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Abstract: During design and construction of buildings, the employed materials can substantially
impact the structures’ performance. In composite columns, the properties and performance of
concrete and steel have a significant influence on the behavior of structure under various loading
conditions. In this study, two metaheuristic algorithms, particle swarm optimization (PSO) and
competitive imperialism algorithm (ICA), were combined with the artificial neural network (ANN)
model to predict the bearing capacity of the square concrete-filled steel tube (SCFST) columns.
To achieve this objective and investigate the performance of optimization algorithms on the ANN,
one of the most extensive datasets of pure SCFST columns (with 149 data samples) was used in
the modeling process. In-depth and detailed predictive modeling of metaheuristic-based models
was conducted through several parametric investigations, and the optimum factors were designed.
Furthermore, the capability of these hybrid models was assessed using robust statistical matrices.
The results indicated that PSO is stronger than ICA in finding optimum weights and biases of ANN
in predicting the bearing capacity of the SCFST columns. Therefore, each column and its bearing
capacity can be well-predicted using the developed metaheuristic-based ANN model.

Keywords: structural performance; square concrete-filled steel tube columns; metaheuristic-based
ANN models; predictive models

1. Introduction

Among the concrete-filled steel tube (CFST) columns, the circular CFST (CCFST) and
the square CFST (SCFST) columns have a more comprehensive range of applications and
are used more often than the other types in construction as these shapes are more suitable
for the concrete confinement. However, the confining action could be less efficient in
SCFST column due to its angles [1,2]. Nevertheless, in current global practices, SCFST
columns are also applied in the main lateral resistance systems of unbraced and braced
building structures, and they also might be used for retrofitting purposes in seismic prone
zones. In addition to CFST columns, this type of square infilled tube can be used as beams,
caissons, and piers for deep foundations [3,4].

Some research states that concrete confinement is not efficient enough in square
concrete-filled steel tube columns (SCFST) because of rigidity loss in these types of columns.
In fact, in these SCFST columns, only the concrete around the center and corners of the
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column is restrained effectively [5]. However, various infilled concrete may behave dif-
ferently to normal concrete (NC). It is of great importance that material properties can
effectively influence the bonding strength between the two materials, steel and concrete [6].
In addition, the concrete’s confining degree could be enhanced by decreasing the width to
thickness (w/t) ratio, while a higher value of it can cause concrete crushing as well as extra
local buckling [7,8].

Several experimental and computational research were evaluated the structural perfor-
mance of square concrete-filled steel tube (SCFST) columns subjected to different loading
conditions or various structural parameters [8–11]. Many factors, such as the section’s size,
length to width ratio, and wall thickness, were also evaluated by researchers and many de-
sign equations and formulas were generated or modified. However, the most significant fac-
tors influencing the structural behavior of the SCFST columns are the width/thickness ratio,
concrete compressive strength, yield strength of the steel tube, and wall thickness [11–13].
Han et al. [14] investigated the behavior of the SCFST columns subjected to axial com-
pression with a local compression area of 1.44 and 16 using experimental and numerical
analysis. In total, 15 samples of SCFST columns were cast and tested in the laboratory,
and they were also simulated using finite element analysis. Another study was performed
by Skalomenos et al. [15] to analyze the nonlinear response of square CFSTs subjected to
constant axial load. They performed a parametric study using finite element analysis to
assess the expressions. The results provided the essential parameters, considering three
hysteretic models, including strength and stiffness degradation. Numbers of studies were
performed laboratory test for the composite columns and compared the results with the
design codes in this regard such as EN 1994-1-1:2004, and GB 50936-2014. For instance,
Zhang et al. [16] tested 24 composite stub columns under axial loading and compared
the results with both earlier mentioned standards. In another study [17], the researchers
presented a study to evaluate the grip mechanisms in infilled tube with conventional and
lightweight concrete. For this purpose, they referred to different standards of AISC 360-10
and EN 1994-1-1 for the fixed value of the bond strength.

In addition to the experimental and numerical studies using finite element method
(FEM), computational studies using artificial intelligence (AI) and machine learning (ML)
techniques have been widely conducted in recent years. Several studies have applied
artificial neural network (ANN), gene-expression programming (GEP), particle swarm
optimization (PSO), imperial competitive algorithm (ICA), and many more for civil engi-
neering applications [18–28]. Among them, some studies were conducted the application of
ML/AI on the composite CFST columns. Jiang et al. [29] compared the results of the gene-
expression programming with the finite element analysis of the circular CFST columns.
Zarringol et al. [30] used ANN to predict the bearing capacity of rectangular and circular
CFST columns under concentric loading conditions. Four extensive datasets were used to
generate predictive models in their study. Recently, researchers developed a prediction
model for the circular CFST column by using ANN, GEP, and the Adaptive Neuro-Fuzzy
Inference System (ANFIS). Luat et al. [31] investigated a new methodology for predict-
ing the bearing capacity of CCFST columns subjected to axial loading using a hybrid AI
technique, which was developed based on the Bayesian additive regression tree and some
optimization algorithms.

Moreover, an estimation to the compressive capacity of the CFST column was per-
formed in another study carried out by Liao et al. [32] using fuzzy systems (FS). Their
models applied firefly algorithm (FFA) and differential evolution (DE) techniques to obtain
the optimum model. Another paper [33] presented an efficient ML-based framework to
predict the strength of CFST columns subjected to concentric loading. The gradient tree
boosting (GTB) technique was considered in their study. Their proposed framework was
compared with other ML models such as tree-based models, support vector machines, and
deep learning and showed more accurate results for the same purpose.

However, among all recent research for the concrete-filled steel tube (CFST) columns
using AI/ML techniques, a few research considered the square concrete-filled steel tube
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(SCFST) columns. Tran et al. [34] developed a study to predict the bearing capacity of the
square CFST columns using the ANN technique. In their study, 300 experimental data
samples were collected to be trained and tested. The trial–error method was applied to
determine the optimum model in terms of the highest coefficient of determination (R2) and
the lowest mean square error (MSE). Furthermore, many codes were adopted to assess the
performance of the study. The results showed that the ANN model was more accurate than
the existing formula. After validating the ANN technique, several curves were generated
to accurately analyze the SCFST columns’ behavior under compressive loading. In another
study [35], the short square CFST column was considered, and a comprehensive dataset
was obtained by means of axial compression tests. In this research, SVM and PSO were
combined to develop a new hybrid model called PSVM (SVM optimized by PSO) to predict
the bearing capacity of SCFST columns. For validation purposes, the reliability of the novel
model was verified against the experimental results. Le [36] proposed a model based on
Gaussian Process Regression (GPR) to predict the axial load which the SCFST columns
could withstand under compression, and reported a high level of accuracy for the proposed
GPR model.

Furthermore, in another study [37], a GEP-based methodology is proposed to develop
some equations to analyze the bearing capacity of the SCFST columns subjected to axial
compression. For this purpose, six GEP-based equations were proposed. The results
indicated that the proposed formulations excelled the current codes and correlations
in terms of efficiency. A radial basis function neural network was applied to predict
the bearing capacity of SCFST columns [38]. In this study, FFA and other optimization
algorithms were also applied. A database of 300 experimental tests was collected from
the literature to train the data. Several comparative criteria were also used to assess the
accuracy of the proposed model. The outcomes revealed that the novel predictive model
could provide a higher accuracy compared with the other similar techniques.

In structural engineering, it is essential to study the bearing capacity of the CFST
columns, specifically, the SCFST column, since the grip between steel tube and concrete
core in these sorts of columns is complicated, and the structural performance of these
columns is often nonlinear as a result of this interaction. Furthermore, the experimental
laboratory tests are generally expensive and time-consuming. In recent years, using artificial
intelligence (AI) methods have become more popular as the AI approaches are usually
faster and less complex in comparison with FEA. The accuracy of prediction in simulation
by FE method is highly influenced by input elements which normally cannot be simulated
thoroughly [39]. Therefore, using AI/ML methods for predicting the bearing capacity of
the SCFST columns could be a suitable alternative. Due to the lack of research in terms
of developing AI/ML techniques to predict the ultimate bearing capacity of the square
CFST columns, this study aims to propose a novel technique using a combination of ANN
and metaheuristic algorithms (i.e., PSO and ICA) for prediction of the ultimate axial load
of these types of columns. The step-by-step modeling procedure is explained, and the
obtained results are compared to select the best ANN-based metaheuristic model.

2. Methods
2.1. Artificial Neural Network

The artificial neural network (ANN) is a method that takes advantages of a biology-
based computational model that resembles the rational reactions of a human brain. ANN
is a methodology for recognizing sophisticated relationships between different variables,
resulting in computational models for one or a number of outputs [40–42]. Basically, an
ANN model encompasses three fundamental components named “activating function”,
“patterns of connections”, and learning rules [43]. Depending on the problem that needs to
be taken into account, the components are required to be introduced to train the network
considering their weights [44]. In this regard, one of the ordinary neural networks is the
multilayer perceptron (MLP), which consists of a layer of input variables, one or more
hidden layers of neurons’ processing, and a layer for output variables. All of these layers
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are connected in a sequential order, and the latter layers usually include one or more
neurons together with numerical operators. Essentially, a feedforward is responsible for
making signals between the output and input layers through the hidden layers. In order to
specify the features of input variables, the signals, initially, have to be assessed through the
hidden neurons. Later on, the specified features will be transferred to the neurons in the
output layers to generate a proper model [45,46].

In recent years, various learning techniques have been suggested to improve the
capability of MLP. However, backpropagation (BP) was considered a more effective method
based on gradient descent [47]. This technique is benefitted from interchanging the input
signs between the nodes of sequential layers. In this method, the net weight of each input
“netj” is calculated as the following:

netj =
n

∑
i=1

xiwi
−θ (1)

In which n is the input’s quantity, xi is the input’s signal, and wi represents the weight
of each node. Furthermore, the threshold of each node determines by the θ parameter. The
activation functions, such as sigmoid, linear function, and step, are responsible for passing
through the input variables, which is called the training step of the variables. In the next
step, a comparison between the actual output and the predicted one will be made, and the
discrepancy between these two can be determined [48]. Finally, the calculated errors travel
back into the network to refresh the individual weights. Figure 1 indicates a numerical
model for artificial neurons. During the training stage, the network behavior is assessed
through proper statistical functions such as the root mean square error (RMSE) [44]. The
refreshing of the weights will be continued until the system observes a decline in RMSE
lower than a predefined level. The number of datasets is a significant factor in this technique,
as lack of it may lead to overfitting in the training process [49].
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2.2. Particle Swarm Optimization

In 1997 [50], Kennedy and Eberhart first proposed an intelligent computer-based
technique for optimization, which later it is called particle swarm optimization (PSO). This
methodology mimics the natural behavior of some creatures, such as birds, fish, bees, and
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ants [51]. Several algorithms later followed this technique, such as the ant colony algorithm
(ACO). While some similarities exist between ACO, PSO, and genetic algorithm (GA); PSO
has less complexity. In fact, PSO randomly takes advantage of the actual numbers and the
relationships between the swarm particles. In the PSO technique, some entities, named
particles, are distributed in an area called the objective function’s zone. The main concept
in this algorithm is to locate the particles in their optimal conditions. The main elements in
the particles’ movement are deterministic components and characteristics of stochasticity.
In addition, they can move towards the existing global best (p∗) and also it is the best
location (x∗i ). Later on, the particle will look for a more suitable location compared with
the previous one. In any time, “t”, of the specific iterations, a current best location for the
n particles is available. Particles, finally, will look for the global best to end up with the
algorithm. Figure 2 illustrates the movements of particles. As evident from the figure, x∗i is
the current best for the particle i, and p∗ ≈ min{ f (xi)}, (i = 1, 2, . . . , n), is the global best.
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Using Equation (2), given the fitness requirements for the swarms, the velocity of the
swarms may be determined by a function that is proportional to the best location of the
swarm and the most suitable position of each particle. Furthermore, Equation (3) leads to
the successive suitable positions of the particles.

−−−→vnew =
→
v + C1 ×

(−−−→
pbest − →

p
)
+ C2 ×

(−−−→
gbest − →

p
)

(2)

−−→pnew =
→
p +
−−→vnew (3)

In these equations, −−−→vnew ,
→
v, −−−→pnew , and

→
p signify the new velocity, the current

velocity, the new position, and the current position of particles. C1 and C2 shows predefined

coefficients;
−−−→
pbest is the best position of the particle itself, and

−−−→
gbest represents the global

best position among all particles. Poli et al. [52] stated that Equation (2) could be adjusted
if a new parameter, inertia weight (w) is added to it. Inertia weight specifies the rate of the
previous velocity of each particle to its velocity at current Equation (4). The flowchart of
PSO algorithm is illustrated in Figure 2.

−−−→vnew = w.
→
v + C1 ×

(−−−→
pbest − →

p
)
+ C2 ×

(−−−→
gbest − →

p
)

(4)

2.3. Imperialism Competitive Algorithm

When it comes to engineering challenges, the ICA, created by Atashpaz-Gargari
and Lucas [53], is one of the most effective optimization strategies. Similar to the other
techniques, ICA begins its processing by making “so-called countries” as a random initial
population. After making N countries (Ncountry), many of them having the lowest costs or
functions, are picked up as the imperialists (Nimp). As a result, colonies (Ncol) are specified
as the remaining countries. Based on the power of empires, all colonies will be distributed
to them [54,55]. Therefore, the more influential the imperialists (lowest RMSE), the more
colonies can be absorbed. ICA comprises three leading operators, which are revolution,
assimilation, and competition. While assimilation and revolution are in operation, a colony
can reach a zone that is superior to that of its imperialist neighbor and seize control of the
territory formerly controlled by the preceding imperialist.

However, since it is a competitive scenario, each empire has a chance to dominate at
least one colony of the weakest empire, depending on the strength of the empire in question.
Suppose the most powerful empire is still undefeated after a certain number of iterations or
decades. In that case, the method will be repeated until a specified termination condition
is satisfied, such as an acceptable RMSE, a maximum number of iterations or decades,
etc. Note that the number of decades (Ndecade) in ICA is potentially quite comparable to
the number of iterations in several other algorithms, which is worth noting [56,57]. The
flowchart of ICA is shown in Figure 3.

2.4. Metaheuristic-Based ANN Models

The problem in using ANN in prediction case studies is that it will receive different
results with various performance levels. It is because of the basic shortcomings of ANN,
which are slow learning rate and getting trapped in local minima [58,59]. In these conditions,
the possible solutions may refer to optimizing weights and biases of ANN and therefore
getting more similar results by means of ANN. This optimization process can be performed
by metaheuristic algorithms such as PSO and ICA. These algorithms and their effective
parameters should be designed to obtain the best optimization outcome. For example,
the number of countries and swarms should be designed based on a series of available
range introduced in the literature. Of course, the results of hybrid models cannot differ
significantly in terms of specific influential parameters. The flowcharts of hybrid models
used in this study to solve the bearing capacity of the SCFST columns are presented
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in Figures 4 and 5. As it can be seen from these figures, a number of populations (i.e.,
particles or countries) together with the other effective parameters of the optimization
algorithms are selected and the hybrid system is trained. Then, the error indicators of the
hybrid system should be measured based on the optimum weights and biases of ANN
itself. Because the goal is to achieve the lowest system error possible, different values
of optimization parameters can result in different system errors for the entire system.
Therefore, each effective parameter should be designed using a trial-and-error system. It is
worth mentioning that the base model should be designed using ANN itself. These hybrid
models been applied to get more stable results in different areas of civil engineering [60,61].
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3. Data Source and Input Parameters
3.1. Background

For many years, types and shapes of columns have been developed from typical
reinforced concrete columns and steel columns into steel-reinforced concrete columns and
various types of composite columns such as CFST columns, encased columns, and also
concrete columns reinforced with concrete-filled steel tubes. Improvements and revolutions
in CFST have rapidly grown during the past decades until now. Different technical journals
on this topic led to the establishment of the Architectural Institute of Japan (AIJ) and a
standard for circular steel and concrete, which is known as a composite structure, released
in 1967. Japan and China conducted many investigations to lay the foundation for CFST
later on. Then, in 1993, a study plan on composite and hybrid structures, the fifth stage of
the US-Japan collaboration research program, and another study on CFST column systems
were considered in the study, and the findings achieved from this investigation made the
current design suggestions for the CFST column system.

CFST columns demonstrate more fire resistance and strength property levels than bare
steel columns [62]. In addition, the filled concrete has a significant role in the structural
behavior of these types of columns. High-performance concrete has superior characteristics
compared to NC, for example, improved ductility, strength, and self-consolidating features.
Using high-performance concrete, including lightweight concrete (LWC) and engineering
cementitious concrete (ECC), could improve the ductility and strength of the concrete-
filled tube composite columns. Several studies investigated self-consolidated concrete
(SCC) and the NC-filled tube columns [63]. However, the current study attempts to collect
comprehensive data from the literature consisting of square CFST columns with various
concrete compressive strengths purely under axial compression. This limitation of datasets
is due to achieving better results through prediction using ML/AI techniques. Figure 6
indicates a schematic of using ML/AI techniques for the square CFST columns.



Materials 2022, 15, 3309 9 of 23

Materials 2022, 15, x FOR PEER REVIEW 9 of 24 
 

 

concrete columns reinforced with concrete-filled steel tubes. Improvements and revolu-
tions in CFST have rapidly grown during the past decades until now. Different technical 
journals on this topic led to the establishment of the Architectural Institute of Japan (AIJ) 
and a standard for circular steel and concrete, which is known as a composite structure, 
released in 1967. Japan and China conducted many investigations to lay the foundation 
for CFST later on. Then, in 1993, a study plan on composite and hybrid structures, the fifth 
stage of the US-Japan collaboration research program, and another study on CFST column 
systems were considered in the study, and the findings achieved from this investigation 
made the current design suggestions for the CFST column system. 

CFST columns demonstrate more fire resistance and strength property levels than 
bare steel columns [62]. In addition, the filled concrete has a significant role in the struc-
tural behavior of these types of columns. High-performance concrete has superior charac-
teristics compared to NC, for example, improved ductility, strength, and self-consolidat-
ing features. Using high-performance concrete, including lightweight concrete (LWC) and 
engineering cementitious concrete (ECC), could improve the ductility and strength of the 
concrete-filled tube composite columns. Several studies investigated self-consolidated 
concrete (SCC) and the NC-filled tube columns [63]. However, the current study attempts 
to collect comprehensive data from the literature consisting of square CFST columns with 
various concrete compressive strengths purely under axial compression. This limitation 
of datasets is due to achieving better results through prediction using ML/AI techniques. 
Figure 6 indicates a schematic of using ML/AI techniques for the square CFST columns. 

 
Figure 6. The schematic of using AI techniques for the SCFST columns. 

3.2. Data Source  
This study tries to collect extensive datasets from the literature. More than a hundred 

articles were studied, and among them, twenty-three articles were chosen to include their 
results in the dataset of this study because some of the studied articles were comprised of 
SCFST columns under different loading conditions or some of them with additional rein-
forcements inside the column, which could highly impact our result of the ultimate bear-
ing capacity. At first, 217 data points were achieved from the articles that were taken into 
consideration [13,14,61,63–76]. Several essential parameters can affect analysis and results 
based on the previous experimental tests and experience [69,70,76,77] and some of the 
former data analysis for the CFST columns [26,31,35,78–80]. They are concrete compres-
sive strength (fc), the width or diameter (B/D) of the columns, the length of column (L), the 
thickness of the columns (t), the yield strength (fy) of the steel tube, the slenderness ratio 
(L/D, B), and the diameter/width to thickness ratio (D, B/t). However, the most critical 

Figure 6. The schematic of using AI techniques for the SCFST columns.

3.2. Data Source

This study tries to collect extensive datasets from the literature. More than a hundred
articles were studied, and among them, twenty-three articles were chosen to include their
results in the dataset of this study because some of the studied articles were comprised
of SCFST columns under different loading conditions or some of them with additional
reinforcements inside the column, which could highly impact our result of the ultimate
bearing capacity. At first, 217 data points were achieved from the articles that were taken
into consideration [13,14,61,63–76]. Several essential parameters can affect analysis and
results based on the previous experimental tests and experience [69,70,76,77] and some
of the former data analysis for the CFST columns [26,31,35,78–80]. They are concrete
compressive strength (fc), the width or diameter (B/D) of the columns, the length of column
(L), the thickness of the columns (t), the yield strength (fy) of the steel tube, the slenderness
ratio (L/D, B), and the diameter/width to thickness ratio (D, B/t). However, the most
critical factors for the SCFST columns which impact the ultimate bearing capacity (Pexp)
were considered as five factors: concrete compressive strength (fc), the column’s width (B),
the column’s length (L), the column’s thickness (t), and the yield strength (fy) of the steel
tube. The minimum, maximum, average, and standard deviation values of the first patch of
the collected data are shown in Table 1. The initial raw data were first analyzed considering
empirical analysis and try and error. For this purpose, by taking all input parameters into
consideration, the distribution of each was plotted, and later, it was considered which
parameter had the most impact on the output, which was the bearing capacity, in this
study. Then, considering the parameters with the dispersed data and eliminating those,
it was found that which parameters had a higher impact on the R2. Therefore, after the
preliminary analysis, it was revealed that the first patch of the collected data has a wide
range of tolerance, which can cause less accuracy from the machine learning techniques. It
was more critical for the wide range of the width of the columns. As shown in Figure 7,
when all data were considered, the initial R2 was 0.68, while after the column’s width
filtration to less than 260 mm and 150 mm, the R2 value was increased to 0.92 and 0.96,
respectively, which is highly improved. It is worthy of mention that the R2 value is one of
the significant factors in ML/AI to be considered for training and testing stages. The closer
the value of R2 to 1, the better results can be achieved from training and testing sessions.



Materials 2022, 15, 3309 10 of 23

Table 1. Statistical distribution of data.

Parameter Min Max Average Std. Dev

fc (MPa) 10 164 55.66 35.25
B (mm) 50.8 450 208.55 106.80
L (mm) 210 2540 937.10 575.45
T (mm) 1.94 18 5.90 3.70
fy (MPa) 229 1030.60 394.60 184.25
Pexp (kN) 329 8912 2139 1802.60
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Therefore, it was decided to sort the data based on the preliminary results. The
updated dataset led to 149 pure data points, where the range of the data was closer to each
other to achieve more accurate results. Finally, the following ranges were considered in this
study: 20–130.8 MPa for the concrete compressive strength (fc), 80–450 mm for the outer
width (B) of the column, 295–2340 mm for the length of the column (L), 1.94–11.25 mm for
the thickness of the steel cover (t), 231–1030.6 MPa for the tensile yield stress of the steel
column, and 490–3922 kN for the bearing capacities of CFST columns. The updated
statistical distribution of the values is indicated in Table 2.
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Table 2. Statistical distribution of data used in the modeling.

Parameter Min Max Average Std. Dev

fc (MPa) 20 130.8 47.70 24
B (mm) 80 450 198.50 94.90
L (mm) 295 2340 927.75 530.10
T (mm) 1.94 11.25 5.10 2.40
fy (MPa) 231 1030.60 377.20 184.60
Pexp (kN) 490 3922 1588 843.70

In addition, in order to show the correlation between independent variables and
dependent variables, the correlation matrix was used. The correlation matrix is a matrix
that can be used when several inputs can generate R2 (or else) with their pairs. However,
it is worth mentioning that only the linear correlations between two variables can be
evaluated with this approach. Therefore, it may not be capable of being used for nonlinear
relationships. Figure 8 illustrates the correlations between the variables with their adjusted
R2 values. In addition, the distributions for each parameter are presented in Figure 8.
In general, the relations between variables are not that high and significant. The highest
correlation between input parameters is related to the relationship of T (mm) and B (mm)
with Adj R2 = 0.592 followed by the relationship of L (mm) and B (mm) with Adj R2 = 0.531.
In terms of input–output relationships, fy received the highest Adj R2 (0.518) for predicting
Pexp followed by fc with Adj R2 = 0.195. It seems that proposing a multi-inputs model with
a high level of accuracy is of importance based on these simple regression analyses.
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4. CFST Prediction

The most important parameters of the ANN system should be determined before
beginning the modeling steps. However, the data samples must be normalized before this
can be carried out. It was recommended by Liou et al. [81] that a specific equation can be
used to normalize datasets at the modeling outset in order to simplify the process:

Xnormalize = (X − Xminimum)/(Xmaximum − Xminimum)

where Xnormalize, Xminimum, and Xmaximum are the normalized data sample, the minimum of
each data sample, and the maximum of each data sample, respectively.

ANN models with just one hidden layer [30,34,44] or multiple hidden layers [82,83]
were presented by a number of researchers to solve various problems [45,46]. To anticipate
the bearing capacity of the SCFST columns, we analyzed data from the first three layers
of our data. The findings of this parametric investigation (PI) revealed that when they
are compared to other implemented numbers, one hidden layer provided more accurate
prediction performance than the others. ANN performance is also affected by the number
of neurons in the network, which should be calculated using a different PI analysis. Pre-
liminary research revealed that the hidden neuron values in the range of 1–11 should be
considered and employed in the modeling of this section, where their root mean square
error (RMSE) values were examined. As a result of these PIs, it was discovered that the
hidden neuron number 9 produces bearing capacity values that are more similar to the
measured values. As a result, this value was chosen as the optimal ANN model. Based on
the findings from these PIs, a model with five input variables, nine hidden neurons, and one
output neuron is introduced as the best ANN model, and all further hybrid modellings in
this study are carried out using this model as a reference. The training and testing datasets
for this investigation were selected at random from a pool of data samples representing
80% and 20% of the total number of data samples, respectively. It means that the numbers
of 30 and 119 were considered for training and testing purposes of this study.

A major step in the PSO-ANN modeling process is to choose an appropriate particle
size and number of iterations simultaneously during the initial stage. Through another
PI, the swarm size was specified to be in the range of 50 to 500 (50, 100, 150, 200, 250, 300,
350, 400, 450, and 500). On the other hand, it was decided to set the maximum number
of iterations as 500. Thus, 10 PSO-ANN prediction models were developed to forecast
the bearing capacity of the SCFST columns, using the RMSE results as shown in Figure 9.
As evident from the figure, the RMSE values for all of the models were significantly lowered
at the beginning of the iterations. After that, the modification of the values was minimized
progressively until attaining a constant value. In this manner, the situation in which the
swarm size was set at 150 was the one in which the lowest error was attained. Furthermore,
it can be noted that the RMSE reached a constant value after 350 rounds. As a result, to
anticipate the bearing capacity of the SCFST columns for the purposes of the modeling
presented in this work, the swarm size and the number of iterations used in the current
article were set at 150 and 350, respectively. It is worth noting that these models were built
using C1 = C2 = 2 and w = 0.25.

On to the second step, the C1 and C2 parameters were calculated. A PI was built
similarly to the previous phases, using a variety of C1 and C2 values to examine which
ones were the most appropriate for our model. In order to do this, the PSO-ANN models
were built using the following parameters: (C1 = C2 = 2.5), (C1 = C2 = 2), (C1 = C2 = 1.75),
(C1 = C2 = 1.5), (C1 = 2 and C2 = 1.5), and (C1 = 1.5 and C2 = 2). As a factor for assessing the
models’ prediction performance, R2 was considered. Figure 10 indicates the results in this
regard. The best model was obtained with C1 = C2 = 2 as its training and testing R2 values
are the highest among all six models shown in Figure 10. Consequently, both C1 and C2
were set to 2 and applied to the last modeling step, which was responsible for computing
the “w” value.
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The accuracy level of the PSO-ANN models is also affected by the “w” value, which
can significantly influence these models [84]. As a result, in the four PSO-ANN models
shown in Figure 11, the “w” value was adjusted to 0.25, 0.5, 0.75, and 1. Once again, R2 was
selected as the performance criterion in this PI. As evident from the figure, the PSO-ANN
model with w = 0.25, presented the best ability to fit and predict the bearing capacity of
the SCFST columns. Therefore, as a summary for the best PSO-ANN model, the values
of 150, 350, 2, 2, and 0.25 were obtained for swarm size, iteration number, C1, C2, and w,
respectively. This model will be further discussed in the next section.

The procedures used by the ICA-ANN approach to model the bearing capacity of
the SCFST columns are discussed herein. As previously stated, three factors, namely,
Ndecade, Nimp, and Ncountry have a substantial impact on the performance capability of the
ICA-ANN. As a result, designing these parameters and acquiring the optimal parameters
values using various PIs is necessary to accomplish the desired results. The first PI was
carried out to pick Ndecade, and Ncountry at the same time. Towards to the end, the first PI
was structured similarly to the preceding section and based on a variety of previously
conducted research [14,50]. In order to have a fair comparison with the PSO-ANN model,
the authors decided to select and use the same values of swarm for Ncountry. As shown in
Figure 12, the findings obtained from different Ncountry are dependent on Ndecade that have
passed and they were compared in terms of predicting the bearing capacity of the SCFST
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columns. As the figure simply illustrates, the majority of the countries had final RMSE
values in the range of 0.11 to 0.14. When Ncountry was limited to 450, the RMSE was reduced
to its bare minimum. A further finding is that when Ndecade was set around 250 (almost for
all Ncountry), no further drop in RMSE was found. Therefore, the mentioned numbers were
selected for these significant parameters of ICA (Ncountry and Ndecade).
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It is now necessary to run another PI to identify the appropriate value for the amount
Nimp. According to previous studies, this was accomplished by varying Nimp. from 5 to
10 [19,85]. The results achieved by this PI based on R2, are shown in Figure 13. Although
the obtained results are close to each other and they are in a certain range, Nimp. = 5 received
more accurate prediction values for the bearing capacity of the SCFST columns. The R2

values are 0.855 and 0.873 for training and testing phases, respectively. Therefore, they
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were considered as the best ICA-ANN model since there are no more parameters to design.
This model and its findings are discussed with further detail in the next section.
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5. Results and Discussion

The findings of the metaheuristic-based ANN techniques in predicting the bearing
capacity of the SCFST columns are addressed in this section. As previously stated, R2

and RMSE were used to evaluate models during their building. Another statistical in-
dex, namely variance account for (VAF), was considered and calculated for the best
metaheuristic-based models. The statistical indices used in this study were widely ap-
plied in other predictive studies [21,86–93]. It is important to note that this study aims to
compare the ability and power of two metaheuristic-based ANN models in predicting the
bearing capacity of the SCFST columns. According to previous studies [5,7,16,94], these
metaheuristic-based ANN models can achieve higher performance capacities and closer
predictive values than the ANN model itself. Table 3 presents the results of statistical
indices for training, testing, and all datasets of PSO-ANN and ICA-ANN models in esti-
mating the bearing capacity of the SCFST columns. The obtained results clearly showed
that PSO is the most successful model in finding the optimum values for weights and
biases of ANN. This model has better performance in terms of all R2, VAF, and RMSE
statistical indices.

Table 3. Results of training, testing, and all data samples in predicting the bearing capacity of the
SCFST columns.

Metaheuristic-Based ANN Model
Training

VAF (%) R2 RMSE

ICA-ANN 84.873 0.855 0.097
PSO-ANN 90.549 0.908 0.077

Model Testing

ICA-ANN 87.264 0.873 0.085
PSO-ANN 93.497 0.936 0.059

Model Training + Testing

ICA-ANN 85.296 0.857 0.094
PSO-ANN 91.125 0.913 0.074
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To better understand these metaheuristic-based ANN models and their capacity for
forecasting the bearing capacity of the SCFST columns, the measured and predicted values
(i.e., normalized) for PSO-ANN and ICA-ANN models are displayed in Figures 14 and 15,
respectively. The PSO-ANN model could provide a stronger correlation between the
measured and estimated bearing capacities of the SCFST columns. This model has a
strong capability during the training and testing stages and, of course, for all data samples.
With the anticipated and observed bearing capacities of the SCFST columns shown in
Figures 14 and 15, it is evident that PSO has significant potential for optimizing the weights
and biases of ANN. If the weights and biases of the ANN were adequately optimized in the
first place, the PSO-ANN model’s performance capabilities could be far greater than those
of the ICA-ANN model. When a system error is considered, it is clear that the PSO method
outperforms the ICA approach by a significant margin. Based on the above description,
it is reasonable to develop the PSO-ANN model, which can get RMSE values of (0.077
and 0.059) and VAF values of (90.549% and 93.497%) for the training and testing datasets,
respectively. The generated PSO-ANN technique was found to be more powerful and
adaptable than the developed ICA-ANN technique in terms of solving the described issue
linked to the bearing capacity of the SCFST columns.
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In addition, in order to show the capability of the proposed models better, the results
were compared with those obtained from the standards Euro Code 4 (EC4) and ACI
Code [7,95]. Table 4 shows 30 data samples (which were randomly taken from the whole
data) and their experiment bearing capacity results. In addition, predicted bearing capacity
results by the PSO-ANN, ICA-ANN, EC4, and ACI are shown in Table 4. As clearly
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indicated, the measured results by the two metaheuristic-based ANN models are much
closer than the obtained results by the standard equations. It is worth noting that for the
predicted results by PSO-ANN from 30 samples, 23 data have a difference of equal or less
than 10%, while for the rest of the data, the discrepancy is still less than 15%. For the
ICA-ANN, the difference of the predicted bearing capacities is less than 20%. For some
of the datasets, for example, datasets No. 6, 8, 9, 11, 12, 23, 26, and 31, the difference
between the value obtained by the PSO-ANN method and ICA-ANN method is very small.
However, the bearing capacities obtained by standards formula have a difference of 11% to
56%, which in most cases, this discrepancy is more than 20% for the models. Therefore, this
indicates that the proposed metaheuristic-based models are well organized to predict the
bearing capacity of the SCFST columns of the same type.

Table 4. Comparison of the experimental results with predicted ones.

No.
PExp PPSO-ANN PICA-ANN PEC4 PACI

(kN) (kN) (kN) (kN) (kN)

1 2275 2230 2163 2785 2520
2 1760 1625 1577 2751 2418
3 2985 2823 2738 2666 2415
4 3900 3723 3612 3441 3073
5 768 845 680 660 656
6 1426 1403 1361 1176 1059
7 1302 1445 1464 1136 1025
8 990 1007 1018 923 858
9 965 854 829 826 775
10 890 895 868 783 738
11 1530 1552 1505 1240 1127
12 1367 1355 1314 1202 1094
13 1088 971 942 940 932
14 1176 1269 1290 994 930
15 1160 1042 1011 900 851
16 1090 923 896 858 815
17 1630 1841 1890 1299 1190
18 1484 1592 1602 1262 1159
19 934 849 824 601 560
20 1934 2145 2242 1502 1477
21 2828 2995 3109 2445 2383
22 2238 2279 2300 2517 2284
23 956 1029 1070 1205 1127
24 3302.4 3450 3556 3666 3502
25 3203.8 3256 3280 3666 3502
26 3611.6 3523 3418 4383 4112
27 3474 3240 3120 4988 4695
28 840 732 702 572 553
29 860 799 775 619 593
30 1575 1592 1545 1404 1313

6. Sensitivity Analysis

In order to figure out the impact of the input variables (i.e., fc, B, L, T, and fy) on
Pexp, the mutual information (MI) method was used to analyze the importance of each
variable. The MI method is a filtering method used to capture arbitrary relationships (both
linear and nonlinear) between each independent variable and the target object, and thus an
estimated amount of mutual information between each independent variable and the target
object can be obtained [96]. Furthermore, the estimated amount lies between [0, 1]; when
it is 0 then the two variables are independent and when it is 1 then the two variables are
perfectly correlated. In other words, when the estimated amount is closer to 1, it means the
correlation between the two variables is stronger. Based on this, the results of the relevance
between these five inputs and Pexp were shown in Figure 16. Intuitively, fy and T showed a
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significant correlation with Pexp, with the respective correlation indices of 0.457 and 0.432,
followed by B and fc, whose values of correlation indices with Pexp are 0.255 and 0.233,
respectively. As for L, it showed an insignificant correlation with Pexp because of the low
correlation index of 0.061.

Materials 2022, 15, x FOR PEER REVIEW 19 of 24 
 

 

The MI method is a filtering method used to capture arbitrary relationships (both linear 
and nonlinear) between each independent variable and the target object, and thus an es-
timated amount of mutual information between each independent variable and the target 
object can be obtained [96]. Furthermore, the estimated amount lies between [0, 1]; when 
it is 0 then the two variables are independent and when it is 1 then the two variables are 
perfectly correlated. In other words, when the estimated amount is closer to 1, it means 
the correlation between the two variables is stronger. Based on this, the results of the rel-
evance between these five inputs and Pexp were shown in Figure 16. Intuitively, fy and T 
showed a significant correlation with Pexp, with the respective correlation indices of 0.457 
and 0.432, followed by B and fc, whose values of correlation indices with Pexp are 0.255 and 
0.233, respectively. As for L, it showed an insignificant correlation with Pexp because of the 
low correlation index of 0.061. 

 
Figure 16. Importance of input variables. 

7. Limitations and Future Investigations 
Model generalization is one of the common limitations in concrete technology and 

civil engineering studies. In this study, we considered only square cases of the SCFST col-
umns, and therefore, we used 149 data samples for modeling purposes. The proposed 
models are able to predict the bearing capacity of the SCFST columns if the input param-
eters on new data are within the range of our input parameters. Previous researchers pi-
oneered the concept of combining theories and empirical formulas with ML/AI methods, 
which has been refined.  

The civil engineering communities would benefit from more investigation into this 
topic since a pure ML/AI model is not appealing enough to be employed. The ability to 
include theories and empirical formulae into the data preparation stage for a specific issue 
would be of the utmost importance to civil engineers at all levels. It is vital to emphasize 
that civil engineers do not often have enough knowledge of computer science or ML/AL 
models. The well-known theories and formula in this field of study may be used to create 
a new database, which will result in improved model performance and prediction accu-
racy. 

  

Figure 16. Importance of input variables.

7. Limitations and Future Investigations

Model generalization is one of the common limitations in concrete technology and civil
engineering studies. In this study, we considered only square cases of the SCFST columns,
and therefore, we used 149 data samples for modeling purposes. The proposed models
are able to predict the bearing capacity of the SCFST columns if the input parameters on
new data are within the range of our input parameters. Previous researchers pioneered the
concept of combining theories and empirical formulas with ML/AI methods, which has
been refined.

The civil engineering communities would benefit from more investigation into this
topic since a pure ML/AI model is not appealing enough to be employed. The ability to
include theories and empirical formulae into the data preparation stage for a specific issue
would be of the utmost importance to civil engineers at all levels. It is vital to emphasize
that civil engineers do not often have enough knowledge of computer science or ML/AL
models. The well-known theories and formula in this field of study may be used to create a
new database, which will result in improved model performance and prediction accuracy.

8. Conclusions

This research considered one of the most comprehensive databases of square SCFST
columns and the bearing capacity of these columns were estimated using a series of analysis
and computations. To accomplish this, the most critical parameters of the ICA-ANN and
PSO-ANN models were created using a comprehensive modelling procedure. Then, their
predictive ability for the bearing capacities of SCFST columns was evaluated using a variety
of statistical evaluation indicators. In addition, the bearing capacities of SCFST columns
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were also calculated using two well-known standards and a comparison was performed.
The following findings have been made as a result of this investigation:

1. Both metaheuristic-based ANN approaches performed an acceptable performance in
the prediction phase, as they were able to offer values for bearing capacity close to
those measured in the laboratory.

2. This study’s results indicated that the PSO-ANN model performed much better than
the ICA-ANN model in both the model construction and evaluation processes. R2

values of 0.936 and 0.873 for PSO-ANN and ICA-ANN modelsindicate that PSO is
more powerful than the ICA method at determining the optimal weights and biases
of ANN.

3. The comparison between measured bearing capacities together with those predicted
by metaheuristic-based ANN models as well as different standards showed that both
POS-ANN and ICA-ANN models are more accurate compared to available standards.
This confirmed that such intelligent techniques are needed to be used in order to
obtain closer bearing capacities to the measured values.

4. Results of feature importance indicated that fy and T, with significant correlations
of 0.457 and 0.432 respectively, have the highest effects on the bearing capacity of
SCFST columns. Therefore, a higher level of care regarding these parameters and their
designs should be considered in the laboratory while tests are planned and conducted.
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