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Abstract
Great efforts are now underway to control the coronavirus 2019 disease (COVID-19). Millions of people are medically
examined, and their data keep piling up awaiting classification. The data are typically both incomplete and heterogeneous
which hampers classical classification algorithms. Some researchers have recently modified the popular KNN algorithm as a
solution, where they handle incompleteness by imputation and heterogeneity by converting categorical data into numbers. In
this article, we introduce a novel KNN variant (KNNV) algorithm that provides better results as demonstrated by thorough
experimental work. We employ rough set theoretic techniques to handle both incompleteness and heterogeneity, as well as
to find an ideal value for K . The KNNV algorithm takes an incomplete, heterogeneous dataset, containing medical records
of people, and identifies those cases with COVID-19. We use in the process two popular distance metrics, Euclidean and
Mahalanobis, in an effort to widen the operational scope. The KNNV algorithm is implemented and tested on a real dataset
from the Italian Society of Medical and Interventional Radiology. The experimental results show that it can efficiently and
accurately classify COVID-19 cases. It is also compared to three KNN derivatives. The comparison results show that it
greatly outperforms all its competitors in terms of four metrics: precision, recall, accuracy, and F-Score. The algorithm given
in this article can be easily applied to classify other diseases. Moreover, its methodology can be further extended to do general
classification tasks outside the medical field.

Keywords COVID-19 diagnosis · KNN · Incomplete data ·Heterogeneous data · Rough set theory · Euclidean ·Mahalanobis

1 Introduction

The coronavirus disease 2019 (COVID-19) [1] is currently
wreaking havoc around the world. It is causing a major
threat to human life, with severe economic consequences.
Its symptoms include cough, fever, and respiratory complica-
tions. The hazardous side of COVID-19 is its rapid spreading
because it is transmitted by contact and by small droplets pro-
duced when people cough, sneeze, or talk. To make matters
worse, COVID-19 can survive on surfaces up to 72h [2],
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causing people to catch it by touching apparently normal
patients.

The best way to improve a COVID-19 patient survival
rate is through early detection of the disease [3], and here is
where AI techniques, such as what is employed in the present
work, can help. It is widely believed that AI has the poten-
tial to solve many problems related to COVID-19 if there
is information about the patients. However, this information
can be heterogeneous, in the sense that the features of the
patients are of two types, categorical and numerical [4]. Cat-
egorical features are qualitative, e.g., gender and coughing
or not coughing, whereas numerical features are quantitative,
e.g., age and body temperature. The presence of both types in
the information complicates processing. What is more, this
information can also be incomplete, in the sense that some
features may have missing values [5]. The value of a feature
can be missing due to several factors, such as negligence,
cost, or difficulty to obtain.

These two issues, heterogeneity and incompleteness,
present tremendous challenges for the classification of
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COVID-19 cases within a dataset collected about numer-
ous persons. Typically, classical classification algorithms do
not handle heterogeneity and incompleteness. Therefore, one
needs to adapt a classical algorithm to handle incomplete het-
erogeneous COVID-19 (IHC) datasets, and this is the goal
of the present work.

Formally, IHC data can be defined by a triple (U ,A ,V ).
The set U = {u1, u2, . . . , um} is a non-empty finite set of
patients, called theuniverse.The setA = {a1, a2, . . . , an, d}
is a non-empty finite set of features describing the patient. It
contains n + 1 features, n of which, namely a1, a2, . . . , an ,
are conditional features and the n + 1st feature is a decision
label. The n conditional features are of two types: categorical
and numerical. The union of the set C of categorical features
and the set N of numerical features is accordingly the set
A − of conditional features, where

A − = A − {d} .

If the value of a feature, categorical or numerical, is incom-
plete, this value is denoted in the present work by an asterisk
“∗. ”

If V = {ζ1, ζ2, . . . , ζr } is the value set of d, then d par-
titions the universe U into r decision subsets (classes),
Uζ1 ,Uζ2 , . . . ,Uζr , where Uζk is the subset of all patients with
decision label value ζk . Finally, the set V is the union of the
value sets of all features. That is,

V = {
vui ,a j

∣∣ ui ∈ U , a j ∈ A − }
,

where vui ,a j is the value of feature a j of patient ui . For exam-
ple, vu1,a2 = 3 means that feature a2 of patient u1 has the
value 3. A specific instance of IHC data is called an IHC
dataset. Table 1 shows a toy IHC dataset, used repeatedly in
the sequel to illustrate the proposed KNNV algorithm.

In our context, classification is a two-step process [6]. In
the first, called the training step, a classification algorithm
learns from a set of patients ui ∈ U whose decision values
are known. In the second, called the test step, the algorithm
uses what it has learnt to classify an unknown patient u0
whose decision value is to be identified. A popular clas-
sification algorithm, used in the present work that can be
modified to deal with IHC data, is the K nearest neighbor (K
NN) algorithm [7]. Its main idea is to search for K neighbor
patients nearest to the unknown patient u0 and then predict
the decision value of the latter by a majority vote of those
neighbors.

In the present work, we have chosen KNN rather than any
other machine learning algorithm [8], such as support vector
machines, decision trees, naïve Bayes, and backpropagation,
for a good reason. These latter algorithms build amodel from
a training set of patients before receiving an unknown patient.
This prior model buildup adds complexity to the operation.

Additionally, it is not easy to adapt these algorithms to han-
dle both heterogeneity and incompleteness, prevalent inmost
real-world data nowadays. By contrast, KNN is a nonpara-
metric classifier that does not build a prior model from the
training set. Besides, it can be easily adapted, as done in
the present article, to handle incomplete, heterogeneous data
accurately and efficiently. Furthermore, unlike most other
classification algorithms, KNN does not require the decision
subsets Uζ j to be linearly separable.

The distances needed by KNN to identify the neigh-
bors nearest to a given patient can be calculated via several
distance metrics. In this article, we use two such metrics:
Euclidean distance andMahalanobis distance. Either one can
be used to measure the distance between two patients, one of
them being a member of a class of patients. However, while
Euclidean distance does not pay attention to the other ele-
ments of the class in the measurement process, Mahalanobis
does. Therefore, Mahalanobis distance is more suitable for
assessing distances when the dataset is highly skewed or its
features are correlated.

To improve the performance of KNN, three issues need
to be addressed. First, a proper K value has to be used.
A small K increases the influence of noise on prediction,
while a large K increases computational complexity. Clas-
sical KNN uses the same K for all unknown patients to be
classified, whereas K is to a great extent case dependent [9].
The “one K fits all” policy leads to a high percentage of
misclassification, as shown in Experimental Work Section.
Third, K NN computes distances inaccurately, as discussed
in Sect. 3, which is another source of misclassification. The
KNN variant (KNNV) algorithm proposed in this article
addresses all three issues, thus improving identification of
COVID-19 cases within IHC datasets fairly accurately.

The proposed KNNV classification algorithm chooses K
adaptively for each unknown patient and computes accu-
rately the distances between patients to identify the nearest
neighbors. It mitigates the incompleteness problem and the
heterogeneity problem through novel rigorous rules spelled
out in the sequel. For validation, KNNV is tested on a
publicly available IHC dataset from the Italian Society of
Medical and Interventional Radiology (SIRM) [10]. The test
results show excellent classification. In addition, KNNV is
compared using the same dataset against algorithms of its
category. The comparison results show impressive superior-
ity of KNNV.

The rest of this article is organized as follows. Section 2
covers related work. Section 3 describes the proposed algo-
rithm. In Sect. 4, experimental work to validate the algorithm
and compare it with potential competitors is presented, and
discussion about the findings is given. Finally, concluding
remarks are provided in Sect. 5.
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Table 1 A toy IHC dataset
made of 13 records

a1 a2 a3 a4 a5 a6 a7 a8 d

u1 Male ∗ Yes Yes Yes 0.97 ∗ 0.78 COVID-19

u2 ∗ Yes ∗ No Yes ∗ 0.39 0.64 COVID-19

u3 Female No ∗ No Yes 0.77 0.79 0.39 Flu

u4 Male Yes No Yes No 0.08 0.8 0.37 Flu

u5 Female Yes Yes ∗ No 0.8 0.1 ∗ COVID-19

u6 Female ∗ ∗ No Yes 0.42 0.55 0.39 Flu

u7 Male Yes Yes No Yes 0.98 ∗ ∗ COVID-19

u8 Male Yes No Yes Yes 0.43 0.42 0.36 Flu

u9 ∗ Yes No No Yes 0.96 ∗ 0.11 Flu

u10 Female ∗ No Yes Yes ∗ 0.34 0.55 COVID-19

u11 Male Yes Yes Yes ∗ 0.38 0.39 0.81 Flu

u12 Male Yes Yes Yes No 0.85 ∗ ∗ COVID-19

u13 Female No Yes ∗ ∗ 0.31 0.59 0.37 Flu

Clearly, U = {u1, u2, . . . , u13} is the set of patients and A = {a1, a2, . . . , a8, d} is the set of features.
Note that C = {a1, a2, . . . , a5} is the set of categorical features and N = {a6, a7, a8} the set of numerical
features, with d being the decision label. Due to the missing values, denoted by “∗,” this dataset is roughly
20% incomplete

2 RelatedWork

Researchers in different fields are now actively participating
to fight COVID-19, and information science researchers are
no exception. Roosa et al. [11] propose a forecasting algo-
rithm to predict the spread of COVID-19 in China. They use
phenomenological models to develop and assess short-term
forecasts of the cumulative number of confirmed COVID-19
cases in the Chinese Hubei province. A related attempt is
made by Pirouz et al. [12], who propose a binary classifica-
tion system using artificial neural networks (ANN) to predict
the number of confirmedCOVID-19 cases inHubei province.
McCall [13] reports thatAI is doing a paradigm shift in health
care and is, therefore, considered a promising tool to trap
COVID-19. He recommends using AI algorithms to predict
the location of the next outbreak. Hu et al. [14] propose an
AI system for real-time forecasting of COVID-19 with the
aim of estimating the life time of the virus. They propose
a modified stacked auto-encoder system for modeling the
transmission dynamics of the pandemic throughout China.
They use a variety of features such as maximum, minimum,
and average daily temperature, humidity, and wind speed
as inputs to an ANN, with the aim of predicting the con-
firmed number of COVID-19 patients in the next 30 days.
Du et al. [15] propose a hybrid AI model that combines
the strengths of both a natural language processing module
and a long short-term memory network. Their objective is to
analyze the change in the infectious capacity of COVID-19
patients within a few days after they catch the virus. San-
tosh [16] proposes an AI-driven system able to predict the
time of the next COVID-19 outbreak, while forecasting the
COVID-19 possibility to spread across the globe. Boldog et

al. [17] propose a computational tool able to assess the risks
of COVID-19 outbreaks outside China. They compute the
probability of a major outbreak in a country through testing
three features: cumulative number of patients in the non-
locked down Chinese provinces, connectivity of that country
with China, and efficacy of control measures in that coun-
try. All the above proposals focus on predicting outbreaks,
overlooking classification of existing cases. For this latter
objective, the endeavors next have been made.

Gozes et al. [18] propose an AI based computational
tomography (CT) image classification algorithm for the
detection, quantification and tracking of COVID-19. This
algorithm has the ability to distinguish COVID-19 patients
from other patients. They use a deep learning model to
classify COVID-19 from CT images. Ai et al. [19] pro-
pose a CT image algorithm for COVID-19 identification that
uses a reverse-transcription polymerase chain reaction test.
Barstugan et al. [20] propose a feature extraction process
for CT images and a discrete wavelet transform algorithm
to improve COVID-19 classification. Specifically, they use
a grey level co-occurrence matrix, local directional pattern,
grey-level run length matrix, and grey-level size zonematrix.
Afterward, they use support vector machines to classify the
pandemic based on the extracted features. Xu et al. [21]
propose a CT image classification algorithm for early clas-
sification of COVID-19 using deep learning techniques. The
algorithm is able to distinguish COVID-19 patients from Flu
patients. They first segment the CT images using a 3D deep
learning model; then, the segmented images are binary clas-
sified. Wang et al. [22] use CT images to extract COVID-19
conditional graphical features that can then be used to distin-
guish COVID-19 patients from other patients. Li et al. [23]

123



8264 Arabian Journal for Science and Engineering (2021) 46:8261–8272

propose a CT image classification algorithm for the early
classification of COVID-19. They exploit both deep learning
and ANN to extract visual features from chest CT images.
The trouble with all these endeavors is that they depend
on medical imaging, which may not be readily available or
accessible. An alternative classification direction, where the
present work belongs, depends on documented personal and
medical examination data as described next.

Peng et al. [24] use AI techniques to improve classifica-
tion accuracy of COVID-19. They use sparse rescaled linear
square regression, evolutionary non-dominated radial slots,
attribute reduction with multi-objective decomposition-ens-
emble optimization, gradient boosted feature selection, and
recursive feature elimination. Rao and Vazquez [25] classify
COVID-19 from data collected about travel history along
with a phone-based online survey. These data are then used
to divide patients into four decision subsets: no risk, mini-
mal risk, moderate risk, and high risk. Maghdid et al. [26]
propose a framework for early classification of COVID-19
using on-board smart-phone sensors. Specifically, they make
use of temperature, inertial, proximity, color, and humidity
sensors embedded in smart-phones. Their setup allows for
low-cost classification. All the above attempts have one thing
in common—they impute missing values in incomplete data.
However, imputation is harmful because it changes data dis-
tribution and also breaks downpotentially important relations
between conditional features and the decision label [27].
Besides, these attempts do not handle heterogeneous data
directly. They convert categorical values to 0’s and 1’s as
a turn around, negatively impacting classification accuracy.
The present work, which falls in the same category, avoids
all these drawbacks.

As for distance metrics used to assess the nearness of
neighbors in KNN and its derivatives, the typical met-
ric is Euclidean distance. However, Mahalanobis distance
becomes more suitable if the data are skewed or the features
are correlated, as it takes into consideration data distribution.
Jaafar et al. [28] report that Euclidean distance deteriorates
KNNaccuracy if the data is unbalanced. Therefore, they pro-
pose Mahanalobis distance for more accurate classification.
Yi et al. [29] propose a classification system based on KNN
suitable for robotic systems. Since robots work in real-world
environments, where features are strongly correlated, they
too useMahalanobis distance. To mitigate the computational
complexities involved in Mahalanobis distance, due to cal-
culating the inverse covariance matrix of data, they employ
principle component analysis (PCA) for data reduction. Fan
et al. [30] also use Mahalanobis distance with KNN in the
context of a framework to enhance the security of power sys-
tems, where features are typically highly correlated. In the
present work, we use both Euclidean and Mahalanobis, for
two reasons. First, we want to expose their differences and
their impact on classification. Second, we want to demon-

strate that, regardless of which one is used, the proposed
KNNV is still successful and still superior to its competi-
tors.

3 Proposed Approach

In this section, we introduce the KNNV classification algo-
rithm as a tool to identify COVID-19 cases in IHC datasets.
The contribution of KNNV is twofold. First, for each
unknown patient u0, it computes a special K value that suits
that patient most. Second, accurate distance calculations are
employed. We start by providing some preliminaries that
include the essentials of classical KNN, which will be used
as a basis for our proposed KNNV.

3.1 Preliminaries

In classical KNN [28], given a set U of patients described
by a set A − of features, a normalization function is first
applied to the set N ⊂ A − to scale the numerical features
to the interval [0, 1] to prevent featureswith large values from
outweighing those with smaller values. A normalized feature
value v̂ui ,a j is obtained from its raw counterpart vui ,a j by

v̂ui ,a j =

⎧
⎪⎪⎨

⎪⎪⎩

vui ,a j −min
uk

(
vuk ,a j

)

max
uk

(
vuk ,a j

)
−min

uk

(
vuk ,a j

) if vui ,a j �= ∗

∗ if vui ,a j = ∗
,

where minuk
(
vuk ,a j

)
and maxuk

(
vuk ,a j

)
are the minimum

and maximum values, respectively, of feature a j across all
patients uk .

For any unknown patient u0, KNN searches the IHC
dataset for a subset UK ,u0 ⊂ U of patients, of size K > 1,
whose elements ui ∈ UK ,u0 are closesr to u0 than all other
patients. Distances between the unknown patient u0 and
another patient ui ∈ UK ,u0 are measured with respect to
some set M ⊆ A − of features using a suitable distance
metric. In this article, we will use both Euclidean distance
and Mahalanobis distance.

The Euclidean distance l (u0, ui ) between patients u0 and
patient ui with respect to a set M of features is given by

l (u0, ui ) =
√ ∑

ak∈M

(
vu0,ak − vui ,ak

)2. (1)

This formula can be written in matrix form as

l (u0, ui ) =
√(

VVV u0 −VVV ui

)T (
VVV u0 −VVV ui

)
, (2)

where VVV ui is the feature vector of patient ui , with X
T being

the transpose of matrix X.
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On the other hand, the Mahalanobis distance l̃ (u0, ui )
between patient u0 and patient ui is measured with respect
to a set M of features as follows.

l̃ (u0, ui ) =
√(

VVV u0 −VVV ui

)T C−1
(
VVV u0 −VVV ui

)
, (3)

where C−1 is the inverse of the covariance matrix of the
dataset that includes both u0 and ui and the set M of fea-
tures. It can be seen that Mahalanobis distance reduces to
Euclidean distance if the dataset covariance matrix is the
identity matrix, which is the case if there is no correlation
between the features. The question now is how to calculate
the differences under the square roots above, especially when
there are missing values.

Inmost applications of KNN [29], there are common rules
typically applied to calculate the differences. For categorical
features, the difference between two feature values is calcu-
lated as follows (basically a Hamming distance approach is
used).

– If both values are existing and identical (e.g., vui ,ak is
male and vu0,ak is male) or both are missing, the differ-
ence is considered 0.

– Else, i.e., if both values are existing and different (e.g.,
vui ,ak is male and vu0,ak is female) or if one is missing,
then the difference is considered 1.

On the other hand, for numerical features, the difference
between two feature values is calculated as follows.

– If both values are existing, the difference is calculated by
normal subtraction.

– Else (i.e., if one value ismissing), the difference is consid-
ered the existing value (which is tantamount to assuming
0 for the missing value).

We note from these rules a major flaw in KNN. Since
numerical values are normalized to [0, 1], the absolute dif-
ference between any two existing values is in [0, 1]. In
the meantime, since categorical features are in {0, 1}, the
absolute difference is in {0, 1}. Therefore, in calculating dis-
tances between patients, categorical and missing values have
a greater impact on classification than existing numerical val-
ues, which leads to misclassification. This flaw is remedied
in our proposed KNNV, described in the next Section.

The last step in classical KNN is to assign the unknown
patient to a certain decision label value (i.e., class). Specifi-
cally, given the set UK ,u0 ⊆ U of the K nearest neighbors
of an unknown patient u0, the patient is assigned a decision

label vu0,d ∈ {ζ1, ζ2, . . . , ζr } given by

vu0,d = argmax
ζ j

∑

ui∈UK ,u0

δvui ,d ,ζ j , (4)

where δx,y is the Kronecker delta function defined as

δx,y =
{
1 if x = y
0 if x �= y

.

In (4), a majority vote is essentially carried out. Specifically,
the sum is evaluated r times, for ζ1, ζ2, . . . , ζr , and the ζ j
that results in the highest value of the sum is the voted deci-
sion label. The sum each time is evaluated in K steps, for the
K elements ui of UK ,u0 . Initially 0, the sum is incremented
by 1 if the label vui ,d of ui is identical to the label ζ j cur-
rently being considered by argmaxζ j

, and is not incremented
otherwise.

3.2 KNNV Algorithm

Theproblemwith using afixed K for all patients, as described
above, is that it is hard to find its proper value. Further-
more, this fixedvalue typically depends on a threshold,whose
change results in a different set of nearest patients, making
classification highly volatile. It would bemore advantageous,
then, to determine K dynamically for each patient, based on
its feature vector, and that is what KNNV does.

There are two aspects that make KNNV novel. First, it
treats categorical features differently from numerical fea-
tures. It uses rough set theory (RST) techniques to handle
categorical features and classical distance metrics to handle
numerical features. As such, KNNV does not convert cate-
gorical feature values into numbers, thereby making all the
features numerical and then using distancemetrics to identify
nearest neighbors, as is done in classical KNN (see for exam-
ple, [28–30]). By applying RST techniques to categorical
features, KNNV solves two problems at once: incomplete-
ness of those features and vagueness of the proper value of K .
To this end, two RST-based definitions useful for handling
categorical features are in order.

Definition 1 (Feature similarity relation, �→) Let u0 and ui ,
i �= 0, be twopatients, and letvu0,an andvui ,an be their values,
respectively, for some categorical feature an . We say that the
feature value vu0,an is similar to the feature value vui ,an , and
denote that by vu0,an �→ vui ,an , if and only if vu0,an = ∗ and
vui ,an �= ∗.

Now, we employ Definition 1 to define the neighborhood
relation N , which relates an unknown patient u0 to another
patient ui with respect to the set C of categorical features.

Definition 2 (Neighborhood relation, N ) Let u0 and ui , i �=
0, be two patients, and let vu0,an and vui ,an be their values,
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respectively, for some categorical feature an . We define the
neighborhood relation N as the set of pairs (u0, ui ), such
that for every an ∈ C , the value vui ,an is either similar or
equal to the value vu0,an , or the value vu0,an is either similar
or equal to the value vui ,an . Using quantifiers, this relation is
expressed as

N = {
(u0, ui ) | ∀ui ∈ U ,∀an ∈ C : vui ,an �→ vu0,an

∨ vu0,an �→ vui ,an ∨ vui ,an = vu0,an
}
.

With the above in mind, the proposed KNNV regards the
neighbors of a given unknown patient u0 as three types, cat-
egorical, numerical, and true, defined as follows.

Definition 3 (Categorical neighbor) A patient ui is a cat-
egorical neighbor of another patient u0 if, based on their
categorical feature values, the two patients are neighbors
according to Definition 2.

Based on this definition, there are no “near” and “far”
categorical neighbors. That is, if we search for categorical
neighbors, we either get all of them or we get none. Also,
there is no such thing as the K nearest categorical neighbors
of a given patient u0.

Definition 4 (Numerical neighbor) A patient ui is a numer-
ical neighbor of another patient u0 if their numerical feature
values are close to each other. Closeness here is measured,
as is done in classical KNN, by distance metrics such as
Euclidean and Mahalanobis.

In calculating these distances, a note concerning how to
calculate the difference between two feature values, of two
different patients, when one is missing is in order. Unlike
the common practice of assuming 0 for the missing value,
KNNV assumes the existing value instead. This is tanta-
mount to ignoring this feature altogether in the calculation.
The same thing applies if the two values are missing.

Based on this definition, and since a numerical neighbor
is categorized as such based on distance metrics, there can
be near and far neighbors relative to a given patient u0. One
patient can be nearer than another to a given patient u0 if
the distance from u0 to the former is smaller than that to the
latter. As such, we may search for an arbitrary number K of
numerical neighbors nearest a given patient u0.

Definition 5 (True neighbor) A patient ui is a true neighbor
of another patient u0, if it is both a categorical neighbor and
a numerical neighbor of u0.

Having said that, it is now easy to informally explain how
KNNV works. To classify an unknown patient u0, KNNV
performs the following steps in order:

1. It eliminates from the dataset any feature whose existing
values are all identical, for two reasons. First, if all the
values of this feature are existing and identical, then this

feature is irrelevant to the classification process. Second,
if the existing values are identical, but there are missing
values, there is no clear road to substitute for the missing
values without jeopardizing data semantics.

2. It searches the dataset for the categorical neighbors of u0,
according to Definition 3.

3. Assuming the search returns J categorical neighbors, it
searches the dataset for the J nearest numerical neighbors
of u0, according to Definition 4.

4. With J categorical neighbors and J numerical neigh-
bors at hand, it identifies the true neighbors among them,
according to Definition 5.

5. It identifies the class (decision label value) of each true
neighbor and assigns u0 to the class to which the largest
number of true neighbors belong (majority vote).

Having introduced KNNV informally, we will next pro-
vide its formal specification, given that its pseudocode is
listed in Algorithm 1. To this end, we associate with each
unknown patient u0 three neighborhood sets, which are
obtained by KNNV in the shown order:

1. The set ψC ,u0 of categorical neighbors, which contains
the patients that are neighbors of u0 with respect to the
categorical features C . Specifically,

ψC ,u0 = {ui |ui ∈ U ∧ (u0, ui ) ∈ N } . (5)

Let J denote the size of this set. That is, J = |ψC ,u0 | .
2. The setψN ,u0 of nearest numerical neighbors,which con-

tains the J patients nearest u0 with respect to numerical
features N . To find this set, let L = (l1, l2, . . . , l|U |)
be the list of distances, with respect to N , between the
unknown patient u0 and the patients u1, u2, . . . , u|U |,
respectively. Further, let Z = {z1, z2, . . . , zK } be the
set of indices of the J smallest distances in L . That is,Z
identifies the nearest J patients to u0 with respect to N .
The setZ is now used to define the second neighborhood
set ψN ,u0 as follows.

ψN ,u0 = {ui | ui ∈ U ∧ i ∈ Z } . (6)

3. The set ψA −,u0 of true neighbors, which contains the
patients nearest u0 with respect to all features A −. This
set is basically the intersection of the above two sets.
Specifically,

ψA −,u0 = ψC ,u0

⋂
ψN ,u0 .

This set is crucial because its elements are what decide
the decision label of the unknown patient u0. We just note
that if the intersection is the null set, thenψA −,u0 is made
from the union of ψC ,u0 and ψN ,u0 . That is,
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ψA −,u0 =
{

ψC ,u0

⋂
ψN ,u0 if ψC ,u0

⋂
ψN ,u0 �= ∅

ψC ,u0

⋃
ψN ,u0 otherwise

. (7)

The set ψA −,u0 of true neighbors is sufficient to discover
the decision label vu0,d of that patient, which is the ultimate
goal of KNNV. Simply, the algorithm just carries out the
majority vote givenby (4) among its elements, usingUK ,u0 =
ψA −,u0 and M = A −, to find vu0,d .

In case the majority vote results in a tie between q ≤ r
classes, KNNV assigns the unknown patient u0 to the closest
class. To determine the closest class, let T be the set of all
the classes ζk participating in the tie. Now, we calculate the
average distance between u0 and each class Uζk ∈ T in
the tie and then associate u0 to the class with the smallest
average, i.e.,

vu0,d = argmin
Uζk∈T

1

|Uζk |
∑

ui∈Uζk

l (u0, ui ) , (8)

where l (u0, ui ) is the distance between the unknown patient
u0 and patient ui with respect to setN of numerical features,
calculated by a suitable metric such as Euclidean or Maha-
lanobis. If the averages come out equal for all the classes in
the tie, a very unlikely event, then the unknown patient u0 is
assigned randomly to one of these classes.

3.3 Illustrative Example

Below, we provide a detailed example to show how KNNV
decides the decision label of the unknown patient
u0 =<Female, ∗,Yes,No, ∗, 0.43, 0.79, 0.34 >, based on
the toy IHC dataset shown in Table 1.

First, set ψC ,u0 of categorical neighbors, with respect to
C = {a1, a2, . . . , a5}:

In viewofDefinition 3,we search the toy dataset of Table 1
for the categorical neighbors of patient u0. It can be seen that
u3,with categorical feature vector<Female,No,∗, NoYes>,
is such a neighbor. This is because the categorical feature
values of u3 and u0 are either equal (featuresa1, a4) or similar
(features a2, a3, a5). Likewise u5, u6 and u13 are categorical
neighbors of u0. Therefore, ψC ,u0 = {u3, u5, u6, u13} and
J = |ψC ,u0 | = 4. Consequently, the next step is to find the
4 nearest numerical neighbors of u0.

Second, set ψN ,u0 of the 4 nearest numerical neighbors
of u0, with respect toN = {a6, a7, a8}:

To this end, we compute the distance between the
unknown patient u0 and every patient ui ∈ U with respect
to the numerical features a j ∈ N . We calculate the distance
twice, once Euclidean and once Mahalanobis.

Algorithm 1: K Nearest Neighbor Variant (KNNV)
algorithm
Input : –IHC dataset: Records (feature vectors) of a set U of

patients, with set A of features.
–Feature vector of patient to be classified u0.

Output: vu0,d //Decision label of u0
//Eliminate irrelevant features:

1 foreach a j ∈ A − do
2 if the existing feature values vui ,a j for all ui ∈ U are

identical then
3 Delete feature a j from the IHC //Irrelevant feature having

single value
4 end
5 end
//Compose set ψC ,u0 of categorical neighbors, according to
Definition 3:

6 Find set ψC ,u0 of categorical neighbors, as per (5)
7 J := |ψC ,u0 |
//Compose set ψN ,u0 of numerical neighbors, according to
Definition 4:

8 L := ∅ //Initialize set of distances to unknown patient
9 m := |U | //Number of patients in the IHC dataset

10 for i = 1 to m do
11 L := L

⋃ {l(u0, ui )} //As per (1) if Euclidean and as per (3)
if Mahalanobis

12 end
13 Construct set Z with the indices of the J smallest distances in L
14 Compose set ψN ,u0 of the J nearest numerical neighbors of u0

as per (6)
//Compose set ψA −,u0 of true neighbors, according to Definition
5:

15 Construct set ψA −,u0 as per (7)
//Predict the decision label vu0,d of unknown object u0 by
majority vote:

16 foreach ζ j ∈ {ζ1, ζ2, ..., ζr } do
17 Find the number ξ j of objects with decision label ζ j
18 end
19 if ξk is the largest in {ξ1, ξ2, ..., ξr } and is unique then

//There is no tie
20 Assign u0 the decision label ζk , i.e.vu0,d = ζk
21 else

//If ξk is not unique, there is a tie
22 Find decision label vu0,d as per (8)
23 end
24 end

1. Euclidean distance, as per (1):
We start by finding the distance between u0 with the
numerical feature vector < 0.43, 0.79, 0.34 > and u1
with numerical feature vector < 0.97, ∗, 0.78 >. For
feature a6, with both vu1,a6 �= ∗ and vu0,a6 �= ∗, the
difference is 0.97 − 0.43 = 0.54. For a7, the differ-
ence is considered 0 because vu1,a7 = ∗. For feature
a8, the difference is 0.78 − 0.34 = 0.44 . Therefore,
l (u0, u1) = √

0.542 + 02 + 0.442 = 0.69.
Repeating the previous procedure with all ui ∈ U ends
up with the list
L = (0.69, 0.5, 0.34, 0.35, 0.78, 0.24, 0.55, 0.37, 0.57,
0.49, 0.61, 0.42, 0.23). The next step is to find the setZ
of indices of the four (since J = 4) nearest patients to
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the unknown patient. By inspection, Z = {13, 6, 3, 4},
corresponding to the distances {0.23, 0.24, 0.34, 0.35}. It
follows from (6) that the set of the 4 nearest numerical
neighbors is ψN ,u0 = {u3, u4, u6, u13}.
Third, set ψ

A −,u0
of true neighbors of u0, with respect to

A − = {a1, a2, . . . , a8}:
As per (7), the third neighborhood setψ

A −,u0
is the inter-

section of ψC ,u0
and ψN ,u0

. It follows that the third
neighborhood set is ψ

A −,u0
= {u3, u6, u13}. Noting that

vu3,d = vu6,d = Flu and vu13,d = COVID-19, i.e., a vote
of 2 to 1, the decision label of u0 is vu0,d = Flu.

2. Mahalanobis distance, as per (3):
We will repeat here the calculations done above using
Euclidean distance, this time usingMahalanobis distance.
First, we compute the covariancematrixC, with size 3×3
since we have three numerical features, as follows.

C =
⎡

⎣
0.0995 −0.0334 0.003

−0.0334 0.0499 −0.019
0.003 −0.019 0.046

⎤

⎦ .

The inverse matrix is

C−1 =
⎡

⎣
13.39 10.24 3.36
10.24 31.61 12.39
3.36 12.39 26.64

⎤

⎦ .

With Mahalanobis distance we represent the numerical
feature vector as a column vector. Therefore, the differ-
ence between u0 and u1 is computed as follows.

VVV u0 −VVV u1 =
⎡

⎣
−0.54

0
−0.44

⎤

⎦ .

Finally, the distance between u0 and u1 is computed as
follows.

l̃2 (u0, u1)

= [−0.54 0 −0.44
]
⎡

⎣
13.39 10.24 3.36
10.24 31.61 12.39
3.36 12.39 26.64

⎤

⎦

⎡

⎣
−0.54

0
−0.44

⎤

⎦ = 10.65,

which gives l̃ (u0, u1) = 3.26.
Repeating the previous procedure with all ui ∈ U ends
up with the list
L = (3.26, 2.11, 1.31, 1.23, 3.41, 1.27, 2.01, 2.03, 2.1,
2.28, 2.56, 1.53, 1.34).
The next step is to find the set Z of indices of
the 4, since J = 4, smallest distances. By inspec-

tion, Z = {3, 4, 6, 13}, corresponding to the distances
{1.23, 1.27, 1.31, 1.34}. It follows from (6) that the set
of the 4 nearest numerical neighbors is ψN ,u0 =
{u3, u4, u6, u13}.
Setψ

A −,u0
of true neighbors of u0 , with respect toA − =

{a1, a2, . . . , a8}:
As per (7), ψ

A −,u0
= {u3, u6, u13}. Noting that vu3,d =

vu6,d = Flu and vu13,d = COVID-19, the decision label
of u0 is vu0,d = Flu, which is what is obtained using
Euclidean distance above. This is of course a coaccidence
and is not always the case.

4 Experimental Work

The KNNV algorithm is coded in MATLAB R16a and run
on a PC with Centos 7, Intel(R) Core(TM) i7 CPU2.4 GHz
with 16 GB of main memory.

There are two objectives for the experiments carried out in
this Section. The first is to validate the KNNV algorithm by
showing that it operates successfully as intended and handles
both heterogeneity and incompleteness in IHC data properly.
The second objective is to show its superiority to some other
KNN derivatives, namely modified KNN (MKNN) [31] ,
KNN for imperfect data (KNNimp) [32], and cost-sensitive
KNN (csKNN) [9]. For each algorithm, the precision, recall,
accuracy, andF-score [33] metrics are evaluated. As an addi-
tional value, we show how to use KNNV as a tool to test the
classification significance of each conditional feature with
respect to the final classification decision.

The classification performance is analyzed using a 10-
fold cross-validation method. That is, the whole IHC dataset
is split into ten equal sub-datasets, nine serving for train-
ing and the tenth for testing, such that each patient appears
in a test set once and in training sets nine times. After run-
ning the algorithm independently 10 times, the results are
averaged and then presented. As the value of K affects the
performance of the competitor algorithms, namely MKNN,
KNNimp and csKNN, we first test their performance for
K = 3, 5, . . . , 9, and choose for each algorithm the value
giving the best results. Accordingly, K = 5 was chosen for
MKNN, K = 7 for KNNimp and K = 5 for csKNN.

Each experiment in this section is carried out twice: once
using Euclidean and once usingMahalanobis. As a reminder,
these metrics are used to determine the J nearest numerical
neighbors of the patient under consideration, where J is the
cardinality of the set of categorical neighbors. It is worth
mentioning that we follow the same strategy for handling
the missing values of numerical features with Mahalanobis
distance as we do with Euclidean distance. Specifically, if
either the value of feature an in one of the two patients(
vu0,an , vui ,an

)
is missing or both are missing, the difference

is considered 0.
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Table 2 IHC dataset used in the experiments, with 68 COVID patients and 62 Flu patients described by 16 conditional features ai and one decision
feature d

Feature Type Value set

a1 Age Numerical [4–90]

a2 Gender Categorical {Male, female}

a3 Fever Categorical {Yes, no}

a4 Dyspnea Categorical {Yes, no}

a5 Nasal Categorical {Yes, no}

a6 Cough Categorical {Yes, no}

a7 Partial pressure of oxygen (PO2) Numerical [32–292]

a8 C-reactive protein (CRP) Numerical [0.75–23]

a9 Asthenia Categorical {Yes, no}

a10 Leukopenia Categorical {Yes, no}

a11 Exposure to COVID-19 patients Categorical {Yes, no}

a12 Coming from high risk zone Categorical {Yes, no}

a13 Temperature Numerical [35.7–40]

a14 Blood test Categorical {Yes, no}

a15 Polymerase chain reaction (RT-PCR) Categorical {Positive, negative}

a16 Medical history Categorical {Cancer, croonic, astham, COPD, chronic, DM}

d Decision label Categorical {COVID-19, Flu}

4.1 Dataset

It is essential to have a dataset containing COVID-19 cases
to test our K NNV classification algorithm on. However, we
could not find such a dataset with a mix of COVID-19 and
non-COVID-19 cases. The only solution to have the desired
mixed dataset was then for us to construct one manually.
First, we obtained a dataset of 68 COVID-19 cases from the
SIRM database [10] . Second, for Non-COVID-19 cases, we
obtained adataset of 62Flu cases from the InfluenzaResearch
Database (IRD) [34]. Then, we merged the two datasets and
shuffled them randomly to obtain the IHC dataset we use in
this Section, with two decision labels: COVID-19 and Flu.

We note that we faced a problem with the SIRM dataset.
Specifically, the data was unstructured, in the sense that the
feature values of each patient were described verbally as
a paragraph. Therefore, we had to structure the data our-
selves in a format consistent with that of the Flu dataset. The
resulting IHC dataset, used in our experiments, contains fea-
tures that are categorical, such as cough, and features that
are numerical, such as partial pressure of oxygen (PO2). The
features are described in Table 2. Additionally, since not all
the patients have their records complete (for example, some
patients have a blood test and others do not), there aremissing
values. In fact, about 44% of the feature values are missing.

4.2 Experiment 1: Performance Evaluation of KNNV

We have assessed the performance of KNNV using the fol-
lowing four metrics:

Precision = TP

TP + FN
, (9)

Recall = TP

TP + FP
, (10)

Accuracy = TP + TN

TP + TN + FP + FN
, (11)

F-Score = 2

(
Precision * Recall

Precision + Recall

)
, (12)

where

1. TP: Number of True Positive cases, COVID-19 patients
that are properly classified as COVID-19,

2. FP: Number of False Positive cases, Flu patients that are
wrongly classified as COVID-19,

3. TN: Number of True Negative cases, Flu patients that are
properly classified as Flu, and

4. FN: Number False Negative cases, COVID-19 patients
that are wrongly classified as Flu.

The values of the above metrics for KNNV and some
related algorithm are reported in Table 3, for both Euclidean
and Mahalanobis distances. The table shows vividly that,
under either distance metric, KNNV achieves better results
than the related algorithms. For example, the competitor
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Table 3 Average values of
precision, recall, accuracy, and
F-score achieved by KNNV and
three related algorithms using
both Euclidean and
Mahalanobis distances

Euclidean Mahalanobis

MKNN csKNN KNNimp KNNV MKNN csKNN KNNimp KNNV

Precision 0.59 0.57 0.81 0.91 0.42 0.39 0.71 0.95

Recall 0.61 0.66 0.76 0.87 0.49 0.70 0.64 0.76

Accuracy 0.66 0.51 0.67 0.88 0.49 0.49 0.71 0.84

F-Score 0.61 0.59 0.65 0.88 0.46 0.48 0.68 0.84

Table 4 Maximum values of
precision, recall, accuracy, and
F-score achieved by KNNV and
three related algorithms using
both Euclidean and
Mahalanobis distances

Euclidean Mahalanobis

MKNN csKNN KNNimp KNNV MKNN csKNN KNNimp KNNV

Precision 0.77 0.65 0.89 1 0.53 0.41 0.77 1

Recall 0.81 1 0.93 1 0.60 1 0.67 1

Accuracy 1 0.69 1 1 0.60 0.55 0.77 1

F-Score 0.84 0.79 1 1 0.54 0.52 0.71 1

Table 5 Minimum values of
precision, recall, accuracy, and
F-score achieved by KNNV and
three related algorithms using
both Euclidean and
Mahalanobis distances

Euclidean Mahalanobis

MKNN csKNN KNNimp KNNV MKNN csKNN KNNimp KNNV

Precision 0.39 0.44 0.60 0.70 0.34 0.36 0.58 0.71

Recall 0.24 0.32 0.44 0.75 0.33 0.29 0.51 0.43

Accuracy 0.33 0.43 0.58 0.72 0.41 0.31 0.51 0.72

F-Score 0.31 0.41 0.55 0.77 0.38 0.29 0.50 0.60

algorithms, KNNimp, achieve 0.81 for precision, whereas
KNNV achieves 0.91. This means that KNNV outperforms
KNNimp by about 10%. In view of the equations of the four
evaluation metrics, this indicates that it has high values for
both TP and TN, and low values for both FP and FN. This
is attributed mainly to the RST techniques used in KNNV,
to handle incompleteness and heterogeneity and to find the
proper K value for the patient under classification.

The same results are reaffirmed in Tables 4 and 5 which
outline the best and worst values of the four evaluation met-
rics, for KNNV and the related algorithms. Over the 10
runs made, K NNV achieves the best results, reason enough
to conclude that KNNV can accurately identify COVID-19
cases even when the data are both heterogeneous and incom-
plete.

By comparing the Euclidean and Mahalanobis results,
we observe two things. First, there is a difference between
the two sets of results, but this difference is not significant
(within 4%). This insignificance could be an indication that
the dataset is either not highly skewed or not having great cor-
relation among its features. The second observation is that
under both distance metrics, KNNV keeps being superior to
the three algorithms of the comparison.

4.3 Experiment 2: Feature Significance

Tobetter understandCOVID-19, this experiment is dedicated
to investigate the impact of each individual feature on clas-
sifying the disease. In particular, the classification accuracy
is obtained for each feature separately and independently in
the aim to rank the impact of the feature on the classification
decision. While testing numerical features, ψC ,u0 = ∅, and
therefore, we set K = 1.

Table 6 shows the average classification accuracy of
KNNV for each feature over 10 runs. A look at the table
shows that nasal has the highest classification impact. This
is reasonable as COVID-19 spreads mainly by droplets pro-
duced when people cough, sneeze, or talk. Fever, asthenia,
and leukopenia come in second, third, and fourth, respec-
tively. This agrees with what the world health organization
(WHO) asserts in its report [35]: “at the beginning, the symp-
toms of COVID-19 are similar to those of a Flu.” Also, as
per this report, if we are not sure about the nasal, fever, asthe-
nia, and leukopenia features, we should look at the patient
age. According to the report, if the patient is old, having
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Table 6 Mean classification accuracy of KNNV for each feature sep-
arately

Feature Accuracy Rank

a1 Age 0.50 9

a2 Gender 0.52 5

a3 Fever 0.59 2

a4 Dyspnea 0.46 13

a5 Nasal 0.65 1

a6 Cough 0.47 12

a7 Partial pressure of oxygen (PO2) 0.48 11

a8 C-reactive protein (CRP) 0.52 6

a9 Asthenia 0.54 3

a10 Leukopenia 0.53 4

a11 Exposure to COVID-19 patients 0.52 7

a12 Coming from high risk zone 0.52 8

a13 Temperature 0.44 14

a14 Blood test 0.56 15

a15 Polymerase chain reaction (RT-PCR) 0.49 10

a16 Medical history 0.53 16

a weak immunity system, he/she is likely to be COVID-19
positive and should undertake other tests like RT-PCR and
CRP. Indeed, Table 6 shows that the age, RT-PCR, and CRP
features come after nasal, fever, asthenia, and leukopenia fea-
tures. It also shows that blood analysis and medical history
features have the least impact on COVID-19 classification,
agreeing with the mentioned WHO report which does not
even mention blood analysis and medical history as relevant
in diagnosing COVID-19.

5 Conclusions

The KNNV algorithm proposed in this article is designed
principally to classify COVID-19 in IHC datasets. Its design
starts with the classical KNN algorithm as a basis; then,
enhancements are added in a novel way. The novelty is
basically in the use of RST techniques to handle both incom-
pleteness and heterogeneity and to obtain an ideal K value
for each patient to be classified. These additions have greatly
improved the performance as demonstrated by the experi-
mental work that is carried out.

The KNNV has been implemented and tested on a
COVID-19 dataset from the Italian Society of Medical and
Interventional Radiology (SIRM). It was also compared to
three algorithms of its category. The test results show that
K NNV can efficiently and accurately classify COVID-19
cases. The comparison results show that the algorithmgreatly
outperforms all its competitors in terms of four metrics: pre-
cision, recall, accuracy, and F-score, under both Euclidean

and Mahalanobis distance metrics. The approach given in
this article can be applied for the identification of other dis-
eases. Moreover, its ideas can be further developed to suite
general classification problems outside the medical field.

Funding Not applicable.
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