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Abstract: The use of lightweight concrete (LWC) for structural and non-structural applications has
attracted great interest in recent years. The main benefits include reduced deadload of structural
elements and generally lower production and transportation costs. However, a decrease in concrete
density often leads to a decrease in strength and durability. Typically, concretes are mostly modified
with mineral additives such as silica fume or fly ash. Because of the recent developments in nan-
otechnology, research attention has turned to the possibility of improving concrete properties with
nanomaterials, i.e., nano-SiO2. However, there are still certain issues with the dosage and efficiency
of nanomaterials. Therefore, in order to establish the current state of knowledge in this field, this
review gathers most recent results about the performance of LWC modified with nanomaterials.
The review is divided into sections about the influence of nanoparticles on the fresh properties of
concrete and their influence on the mechanical and durability characteristics. The paper studies in
depth the most common approach to nanomaterials in concrete technology and proposes areas for
further development.

Keywords: lightweight concrete; strength; durability; nanosilica; nanoparticles

1. Introduction
1.1. Lighweight Concrete—General Consideration

Waste management is a crucial factor for decreasing environmental contamination.
One of the best solutions to minimize this issue is reusing and recycling the materials
and by-products from various branches of the industry. A good example of recycling
is the production of fly ash (FA), where 19 M tons in 2012 were produced in just one
European country—Turkey (3% of world’s total). It is projected that the amount of FA
production could grow by more than 30% by 2020 [1,2]. One of the many solutions to
prevent the depletion of natural resources and decrease environmental pollution is the
production of artificial aggregates. This helps to dispose industrial waste and decrease
the usage of natural aggregates in the building industry [3,4]. Among the many available
types of artificial aggregates, the most popular are lightweight aggregates (LWA) such
as Poraver (Germany), Leca (Denmark), or Liapor (Germany). The above mentioned
aggregates differ in terms of raw materials used for their production, water absorption,
and strength, but have one thing in common: a low density due to the high porosity, as
shown in Figures 1 and 2. The concept of lightweight concrete (LWC) can be dated back
to 3000 years ago [5]. The Mediterranean region is filled with structures constructed with
LWC, including the famous Pantheon Dome built in the early Roman Empire [6]. Historical
LWC was made with natural lightweight aggregates such as pumice, diatomite, or scoria,
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with grains of variable shape and quality. The availability of these aggregates limited the
spread of LWC to the Mediterranean Sea basin [5].
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Figure 1. Natural LWA perlite: (a) macro scale, (b) micrograph to 32×, and (c) SEM micrograph to 
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Figure 2. Artificial LWA produced from expanded clay (aliven): (a) real scale, (b) micrograph to 32×, 
and (c) SEM micrograph to 500×, adapted with permission from ref. [7]. 

Lightweight concrete (LWC), according to the EN 206-1 [8], is defined as having a 
density below 2000 kg/m3. LWCs can be divided into six density classes, from 800 kg/m3 

with a grading of 200 kg upwards [9]. The use of lightweight aggregates for the production 
of concrete has many advantages [10–12]. Some of these can particularly include a reduced 
dead load, high thermal efficiency, and enhanced resistance against fire [13]. There are 
many methods of producing lightweight concrete (LWC), one of which is based on 
omitting the fine portion of the total concrete aggregate. Another approach is to use 
chemical admixtures to produce stable air bubbles in the cement matrix and mechanical 
foaming. This type of concrete is known as aerated, cellular, or gas concrete. The most 
common method of LWC production is by using lightweight aggregates [14]. 

Lightweight aggregate concrete (LWAC), in addition to the above-mentioned 
advantages, exhibits a lower early-age shrinkage compared with ordinary concrete, 
caused by the internal curing effect [15,16], lower transportation costs of precast units [17], 
and reduction in formwork and propping [18]. Typically, materials such as expanded 
shale, clay, or slate materials are used as lightweight aggregates for structural applications 
as a result of their porous structure obtained through firing [19]. As mentioned before, the 
application of lightweight aggregate has many benefits to the environment, which are 
important for the current generation. LWAs and their production help in the management 
of some industrial waste and in reducing the usage of natural aggregates, limited in 
natural deposits. Limited exploitation of natural resources saves riverbeds from activities 
and reduces CO2 emissions. It also means a lower specific energy consumption due to the 
limited use of cement, one of the major carbon dioxide producers [20,21]. 

In previous decades, lightweight aggregate concrete (LWAC) has been successfully 
developed and improved. The main interest has been focused on lightweight cementitious 
composites with a density lower than 1500 kg/m3 and sufficient mechanical strength for 
structural applications [19,22,23]. Even though the potential application of LWAC in 
structural areas seems promising, it is important to maintain the balance between 
properties such as the density, strength, stiffness, and durability. This is the greatest 

Figure 1. Natural LWA perlite: (a) macro scale, (b) micrograph to 32×, and (c) SEM micrograph to 500×, adapted with
permission from ref. [7].
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Lightweight concrete (LWC), according to the EN 206-1 [8], is defined as having a
density below 2000 kg/m3. LWCs can be divided into six density classes, from 800 kg/m3

with a grading of 200 kg upwards [9]. The use of lightweight aggregates for the production
of concrete has many advantages [10–12]. Some of these can particularly include a reduced
dead load, high thermal efficiency, and enhanced resistance against fire [13]. There are many
methods of producing lightweight concrete (LWC), one of which is based on omitting the
fine portion of the total concrete aggregate. Another approach is to use chemical admixtures
to produce stable air bubbles in the cement matrix and mechanical foaming. This type of
concrete is known as aerated, cellular, or gas concrete. The most common method of LWC
production is by using lightweight aggregates [14].

Lightweight aggregate concrete (LWAC), in addition to the above-mentioned advan-
tages, exhibits a lower early-age shrinkage compared with ordinary concrete, caused by the
internal curing effect [15,16], lower transportation costs of precast units [17], and reduction
in formwork and propping [18]. Typically, materials such as expanded shale, clay, or slate
materials are used as lightweight aggregates for structural applications as a result of their
porous structure obtained through firing [19]. As mentioned before, the application of
lightweight aggregate has many benefits to the environment, which are important for the
current generation. LWAs and their production help in the management of some industrial
waste and in reducing the usage of natural aggregates, limited in natural deposits. Limited
exploitation of natural resources saves riverbeds from activities and reduces CO2 emissions.
It also means a lower specific energy consumption due to the limited use of cement, one of
the major carbon dioxide producers [20,21].

In previous decades, lightweight aggregate concrete (LWAC) has been successfully
developed and improved. The main interest has been focused on lightweight cementitious
composites with a density lower than 1500 kg/m3 and sufficient mechanical strength
for structural applications [19,22,23]. Even though the potential application of LWAC in
structural areas seems promising, it is important to maintain the balance between properties
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such as the density, strength, stiffness, and durability. This is the greatest challenge that
hinders the wide spread application of LWAC in construction engineering. The main
disadvantage of LWAC is the lower compressive strength, higher deformability, and
weaker bonding strength between the cement matrix and the LWA compared with ordinary
concrete [24–26]. Lightweight aggregates have a lower strength and elastic modulus than
the mortar paste, and are therefore also lower than normal-weight concrete [25]. Another
problem that strikes researchers is the fact that no systematic mix design methodology
for LWC has been addressed, especially considering a balance between the mechanical
properties and thermal properties [27].

In order to address the above-mentioned issues and increase the durability of LWAC,
researchers have looked towards mineral additives. LWAC can be easily modified by
supplementary cementitious materials (SCMs), which can improve the microstructure and
thus the overall strength and durability [22]. The concrete industry is putting a heavy
focus on sustainability, for example, by producing low-cement concrete through partially
replacing it with SCMs. This approach increases the economic and ecological value, as
cement production requires high amounts of energy [28,29] and great amounts of CO2
are emitted during its production process. About 90% of the cumulative energy needed
for concrete production is spent during the production of cement [28,30]. In the past,
many scholars have investigated the role of different SCM in concrete. Industrial waste
and by-products such as silica fume (SF), fly ash (FA), and slag (S) are commonly used in
concrete [31–33]. However, silica fume is one of the most popular pozzolans [34] at a micro-
scale. It has been proven that silica fume is one of the most effective SCMs for improving
the properties of LWAC [35–37]. As a pozzolanic material, silica fume reacts with the
Ca(OH)2 and produces additional calcium silicate hydrate (C-S-H) gel. Additional C-S-H
gel results in a denser microstructure, which leads to an improvement in the properties of
hardened cementitious materials [38,39].

1.2. Recent Research Progress and Fields of Interest

Optimization of the mixture designs of LWCs towards the production of high-performance
materials with improved mechanical properties, as well as resistance against aggressive
environments, is the main topic of interest for researchers and industry. Lightweight
high-performance concrete (LWHPC) elements have a distinctive fine pore structure and
overall low porosity that corresponds to an improvement in the mechanical properties and
durability [40,41]. The properties of LWHPC are strongly correlated to the structure of
the paste and paste−aggregate interface, which are commonly modified by incorporating
admixtures and additives [42,43].

The permeability of concrete is considered as a representative property related to
the overall durability of concrete [44,45]. Because the majority of concrete elements are
reinforced with rebars, some innovative studies have recently been conducted to determine
the structural behaviours of steel reinforced LWHPC elements [46–50]. Another approach
proposed by various authors focuses on the production of fibre-reinforced lightweight
concrete [51–55]. The abovementioned studies have succeeded in obtaining lightweight
concrete with a low density and thermal conductivity, while retaining the high mechanical
properties. A lack of natural coarse aggregate typically leads to a lower elastic modulus,
lower stiffness, and could result in increased shrinkage and creep. As mentioned before,
the permeability of LWC, which indicates the durability of a material, is correlated to
the amount, shape, and connection between the pores, as well as the quality of the paste.
Nyame [56] found that cement composites made with lightweight sand have an almost
doubled permeability compared with those made with natural sand, and this could lead to
significant reduction it general durability. Al-Khaiat et al. [57] stated that the chloride ion
concentration that penetrated into the LWC structure was significantly higher than that in
a traditional concrete, which also highlights the need for modifying the paste structure.

Lightweight concrete, because of its low density, is also a good insulator; the general
scope of the thermal properties of lightweight concrete was summarized by Loudon [58].
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He reported that, even though thermal conductivity depends on the density and moisture
content, the properties of aggregate can also influence it by up to 25%. Zhang and Gjørv [59]
reported that the cement paste can penetrate lightweight aggregates during mixing, but
the strength of that effect depends on the microstructure of the aggregate surface, particle
size distribution of cement, and paste viscosity. Demirboğa et al. [60] conducted study on
the thermal conductivity and compressive strength of lightweight concrete with expanded
perlite aggregate modified by mineral additives. The authors found that SF and FA used
as a cement replacement decreased the thermal conductivity up to 15%, simultaneously
reducing the density and compressive strength of the concrete by up to 30%. That research
indicates a very important issue about the LWC: increasing the insulation properties by
decreasing the density often leads to a decrease in mechanical properties.

Yu et al. investigated the durability of ultra-lightweight concrete composite (ULWC)
mixes with the fine LWA that had a low open porosity [27]. They found that the evaluated
ULWC mixes had sufficient resistance to water and chloride ions, even though the total
porosities of ULWCs was higher than in ordinary concrete. This effect could be related
to the internal closed-pores in LWA particles. This type of pore structure reduces the
transportation of water, while the permeability of the material is correlated to the quality
of cement paste. Liu et al. [61] developed a LWC with a low water and chloride-ion
permeability. The design mix had 500 kg/m3 of cement and a density of 1400 kg/m3.
A low density was obtained thanks to use of the expanded clay and expanded glass.
The 28-day compressive strength of the concrete reached 24 MPa, which is sufficient for
structural applications.

Ling et al. [62] studied lightweight concrete bricks containing expanded polystyrene
(EPS) and rice husk ash (RHA) as lightweight aggregates. The authors found that the
replacement of cement by 10 wt.% RHA gave the best results. These were found to be the
same as that for traditional concrete water curing, which was suggested to be the most effec-
tive curing method. Another interesting research work was done by Akçaözoglu et al. [63].
The researchers studied lightweight concrete with waste PET as LWA. The use of PET
pellets not only allowed for utilising industrial waste, but also resulted in a reduction of
the thermal conductivity of concrete to 0.4–0.6 W/m/K, while normal-weight concrete
typically has thermal conductivity of approximately >1.0 W/m/K. In the study, the authors
obtained a density between 1530 and 1930 kg/m3 by substituting the NWA with PET by
30% to 60% of its volume. The corresponding compressive strength at 28 days varied
between 9.5 to 25.3 MPa. The former mix had the potential to be used as an insulation
material, while the latter could be considered for the production of structural elements.

1.3. Nanoparticles as Novel Admixtures to LWC

To date, the incorporation of micro-sized SCMs into LWC has been widely researched.
In recent years, there has been growing interest in nano-scale particle applications in
LWC technology [64,65]. These particles significantly influence the properties of cemen-
titious composites thanks to their fine sizes and chemical and physical properties [66].
Typical nano-scale particles are nano-TiO2, nano-Fe2O3, nano-Al2O3, nano-SiO2, carbon
nanotubes/fibers [67], and zinc oxide nanoparticles [68]. Among all these nanoparticles,
nanosilica (NS) is the most suitable and commonly used for the production of cementitious
materials. The amorphous structure and high production purity (more than 99%), as well
as the high specific surface area, are among the biggest advantages (Figure 3) [66,69–71].
Exemplary transmission electron microscope micrographs of NS are presented in Figure 4.
The TEM images clearly show NS’s spherical shape for particle sizes below 100 nm [72].
Depending on the type of nanoparticles, the dosage can vary from very low, i.e., 0.01 wt.%,
up to 10 wt.%. The relatively high cost of nanoparticles limits their industrial-scale appli-
cations in construction [73]; therefore, there is a strong need to optimize the nanoparticle
content in the mixtures in order to both benefit from their presence and reduce their
financial impact on the concrete price.
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Nanosilica is known to be an extremely reactive additive [76,77]. It accelerates the
hydration of cement by working as the nucleation site for the formation of C-S-H gel. The
NS pozzolanic activity increases the total generation of C-S-H in the matrix. Additionally,
NS fills the gaps, decreasing the water absorption and allowing for the improvement of
the durability of the cementitious matrix [78,79]. Available studies show [80–84] that NS
exhibits a significantly higher pozzolanic activity than the silica fume.

Various approaches towards the incorporation of NS in cement-based composites have
been proposed. These include either the addition of NS in the form of a dry powder or a
colloidal suspension. The colloidal form of NS has a much better dispersity compared with
the powder, increasing its overall efficiency [67]. At an early age, the cement hydration rate
can be accelerated by additional nucleation sites, which will result in increased early-age
strength of cement composites [83,85,86]. The application of NS could reduce the porosity
of the cementitious materials by producing calcium-silicate hydrate (C-S-H) gel from
Portlandite. This influences the rate of calcium extraction and decreases the accessibility for
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water and chloride ions [87–89]. Quing et al. [90] reported that NS significantly improves
the strength and durability, and influences the microstructure of cement paste compared
with other pozzolanic materials. Li [91] reported that for fly ash, which normally has a low
initial activity, even small amounts of NS notably increased its pozzolanic activity. The
reaction of nanoparticles with calcium hydroxide crystals produces an arrayed C-S-H gel
in the interfacial transition zone (ITZ) between hardened the cement paste and aggregate.
Compelling results were reported by Qing et al. [90]. The authors stated that 3 wt.% NS
enhances the strength of the ITZ significantly better compared with the SF. This occurs by
consuming the calcium hydroxide, decreasing the orientation of its crystals, and reducing
their size at the zone.

Although, the effects of nanosilica on the properties of normal-weight cement-based
composites have been widely studied and reviewed by many researchers, studies related
to the LWC are still limited. To date, there have been several studies reporting the influence
of NS on the properties of LWC, but no guidelines or summaries have been proposed.
Therefore, this review aimed to fill the gap in the state-of-art and presents the recent
developments in the field of modification of LWC with NS, as well as to propose further
directions and possible applications for the concrete industry.

2. Fresh Properties of Lightweight Concrete Modified with Nanosilica

To date, many studies related to the rheological properties of cement-based composites
modified with nanosilica are available [92–94]; however, there are still many uncertainties
about the rheological performance of LWC modified with NS. This issue is highly important,
as because of the high differences between the density of concrete’s components, LWC
exhibits a tendency to segregation and bleeding. The LWC mixtures are often designed
to be self-compacting to exclude the need for compaction during execution in order to
decrease the risk of segregation. Therefore, particular care has to be taken during the design
of LWC mixtures containing NS. Table 1 represents the studies related to the influence of
NS on the fresh properties of LWC, as well as the testing methods.

Table 1. Influence of nanosilica on rheological properties.

Research Analysed Properties Results

Du et al. [95] Slump flow test
To maintain slump flow, the superplasticizer

needed to be increased by 100% for
each 1 wt.% of NS

Atmaca et al. [96] Slump flow test To maintain slump flow, the superplasticizer
needed to be increased by 33% for 3 wt.% of NS

Naniz et al. [23]

Slump flow test Slump flow decreased by about 13%-17% with
5 wt.% NS dosage, depending on w/c

J-Ring test Flow diameter decreased by 15% for 5 wt.% NS,
regardless of the w/c ratio

U-box test
Height difference increased by 150–500% for

5 wt.% NS, but still met the criteria
for flowability

V-funnel flow test Flow time increased by 31–98% for 5 wt.% NS,
even though the SP dosage increased

Du [19] Flow test To maintain flowability, 40–80% SP was added
for 3 wt.% NS based on the w/c ratio

Yu et al. [27] Slump and flow test
To maintain consistency with 10 wt.%, the NS

dosage required an additional 1% SP, counted as
the wt.% of the binder

Based on the cited articles, it is clear that the superplasticizer dose needs to be increased
with the increase in the NS content. A simultaneous decrease in the stabilizer dosages
with the increase in NS content was required in order to achieve a reasonable flowability.
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This is caused by the fact that the viscosity of the fresh mixture would increase with the
increment of NS dosage, as shown in Figure 5. According to Atmaca N. et al. [96], all of the
LWCs were designed for a slump flow of 15 ± 2 cm in order to ensure easy mixing and
forming. To maintain it, the authors increased the dose of the superplasticizer with the
addition of NS. Similar findings were published by Naniz O. et al. [23], where the addition
of colloidal nanosilica reduced the slump flow of the prepared mixes. In general, nano-SiO2
particles adsorb partially water molecules, negatively influencing the workability. Water
molecules are typically attracted to the NS particles because of their high affinity and high
specific surface area. This leads to a state where increasing the w/b ratios decreases the
required dosage of SP. At the same time, increasing the w/b ratio results in a decrease in
density. For instance, the optimum dosage of SP in a mixture with 1 wt.% NS changed
from 9.45 kg/m3 (density of 1910 kg/m3) to 4.05 kg/m3 of SP (density of 1878 kg/m3),
while the w/c ratio changed from 0.35 to 0.45. This is because the available free water
increased with the increase in the w/c ratio. On the contrary, adding NS (3 wt.% according
to Naniz O. et al.) eliminates bleeding and segregation in LWC. This concurred in the
findings of Jalal et al. [97], who state that the incorporation of silica fume and nanosilica
influenced the consistency of the concrete mixtures. Another study showed that a small
amount of NS could result in an increase in the flowability of concrete [98–101]. This is due
to “ball bearing” effect, where spherical-shaped particles of SiO2 can slightly reduce the
frictional forces among the particles and improve packing, which leads to an increase in
the accessible lubricating water.
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The V-funnel test, for which the results were presented by Naniz et al. [23], was used to
assess the viscosity and filling ability of the fresh concrete mix. An increase in the amount
of NS and SF in the mix increased the viscosity and cohesiveness of the mixes, which led
to a decreasing filling ability. This agreed with Güneyisi et al. [80]; they reported that the
V-funnel time increased with the increased NS content. In addition, Bernal et al. [102]
stated that mixtures showed an increased V-funnel time with the increase of NS content. It
is worth noting that increasing the NS contents in the mixes increased the V-funnel time,
regardless of the amount of SP. This is because the addition of mineral particles with a
high specific surface area enforced the increase of water to keep the workability of the
fresh concrete [44].

Another method for testing the rheological properties is the J-ring test, presented in
Figure 6, where the passing ability of concrete is checked. As seen in Table 1, the results of
the J-ring test showed the same correlation as the slump flow test. The use of nanosilica in
the concrete mixes decreased the J-ring diameter.
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The U-box test is a method used to assess the filling and passing ability of concrete.
The test reflects the conditions where the concrete needs to fill a formwork with dense
reinforcement. Similar to previously described tests, the majority of mixes containing
nanosilica performed worse in the L-Box test. This means that the addition of NS decreased
the filling and passing ability. Analysing the results summarized in Table 1, it is worth
noting that the effect of NS dosage varied between the mixes because of their different
composition, but a general trend can be easily observed.

The use of increased amounts of NS requires a simultaneous increase in the SP content
of up to 22 kg/m3, which can eventually result in a higher cost of produced concrete. With
the increase in SP dosages, the total amount of viscosity modifying admixtures (VMA)
should be decreased, as it influences the workability in a similar manner to NS. Therefore,
various parameters should be taken in account when designing LWCs. The necessary
amounts of SP required for maintaining the rheological properties of fresh mix often exceed
the optimal and maximal dosage recommended by the manufacturers. Moreover, a high
dosage of polycarboxylate (PCE) plasticizer can result in a retardation of the hydration
process, which limits its use in prefabricated concrete. Therefore, calorimetric studies
should be considered as a supplementary tool to evaluate the combined effect of NS and
PCE on the hydration process and setting time of mixtures.

3. Influence of Nanosilica on Mechanical Properties

To date, NS was found to have a spectacular effects on the mechanical performance
of NWC in early age, as well as its long-term strength. The nucleating effect of silica
nanoparticles [104] results in an earlier formation of the C-S-H phase, influencing the
thixotropic properties and early strength development of mortars. The strength of this effect
depends on the amount of nanosilica, form (colloidal or powder), and mixture composition.
As mentioned before even though there are many articles about the nanosilica effect in
normal-weight concrete, the different failure mechanism of lightweight concrete exposes
new areas for further investigation. Studies related to the effects of NS on the mechanical
performance of LWCs are summarized in Table 2.
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Table 2. Influence of NS on the mechanical properties.

Research Analysed Properties Results

Du et al. [95] Compressive strength Best effect for 2 wt.% NS on early strength
(7 days), up to a 13% increment

Wang et al. [22] Compressive strength
For 3 wt.%, NS compressive strength increased

by 23.5%, 23.7%, and 16.8% for 3, 7, and
28 days, respectively

Atmaca et al. [96] Compressive strength
Splitting tensile strength

For 3 wt.%, NS compressive strength increased
by 12.9% and 10.7% for compressive and

splitting tensile strength, respectively,
after 90 days

Naniz et al. [23]

Compressive strength
For 3 wt.%, NS increased by 19.2–21.0%,

18.0–18.8%, and 20.0–24.0% for compressive,
splitting tensile, and flexural strength,

respectively, depending on the w/c ratio

Splitting tensile strength

Flexural strength

Du [19] Compressive strength For 2 wt.%, NS compressive strength increased
by 31% after 28 days

Yu et al. [27] Compressive strength For 10 wt.%, the NS compressive strength
increased by 21%

Vargas et al. [7] Compressive strength For 10 wt.%, the NS compressive strength
decreased by 16%

Zhang et al. [73] Compressive strength
Flexural strength

For 0.1 wt.%, the NS increased by 40% and 18%
compressive and flexural strength, respectively

Abd Elrahman et al. [72] Compressive strength
Flexural strength

For 4 wt.%, the NS increased by 16% and 25%
compressive strength, and 26% and 31% flexural

strength after 7 and 28 days, respectively

As mentioned above, most research confirms a positive influence of nanosilica on
the mechanical properties of concrete. Based on the collected literature data, it was found
that the compressive strength of mixes containing NS was higher than the control ones.
The effect of the NS content on the strength development of LWC is presented in Figure 7.
Several studies have shown that increasing the dosage of NS, usually above 5 wt.%, does
not result in any significant improvement in concrete strength. Moreover, it was observed
that the strength can decrease due to the particle agglomeration in the matrix [73,100,105].
The increase in the mechanical properties caused by the presence of NS is related to the
nuclei that bond with cement hydrate, improving the hydration [72]. It is worth mentioning
that this phenomenon can be also reported in blended cementitious systems. For instance,
the NS can accelerate the pozzolanic activity of fly ash, resulting in an increased production
of C-S-H gel [106]. Moreover, in lightweight concrete, there are unfilled microvoids in
mixes due to the typically porous structure of the artificial aggregates. Those voids act
as weak spots, lowering the compressive strength in comparison with normal aggregates.
Natural, non-porous aggregates are covered completely with cement paste in contrary
to porous artificial lightweight aggregates. This leads to a lower bonding strength in the
interfacial transition zone around the aggregate. Based on the results cited in Table 2, it is
clear that the NS dosage is also related also to the w/b ratio. For the majority of cases, the
optimal usage is below 5 wt.%.



Materials 2021, 14, 4242 10 of 23Materials 2021, 14, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 7. Compressive strength of LWAC with different nano-SiO2 dosages: (a) fly ash-clay ceramsite and (b) shale 
ceramsite, reprinted with permission from ref. [22] Copyright 2018, Elsevier. 

According to Naniz et al. [23], replacing the cement by 3 wt.% NS results in an 
increase of compressive strength by approximately 31.4% and 28.8% for w/b ratios of 0.35 
and 0.45, respectively. Other studies on self-compacting concretes and mortars have also 
reported combining nanosilica and silica fume presents better results than adding only 
one of the additives [97,107]. It should be noted that in most studies, replacing higher 
amounts of cement with NS, from 3 wt.% to 5 wt.% (and more), decreased the compressive 
strength. This effect could be caused by the agglomeration of NS particles, which leads to 
the formation of weak zones [108]. 

Similar to the compressive strength, the splitting tensile strength and flexural 
strength of concrete have been improved by the addition of NS (Table 2). The effect occurs 
regardless of the dosage, age of concrete (7, 28, and 90 d), and amount of lightweight 
aggregates. According to Abd Elrahman et al. [72], a beneficial effect on flexural strength 
development was observed for 2 wt.% and 4 wt.% NS, which is coherent with other 
studies [23,73,96]. The specimens with NS exhibited a higher flexural strength after 7 and 
28 days of curing, gradually increasing with the amount of NS added to the mixture. 
Interesting conclusions were made by Zhang et al. [73]—the peak values of the 7-day 
compressive strength and flexural strength were achieved for an NS dosage of 0.1–0.2 
wt.%. By comparing to the control sample, the 7-day compressive strength and flexural 
strength increased by 40% and 18%, respectively (Figure 8). These findings indicate that 
even seemingly insignificant amounts of nanosilica can significantly improve the 
mechanical properties of concrete. 

Figure 7. Compressive strength of LWAC with different nano-SiO2 dosages: (a) fly ash-clay ceramsite and (b) shale
ceramsite, reprinted with permission from ref. [22] Copyright 2018, Elsevier.

According to Naniz et al. [23], replacing the cement by 3 wt.% NS results in an increase
of compressive strength by approximately 31.4% and 28.8% for w/b ratios of 0.35 and 0.45,
respectively. Other studies on self-compacting concretes and mortars have also reported
combining nanosilica and silica fume presents better results than adding only one of the
additives [97,107]. It should be noted that in most studies, replacing higher amounts of
cement with NS, from 3 wt.% to 5 wt.% (and more), decreased the compressive strength.
This effect could be caused by the agglomeration of NS particles, which leads to the
formation of weak zones [108].

Similar to the compressive strength, the splitting tensile strength and flexural strength
of concrete have been improved by the addition of NS (Table 2). The effect occurs regardless
of the dosage, age of concrete (7, 28, and 90 days), and amount of lightweight aggregates.
According to Abd Elrahman et al. [72], a beneficial effect on flexural strength development
was observed for 2 wt.% and 4 wt.% NS, which is coherent with other studies [23,73,96].
The specimens with NS exhibited a higher flexural strength after 7 and 28 days of curing,
gradually increasing with the amount of NS added to the mixture. Interesting conclusions
were made by Zhang et al. [73]—the peak values of the 7-day compressive strength and
flexural strength were achieved for an NS dosage of 0.1–0.2 wt.%. By comparing to the
control sample, the 7-day compressive strength and flexural strength increased by 40%
and 18%, respectively (Figure 8). These findings indicate that even seemingly insignificant
amounts of nanosilica can significantly improve the mechanical properties of concrete.

Similarly, Atmaca et al. [96] reported a substantial influence of NS on the splitting
tensile strength of high-performance lightweight concretes, regardless of the LWA content
(Figure 9). For instance, after 28 days of curing, LWC containing 40% LWA and 3 wt.%
NS achieved over an 16% higher splitting tensile strength than the reference LWC. Similar
results were obtained for the modulus of rupture, meaning that is also influenced by the
presence of NS [96].
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An interesting approach was presented by Vargas et al. [7]. According to their pre-
vious work [76], 10 wt.% nanosilica (suspended silica) was observed to be the optimal
replacement for cement. They proved that the compressive strength increased considerably.
In addition, the pore network decreased and its tortuosity increased as well [76]. In newer
research of the same research group [7], the addition of nanosilica did not increase the
compressive strength. This could be caused by many reasons, but mainly because LWC
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exhibited failure through the aggregate not the matrix [7], contrary to what happens in the
ordinary concrete. It should also be noted that at higher NS dosages, the finest particles
tended to agglomerate, which resulted in microcracking occurring around the agglomer-
ated particles, caused by the volumetric changes associated with drying. As a result of the
agglomeration, so-called weak-zones were produced in the concrete, limiting the further
increase of its mechanical performance (Figure 10) [72].
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Whenever the mechanical properties are in consideration it is worth to mention and
discuss the aspect of shrinkage. The effect of lightweight aggregate on total shrinkage
is well studied. Because of the internal curing effect, LWA helps to reduce the total
shrinkage [109,110]. In terms of shrinkage in lightweight concrete with NS, the amount
of research is limited. One of the reasons might be the fact that NS might have a rather
negligible effect on the total shrinkage, as proven by Wang et al. [22]. According to their
findings, the effect of nano-SiO2 on shrinkage was statistically insignificant. During first
7 days, all the shrinkage curves were almost identical. The difference in the value of
shrinkage was visible after 90 days, the average measured total shrinkage increased by
2.2%, 3.9%, and 5.4% for LWAC with ceramsite from Nantong with 1 wt.%, 2 wt.%, and 3



Materials 2021, 14, 4242 13 of 23

wt.% nano-SiO2 addition, respectively [22]. The rate of shrinkage development was similar
for all of the studied mixes. At this point, it should be emphasized that even if the total
shrinkage and its rate were not affected by nanosilica, adding NS particles helps minimise
the surface cracking, as shown in Figure 11. The addition of 3 wt.% NS caused a significant
decrease in crack length and total cracking area by 25% in comparison with the reference
samples [22]. Even small amounts of NS can improve the mechanical performance of
concrete in a similar way as that of high volumes of SF. It is important to note that NS has a
negligible effect on shrinkage development, whereas SF increases it in early age [111].
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Figure 11. Cracking of LWAC with different nano-SiO2 dosages: (a) fly ash-clay ceramsite, 0 wt.% nano-SiO2; (b) fly
ash-clay ceramsite, 3 wt.% nano-SiO2; (c) shale ceramsite, 0 wt.% nano-SiO2; and (d) shale ceramsite, 3 wt.% NS, (Chinese
words in (a) is samples notation and it is not essential for this paper) reprinted with permission from ref. [22] Copyright
2018, Elsevier.

Research presented by Sikora et al. [111] showed that with increasing the addition
of fine materials (silica fume or nanosilica), the final drying shrinkage (after 28 days)
decreases. The strongest effect, as shown in Figure 12, can be observed for 1–5 wt.%
NS—later this influence diminishes. The positive effect of NS addition can be attributed
to the improvement of ITZ and the bonding strength between the aggregate and cement
paste, which hinders water movement.
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4. Influence of Nanosilica on Microstructure and Durability-Related Properties

Nanosilica was found to have a substantial effect on the refinement of the pore
structure of cement paste; thus, produced NWC is less porous and permeable [104,112].
However, this phenomenon is still discussed in the case of LWAC, as the porous nature
of the aggregate is believed to be responsible for the lower durability compared with
ordinary concrete. The porous structure of LWA causes the concrete to be more prone to
ingress of harmful substances, which leads to a generally lower durability. The use of LWA
also leads to a change in the pore structure and porosity of concrete in comparison with
normal-weight concrete. This is why not all of the results and effects of nanosilica in NWC
can be directly applied for LWC. Because of this, separate studies have been carried out, of
which the most recent and worth mentioning are summarized in Table 3.

Table 3. Influence of NS on durability-related properties.

Research Analysed Properties Results

Du et al. [95]

Accessible water porosity Best effect for 1 wt.% NS, 15% to 17% reduction
based on the cement type

Water sorptivity Best effect for 1 wt.% NS, 35% reduction for OPC

Water penetration depth Optimal dosage of 1 wt.%, slag cement helped to
reduce the depth penetration

Rapid chloride penetration and Rapid
chloride migration

The more NS, the stronger effect, optimal result
for 2 wt.% with chloride migration coefficient

reduced by 36%

Chloride diffusion 2 wt.% NS reduced the diffusion coefficient
up to 20%

Wang et al. [22] Microstructure with SEM ITZ’s microstructure for 3 wt.% NS was more
compact than the reference

Atmaca et al. [96]
Water sorptivity The sorptivity coefficient decreased by 17–23%

with 3 wt.% NS based on the cement type

Gas permeability Reduction up to 30% after 28 days and up to 40
after 90 days for 3 wt.% NS
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Table 3. Cont.

Research Analysed Properties Results

Naniz et al. [23]

Ultrasonic pulse velocity Velocity decreased by 2.0–2.7% regarding the
w/c ratio for 3 wt.% NS

Electrical resistivity

Electrical resistivity increased by 195% and 304%
regarding w/c for 5 wt.% of NS, equivalent to
changing the corrosion rate from very high to

low to moderate

Du [19]

Water accessible porosity 2 wt.% and 3 wt.% NS addition reduced the
porosity by 3.3% and 2.8%, respectively

Water penetration depth 2 wt.% NS reduced the depth penetration by 43%

Water sorptivity The sorptivity coefficient decreased by 30% with
3 wt.% of NS

Rapid chloride penetration
The more NS, the stronger effect, best result for

3 wt.% with chloride migration coefficient
reduced by 49%

Chloride diffusion Best result for 2 wt.% NS, regardless of the
w/c ratio

Yu et al. [27] Thermal conductivity Negligible effect of NS on thermal conductivity

Vargas et al. [7] Pore volume and water absorption For 10 wt.%, the NS pore volume decreased by
3% and absorption decreased by 4.5%

Abd Elrahman et al. [72]

Thermal conductivity No significant effect for 0–4 wt.% NS

Effective water porosity and water
absorption

4 wt.% dosage of NS decreased WAC over four
times and decreased the effective water porosity

from 19% to 7%

Air-void characteristics With 2 wt.% NS, the number of voids was
significantly lower

Mercury intrusion porosimetry With 4 wt.%, the NS total porosity went from
54% to 39%

When analysing above-mentioned articles, a common conclusion can be drawn that
the NS particles reduce the size of capillary pores and modify the pore structure. According
to Atmaca N. et al. [96], the reduced sorptivity values prevent the penetration of aggressive
solutions to the pore structure (Figure 13). This is caused by the creation of finer pores
after adding NS. Nanoparticles also increase the hydration process in cement paste be-
cause of the pozzolanic reaction, which leads to a lower number of continuous capillary
pores, which correspond to a lower water absorption [112]. This effect was confirmed by
Vargas P et al. [7]. The researchers indicated that nanosilica can reduce the pore volume in
LWC by up to 3% in aliven concrete and 3.3% in perlite. In both concretes, the addition of
10 wt.% NS led to a decrease in water absorption. It is safe to say that both the pore volume
and the water absorption of the LWC could be reduced with the addition of NS, but the
final effect depends mainly on the type of LWA used.

Another influence of NS on the microstructure of cement composites was reported
by Wang X.F. et al. [22]. They found that the ITZs of LWAC with 3 wt.% nano-SiO2
were more compact than that of the reference LWAC. Similar results were obtained by
Elrahman M.A. et al. [72]. For a composite modified with nano-SiO2, the border between
the paste matrix and the ITZ could not be measured. This, on the other hand, could lead
to a water penetration depth that decreased by up to 43% according to Du H. [47]. The
addition of NS reduced the open porosity thanks to the filling effect and an increase in
the produced hydrates from the pozzolanic reaction between NS and Ca(OH)2 [19]. These
phenomena were analysed in [111], resulting in the data presented in Figure 14.
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Another often applied method that allows for evaluating the durability of concrete
is the ultrasound pulse velocity. Higher velocities obtained from the test indicate that
the tested specimen has a low porosity, and thus a potentially higher durability [113].
For instance, Sadeghi Nik et al. [114] reported that adding 2 wt.% and 4 wt.% nanosilica
resulted in an increased ultrasonic pulse velocity, while higher amounts (6 wt.%) would
not cause any significant increase. Another important parameter measured to determine
the durability is the electrical resistivity of concrete, which reflects how concrete limits
the movement of ions [23,115]. Studies done by Hornbostel et al. [116] showed that the
rate of corrosion increases with the decrease in electrical resistivity. The results of the
electrical resistivity tests show that use of NS more than doubles the electrical resistivity,
consequently decreasing the probability of corrosion occurrence. Other tests that can help
to determine the durability of an element are the Rapid Chloride Penetration Test (RCPT)
and Rapid Chloride Migration (RCM). Typical measurement equipment for RCM is shown
in Figure 15. In principle, the results of these tests represent the electrical conductivity
(or resistivity) of concrete, and the results obtained by Du are presented in Figure 16 [19].
For OPC concrete, there is a clear relationship between the concrete’s resistance against
chloride and its electrical conductivity.
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Figure 16. RCPT results (left) and chloride diffusion coefficients (right) of lightweight concrete modified with 1, 2, and
3 wt.% NS. Reproduced with permission from ref. [19] Copyright 2019, Elsevier.

The study of Du et al. [95] on the effect of the NS dosage (up to 3 wt.%) confirmed a
beneficial effect of NS on LWC resistance against chloride ion penetration. RCPT confirmed
(Figure 16) that the inclusion of NS resulted in a substantial reduction of electrical conduc-
tivity, as well as a diffusion coefficient for the different rates of water-to-cement ratios.

As reported by researchers, NS reduces the size of capillary pores, changes the pore
structure, and reduces overall sorptivity [19,22,72,95]. This results in increased durability
of the produced elements, which can be indirectly measured by checking the pulse velocity
or electrical resistivity of the hardened concrete. Unfortunately, only a limited number of
studies focus on the freeze−thaw resistance and corrosion resistance of NS-modified LWCs.
A study on the freeze−thaw resistance of normal-weight concrete was already conducted
by Behfarnia et al. [118]. The results presented in Figure 17 that show the control sample
(Figure 17a) and samples with nanomaterials (Figure 17b,c) after 300 freeze−thaw cycles
clearly indicate the influence of the added nanomaterials.
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Figure 17. After 300 cycles of freeze and thaw: (a) control sample, (b) sample containing 5 wt.% nanosilica, and (c) sample
containing 3 wt.% nanoalumina, reprinted from [118] with permission from Elsevier, 2013.

Vargas et al. [7] evaluated the expansion of lightweight concretes produced with
two types of LWAs (aliven and perlite) with (10 wt.%) and without NS (Figure 18) under
sulfate attack (MgSO4). For up to 4 weeks, all of the specimens exhibited comparable
expansion (Figure 18). Afterwards, clear differences were observed for different LWAs and
NS amounts. The specimens containing the perlite aggregate (PEC5-0, PEC5-10) exhibited
significantly higher expansion values than the LWC produced with the aliven aggregate
(ALC5-0 and ALC5-10). The LWC produced with the perlite aggregate presented an
increasing expansion for longer immersion times in sulfates, while in the case of the LWC
containing aliven, no further increment of expansion was reported. The LWCs with the
addition of 10% of nanosilica (PEC5-10 and ALC5-10) exhibited a lower expansion under
the attack of magnesium sulfate. In the 15 weeks of testing, expansion of the reference
PEC5-0 reached 0.44%, while NS-modified LWC (PEC5-10) exhibited an expansion of 0.2%.
This effect was attributed to the previously described refinement of the concrete pore
structure due to the NS presence, which resulted in decreased water absorption and voids
volume. Moreover, because of the reaction of CH with NS, a lower CH content in the
NS-modified LWCs was present. This, in turn, resulted in the limited possibility of brucite
formation during the sulfate attack.
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5. Conclusions

The use of nanosilica in LWC refines the pore structure of the cementitious matrix and
the ITZ by increasing the formation of C-S-H. This densification of the cementitious matrix
leads to a smaller porosity and lower water absorption. Depending on the study, the use
of NS led to increases in the compressive strength of lightweight concrete of up to 20%. It
is also proven that nanosilica is more efficient than silica fume, even in smaller dosages.
It is recommended to limit the amount of nanosilica to maximum of 5 wt.% cement in
order to obtain the optimal improvement for all of the properties. On the other hand, it
has to be remembered that adding nanosilica to a concrete mixture always decreases the
workability and flowability. To maintain workability and flowability, a significant amount
of PCE superplasticizer needs to be used, often exceeding manufacturer recommendations
about dosage. Even though NS is not a new material and has been studied in recent years,
there are still areas that need to be properly investigated, especially regarding its use in
lightweight concrete. There were only a few papers where the freeze−thaw resistance
or influence of different artificial aggregates were investigated. Intensive investigation
needs to be done on all aspects of durability in the context of possible 3D printing with
lightweight concrete modified with nanosilica particles.

Academic studies should result not only in a theoretical knowledge, but should
provide practical and industrial applications. This is why LWCs with NS need to be
further investigated, as current knowledge indicates that nanomaterials can be successfully
incorporated in concrete prefabrication technology. Based on recent papers, it is already
known that LWCs have a different structure, pore system, and mechanical and physical
properties, but with addition of NS, all of their disadvantages can be minimalized. What
needs to be investigated in the foreseeable future is the scale effect, cost analyses in terms
of industrial application, and modification of LWCs with NS to make them suitable for 3D
printing. Until now, most of studies have been conducted on standard laboratory samples,
which does not reflect the behaviour of mass elements. In many studies the amounts of
PCE plasticizers in mixes were significantly increased, which limits the use of these mixes
outside the laboratory because of elevated costs. This is why LWCs with NS need to be
investigated on a bigger scale with economic evaluation.
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14. Demirboğa, R.; Örüng, İ.; Gül, R. Effects of Expanded Perlite Aggregate and Mineral Admixtures on the Compressive Strength of

Low-Density Concretes. Cem. Concr. Res. 2001, 31, 1627–1632. [CrossRef]
15. Ferrara, L.; Cortesi, L.; Ligabue, O. Internal Curing of Concrete with Presaturated LWA: A Preliminary Investigation. In

International Concrete Abstracts Portal; American Concrete Institute: Farmington Hills, MI, USA, 2015; Volume 305, pp. 12.1–12.12.
16. Bentur, A.; Igarashi, S.; Kovler, K. Prevention of Autogenous Shrinkage in High-Strength Concrete by Internal Curing Using Wet

Lightweight Aggregates. Cem. Concr. Res. 2001, 31, 1587–1591. [CrossRef]
17. Senaratne, S.; Gerace, D.; Mirza, O.; Tam, V.W.Y.; Kang, W.-H. The Costs and Benefits of Combining Recycled Aggregate with

Steel Fibres as a Sustainable, Structural Material. J. Clean. Prod. 2016, 112, 2318–2327. [CrossRef]
18. Suzuki, M.; Seddik Meddah, M.; Sato, R. Use of Porous Ceramic Waste Aggregates for Internal Curing of High-Performance

Concrete. Cem. Concr. Res. 2009, 39, 373–381. [CrossRef]
19. Du, H. Properties of Ultra-Lightweight Cement Composites with Nano-Silica. Constr. Build. Mater. 2019, 199, 696–704. [CrossRef]
20. Kayyali, O.A. Study of Aggregates Used for Concrete in Kuwait; Transportation Research Record: Washington, DC, USA, 1984.
21. Hoff, G.C. High-Strength Lightweight Aggregate Concrete—Current Status and Future Needs. In High-Strength Concrete Second

International Symposium; ACI Special Publication; ACI: Berkeley, CA, USA, 1990; pp. 121–130.
22. Wang, X.F.; Huang, Y.J.; Wu, G.Y.; Fang, C.; Li, D.W.; Han, N.X.; Xing, F. Effect of Nano-SiO2 on Strength, Shrinkage and Cracking

Sensitivity of Lightweight Aggregate Concrete. Constr. Build. Mater. 2018, 175, 115–125. [CrossRef]
23. Afzali Naniz, O.; Mazloom, M. Effects of Colloidal Nano-Silica on Fresh and Hardened Properties of Self-Compacting Lightweight

Concrete. J. Build. Eng. 2018, 20, 400–410. [CrossRef]
24. Bentz, D.P. Influence of Internal Curing Using Lightweight Aggregates on Interfacial Transition Zone Percolation and Chloride

Ingress in Mortars. Cem. Concr. Compos. 2009, 31, 285–289. [CrossRef]
25. Zhang, M.-H.; Gjørv, O.E. Microstructure of the Interfacial Zone between Lightweight Aggregate and Cement Paste. Cem. Concr.

Res. 1990, 20, 610–618. [CrossRef]
26. Zhang, J.; Zhang, G.; Sun, X.; Pan, W.; Huang, P.; Li, Z.; Zhang, B.; Zhou, X. Analysis of Compressive Dynamic Behaviors of Plain

Concrete and Lightweight Aggregate Concrete. Case Stud. Constr. Mater. 2021, 15, e00557. [CrossRef]
27. Yu, Q.L.L.; Spiesz, P.; Brouwers, H.J.H.J.H. Ultra-Lightweight Concrete: Conceptual Design and Performance Evaluation. Cem.

Concr. Compos. 2015, 61, 18–28. [CrossRef]
28. Hüsken, G. A Multifunctional Design Approach for Sustainable Concrete: With Application to Concrete Mass Products. Ph.D.

Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2010. [CrossRef]
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35. Akçaözoğlu, S.; Atiş, C.D. Effect of Granulated Blast Furnace Slag and Fly Ash Addition on the Strength Properties of Lightweight

Mortars Containing Waste PET Aggregates. Constr. Build. Mater. 2011, 25, 4052–4058. [CrossRef]

http://doi.org/10.14279/depositonce-2415
http://doi.org/10.1155/2018/2715474
http://doi.org/10.1007/s00254-006-0248-7
http://doi.org/10.1016/S0008-8846(01)00615-9
http://doi.org/10.1016/S0008-8846(01)00608-1
http://doi.org/10.1016/j.jclepro.2015.10.041
http://doi.org/10.1016/j.cemconres.2009.01.007
http://doi.org/10.1016/j.conbuildmat.2018.11.225
http://doi.org/10.1016/j.conbuildmat.2018.04.113
http://doi.org/10.1016/j.jobe.2018.08.014
http://doi.org/10.1016/j.cemconcomp.2009.03.001
http://doi.org/10.1016/0008-8846(90)90103-5
http://doi.org/10.1016/j.cscm.2021.e00557
http://doi.org/10.1016/j.cemconcomp.2015.04.012
http://doi.org/10.6100/IR693348
http://doi.org/10.1051/matecconf/201816301002
http://doi.org/10.1088/1755-1315/95/4/042060
http://doi.org/10.1016/j.conbuildmat.2009.08.045
http://doi.org/10.1016/j.conbuildmat.2015.01.053
http://doi.org/10.1088/1757-899X/245/2/022061
http://doi.org/10.1016/S0958-9465(03)00017-9
http://doi.org/10.1016/j.conbuildmat.2011.04.042


Materials 2021, 14, 4242 21 of 23

36. Siddique, R.; Klaus, J. Influence of Metakaolin on the Properties of Mortar and Concrete: A Review. Appl. Clay Sci. 2009, 43,
392–400. [CrossRef]

37. Langan, B.W.; Weng, K.; Ward, M.A. Effect of Silica Fume and Fly Ash on Heat of Hydration of Portland Cement. Cem. Concr. Res.
2002, 32, 1045–1051. [CrossRef]

38. Khedr, S.A.; Abou-Zeid, M.N. Characteristics of Silica-Fume Concrete. J. Mater. Civ. Eng. 1994, 6, 357–375. [CrossRef]
39. Jianyong, L.; Pei, T. Effect of Slag and Silica Fume on Mechanical Properties of High Strength Concrete. Cem. Concr. Res. 1997, 27,

833–837. [CrossRef]
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