%. LC, liquid chromatography, QTOF-MS,
quadrupole time-of-flight mass spectrometry

serum metabolome, using LC-QTOF-MS and a validated
strategy to identify metabolites using an AMRT database
developed in-house.' This study is unique as it includes the
largest cohort of patients with AKU to date, taking a 2 mg
daily dose of nitisinone over 24 months. In addition, as it is
based on the analysis of serum it is a better reflection of the
impact of nitisinone on internal homeostasis.

This study confirms previous reports that nitisinone treat-
ment in AKU results in a marked reduction in serum HGA
and increase in tyrosine. In addition, a significant increase in
3-(4-hydroxyphenyl)lactate (3-(4-HPLA)) was observed.
Unexpectedly 3-(4-hydroxyphenyl)pyruvate (3-(4-HPPA)),
the metabolite immediately proximal to the site of action of
nitisinone, was not increased (Figure S1). The marked
increase in HPLA is an expected consequence of nitisinone
therapy, but has not been reported in serum. There is an equi-
librium between 3-(4-HPPA) and 3-(4-HPLA) (Figure S1)
and it is likely that the reason for only observing significant
increases in latter is that the sample pH shifted the equilibrium
position to favor its formation. This pattern has been previ-
ously reported'® in a study that reported on the urine
metabolome of patients with AKU treated with nitisinone; a
84- and 3.3-fold (raw FC) increase in 3-(4-HPLA) and
3-(4-HPPA) were reported, respectively.

Marked increases in the tyrosine conjugates acetyl-tyrosine
and vy-glutamyltyrosine were also observed. The log, FC
observed was very similar for tyrosine and y-glutamyltyrosine,
but that of acetyl-tyrosine was markedly higher. The latter sug-
gests that an equilibrium shift between tyrosine and acetyl-
tyrosine may exist, but not for tyrosine and y-glutamyltyrosine.
Norman et al.' showed that urinary tyrosine was significantly
higher than acetyl-tyrosine and y-glutamyltyrosine in a
cohort of AKU patients on 2 mg daily of nitisinone
supporting that an equilibrium shift between tyrosine and
tyrosine conjugates exists. In contrast, Gertsman et al.*°
reported a proportional increase in plasma tyrosine, acetyl-
tyrosine and y-glutamyltyrosine following nitisinone suggesting
there is no equilibrium shift. While direct comparisons between
the magnitudes of FC cannot be made as herein we report log,
FC, the proportions of metabolites are clearly different between
the two studies. This may be due to the small number of
patients in the study reported by Gertsman et al.?® and that a
2 mg dose was used only in our study. Nonetheless, our find-
ings support that nontraditional metabolic pathways are active
in the face of tyrosine excess.

The elevated y-glutamyltyrosine suggests that glutathione
metabolism and the redox state of cell>** are altered follow-
ing treatment with nitisinone. This is of particular importance
to AKU as elevated HGA is thought to lead to a pro-oxidant
environment where “soluble melanins™ are formed.” Increas-
ing evidence to support HGA-induced oxidative stress has
been reported in vitro in serum®® and cellular models,*’ and
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TABLE 1 Serum metabolite changes identified post-nitisinone therapy at 12 and 24 months in patients with AKU using an in-house AMRT
database
Log, FC Abundance
Compound 12-Months 24-Months P value Down Up Metabolic process/pathway affected
Glycocholate 12.7 12.7 <.001 \/ Bile acid
Succinic acid 11.4 11.4 <.001 \/ Citric acid cycle
a-Ketoglutaric acid 10.0 10.0 <.001 \/ Citric acid cycle
Trans-4-hydroxyproline 15.5 15.5 <.001 \/ Collagen
Homoserine 12.5 12.5 <.001 \/ Methionine/cysteine
Mevalolactone 10.7 10.7 <.001 \/ Steroid
L-Allothreonine 11.8 11.8 .02 \/ Threonine
Trigonelline 12.8 12.8 <.001 \/ Tryptophan
4-Quinolinecarboxylic acid 8.3 8.3 <.001 \/ Tryptophan
Indole-3-lactate 2.1 2.3 <.001 \/ Tryptophan
4-Hydroxyphenylacetate 4.2 54 <.001 \/ Tyrosine
Benzaldehyde 6.9 6.9 <.001 \/ Tyrosine
Homogentisate 4.0 5.0 <.001 \/ Tyrosine
4-Hydroxybenzaldehyde 14.4 14.4 <.001 \/ Tyrosine
L-N-Acetyl-tyrosine 15.5 15.2 <.001 \/ Tyrosine
y-L-Glutamyl-L-tyrosine 3.2 3.0 <.001 \/ Tyrosine
3-(4-Hydroxyphenyl)lactate 6.4 6.4 <.001 \/ Tyrosine
L-Tyrosine 2.7 2.7 <.001 \/ Tyrosine
Mandelic acid 12.6 12.0 <.001 \/ Tyrosine
Inosine 10.8 10.8 <.001 v Purine
Uridine 2.1 1.5 <.001 v Pyrimidine

Note: Abundance expressed as log, FC compared to baseline (pre-nitisinone treatment). Log, FC included if >2 at 12- and or 24-months.

Abbreviation: AMRT, accurate mass retention time.

in patients with AKU.?® For a recent review on oxidative
stress and its contribution to the mechanisms of the ochronotic
process, see Ref. 29. One may postulate that treatment with
nitisinone reduces the burden on the glutathione cycle improv-
ing glutathione availability. In turn, this may enable transfer of
the glutamyl moiety from glutathione to tyrosine, via the action
of y-glutamyl-transpeptidase™~* to form y-glutamyltyrosine.
Interestingly, this study also revealed a marked decrease in the
citric acid cycle metabolites o-ketoglutaric and succinic acid,
the keto acids of o-ketoglutarate and succinate, following
nitisinone. In this study, glutamine levels did not change, thus
one may hypothesize that glutamate formed from glutamine is
preferentially converted to glutathione and not o-ketoglutaric
and succinic acid (Figure 2). The significance of this is not
understood and requires further investigation.

The significance of increased acetyl-tyrosine is unknown,
but has been reported in serum® and urine'® of AKU patients
treated with nitisinone. It has also been observed in the urine
of patients with hereditary tyrosinaemia type 2 (OMIM:
276600).*° One may postulate that acetyl-tyrosine represents a

more efficient way to eliminate the excess tyrosine from the
body as it is more water soluble than tyrosine. Interestingly
acetyl-tyrosine has also been reported as an additive to food-
stuffs given to patients on nutritional support.*’

4-Hydroxyphenylacetate (4-HPA), 4-hydroxybenzaldehyde
(4-HBA), and benzaldehyde were increased significantly fol-
lowing treatment with nitisinone; these have not been previ-
ously reported in the serum metabolome of patients with AKU
following nitisinone treatment. 4-HPA has been reported in
urine following treatment with nitisinone.'” 4-HPA is generated
from gut microbiota®”; one may hypothesize that the increase
observed herein resulted from less oxidative stress following
nitisinone, which increased microbiotic metabolism. This is the
first report in humans, but has been seen previously observed in
a rat model of oxidative stress.*?

The increase in 4-HBA has been reported in the urine of
patients with AKU following nitisinone,'” but the decrease
in benzaldehyde has never been observed. The significance
of both entities is uncertain. 4-HBA is a naturally occurring
compound that originates from the saprophytic perennial
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»GT
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Gastrodia elata.>® Recent studies have reported the therapeu-
tic effects of benzaldehydes in a number of areas including
wound healing, cancer, vascular disease, and renal disease.>*7
In the context of AKU, the significance of 4-HBA and benzal-
dehyde are unknown and require further investigation. One
may speculate that they relate to the benzoquinones, proposed
as intermediates in the formation of ochronotic pigment
observed in AKU."

Mandelic acid was also increased following treatment with
nitisinone, which has been reported previously.'® The signifi-
cance of this is uncertain, but urinary elevation has previously
been observed in patients with PKU on a phenylalanine-
restricted diet.*®

The “off target effects” of any drug are essential when con-
sidering its suitability in treating a patient.*® Nitisinone therapy
in AKU and HT1 has long been associated with altered-tyrosine
metabolism, and so can be considered a “targeted effect.” More
recently off targets effects of nitisinone have been reported due
to its impact on tryptophan metabolism. A decrease in
5-hydroxyindoleacetic acid (serotonin metabolite) has been
reported in the cerebral spinal fluid and urine of patients with
HT1' and AKU,"'®"” respectively. Serum tryptophan itself has
been shown not to change following treatment with nitisinone’;
in contrast, urinary tryptophan has been shown to decrease."”
These differences may be explained by the fact that tryptophan
is highly protein bound (~90%-95%)* and measurement in
serum reflects total tryptophan and urinary tryptophan reflects
free tryptophan. The biologically active fraction is the free frac-
tion, which is not typically measured in serum, and the majority
is metabolized via the kynurenine pathway.*® Herein, I-3-L,
4-quinolinecarboxylic acid, and trigonelline were the only
tryptophan-related metabolites that were changed following
nitisinone. The significance of the latter two metabolites is
uncertain, but reinforces that downstream metabolism of
kynurenine and niacin may be altered following nitisinone
treatment. Gertsman et al.>' also demonstrated an increase in

FIGURE 2 Proposed mechanism for the
formation of y-glutamyltyrosine in AKU following
nitisinone therapy. Entities in red and blue
represent an increase and decrease in metabolite
abundance, respectively. AKU, alkaptonuria;

GP, glutathione peroxidase; GR, glutathione
reductase; GT, y-glutamyltranspeptidase

Glutathione
(reduced)
GP
H,O
H,0, z

plasma I-3-L, but additionally indole-3-pyruvate (I-3-P). It has
been proposed that the increased activity in the indole pyruvate
pathway results from tryptophan aminotransferase having a
higher affinity for tryptophan in the presence of keto acids (eg,
4-HPPA, 4-HPLA).*' The reason for not observing I-3-P is
uncertain, however one may speculate that I-3-L and not I-3-P
was increased due to reaction conditions favoring its formation.
In addition, differences may in part be explained by different
approaches to sample preparation, chromatographic and MS
conditions, patient cohorts, and nitisinone doses used. In addi-
tion, a separate study showed urinary xanthurenic acid, and L-
kynurenine and indoxyl sulfate were increased and decreased
following nitisinone therapy, respectively.'® The significance
of these changes is unknown.

Beyond tryptophan metabolism, there are limited reports on
the off target effects of nitisinone on the metabolome. Herein,
we have shown that trans-4-hydroxyproline decreases signifi-
cantly following treatment. This is of particular relevance to
AKU as it suggests that there may be decreased collagen break-
down. This requires further investigation as previous authors**
have demonstrated a very low cartilage turnover state in AKU
patients. In contrast, a different study reported that cartilage deg-
radation, as well as bone resorption markers were elevated in
AKU patients compared to controls.*’

In addition, significant decreases were observed in the
purine and pyrimidine precursors inosine and uridine, respec-
tively. In a previous study, decreased excretion of the purine
metabolites adenine and allantoin were reported in urine from
AKU patients and AKU mice treated with nitisinone.'® Patients
included in this study and previous'® were not on uric acid-
lowering medication, however were on a protein-restricted diet
which may contribute to this change. A plausible explanation
for the observations in serum and in urine may also relate to
changes in the oxidative state of the cell. Allantoin has previ-
ously been suggested as a marker of oxidative stress,* one
may postulate that the decreases observed in purine and
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pyrimidine metabolites are a reflection of reduced oxidative
stress in the face of lower HGA concentrations.**

Four unrelated entities were also shown to be decreased fol-
lowing nitisinone therapy; glycocholate, homoserine, mevalono-
lactone, and allothreonine. The reasons for this remain of
unknown significance and require further investigation.

It is important to highlight several limitations in this study.
First, while the number of patients included in this study is the
largest reported to date, metabolites identified need validating
in a larger cohort of patients. Moreover, an untreated group of
AKU patients would provide greater credibility that the find-
ings presented herein are a consequence of nitisinone therapy.
In addition, while we believe the AMRT database used in this
study is comprehensive, the targeted evaluation of the serum
metabolome precludes the identification of novel changes in
metabolites. Furthermore, the use of nonselective sample prepa-
ration to gain broad coverage of the metabolome may have lim-
ited metabolite detection if present at a low concentration or if
changes were not reproducible due to ion suppression.

9 | CONCLUSIONS

Evaluation of the impact of nitisinone treatment on the
serum metabolome of patients with AKU revealed a number
of novel changes including a number that are not directly
related to the tyrosine metabolic pathway. Some of these
changes can be explained by the impact of nitisinone therapy
on the cellular redox state and the wider impact of metabo-
lites on enzyme activity. Further work is required to provide
greater insight into the changes observed in the serum
metabolome following nitisinone therapy.
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