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In a recent article, published in Intrin-
sically Disordered Proteins, a valuable

consensus view regarding the nomencla-
ture for disordered proteins was pre-
sented.1 In this work the authors present
a thoughtful and systemic review of
terms that have been used in the litera-
ture to describe proteins that sample a
heterogeneous set of structures during
their biological lifetime. We agree that
the term “intrinsically disordered
proteins” (IDPs) is an appropriate single
descriptor to refer to this particular class
of proteins, although it does not fully
capture much of the nuanced complexi-
ties that are inherent to this class. In
what follows we suggest a refinement to
this nomenclature based on an analysis of
the underlying ensemble that describes
the thermally accessible states of a given
IDP.

We propose that an approach to IDP
taxonomy would benefit from following
some of the standards that are used to clas-
sify ordered (or folded) proteins. A nam-
ing convention consistent with the
existing language used to describe folded
proteins would facilitate discourse
between structural biochemists who study
folded proteins and those who study
intrinsically disordered biomolecules. For
example, it is commonplace to classify
folded proteins by their overall secondary
structure content, i.e., folded proteins are
categorized into larger classes such as all-
a, all-b, a/b, etc.2 Such classifications
can, in principle, be extended to disor-
dered proteins by focusing on quantifiable
metrics that describe their underlying pro-
pensity to form secondary structure. In
this vein the “residual” secondary structure

propensity can form the basis for addi-
tional descriptors intended to refine any
IDP taxonomy.

As we and others have argued, struc-
tural disorder is not a binary concept in
the sense that proteins fall on a spectrum
of disorder, e.g., folded proteins have the
least disorder and IDPs have the most. In
this disorder-order continuum, the
amount of protein disorder can be quanti-
fied from an analysis of its thermally
accessible states.3 If the ensemble corre-
sponding to the thermally accessible states
of the protein contains only one structure
(i.e., the protein samples one state), then
the associated order parameter is 1. By
contrast, if the ensemble contains an infi-
nite number of structures that are all very
different from one another then the asso-
ciated order parameter is close to 0. We
recognize that these situations are never
realized in practice; however, such exam-
ples serve as limiting cases that help to
frame subsequent discussion.

The preference for secondary structure
content can be similarly quantified, at
least in principle. By analyzing the ther-
mally accessible states of the protein, one
can obtain an order parameter that
describes the average amount of secondary
structure content in the underlying
ensemble of the protein. A value of 0
denotes that the average secondary struc-
ture content in the ensemble is 0% and a
value of 1 corresponds to an average sec-
ondary structure content of 100%. Just as
every protein can be classified along a dis-
order-order continuum, proteins can simi-
larly be classified along an unstructured-
structured continuum. In this sense we
use the word “structure” solely to refer to
a given protein’s propensity to form sec-
ondary structure.
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We can use these two order parameters
to classify all proteins. The first order
parameter, O, describes the amount of dis-
order in the protein’s structural ensemble,
and the second order parameter, S, quanti-
fies the secondary structure content in the
ensemble. However, a strict nomenclature
based on this scheme would entail refer-
ring to any given protein by its propensity
for disorder and its propensity for second-
ary structure formation—a naming con-
vention that would be too awkward in our
view. More importantly, since it is diffi-
cult to a priori quantify the extent of het-
erogeneity that any given protein
ensemble has, the notion of using quanti-
tative continuous order parameters has
limited utility in practice. Qualitative
descriptions, albeit imperfect, based on
this formalism are desirable because they
enable scientists to engage in meaningful
discourse about proteins that fall on ends
of the order-disorder continuum. In this
sense, we can distinguish two classes that
form the basis for a qualitative but useful
naming convention for IDPs:

(1) IDP with high secondary structure
propensity: These proteins have typ-
ically been referred to as premolten
or molten globules in the litera-
ture,4,5 i.e., compact states that have
no stable tertiary structure but that
have considerable secondary struc-
ture. Examples in this class include
the von Hippel-Lindau tumor sup-
pressor protein6 and the nuclear
coactivator binding domain of
CREB binding protein.7

(2) IDP with low secondary structure
propensity: These proteins have no
stable tertiary structure and no appre-
ciable secondary structure as mea-
sured via standard techniques such as
circular dichroism spectroscopy. Pro-
teins in this class include a number of
highly studied IDPs, many of which

play a role in neurodegenerative dis-
orders; e.g., tau,8 a-synuclein,9 amy-
loid-b,10 and huntington11 proteins.
Although these proteins can adopt
conformations with well-defined sec-
ondary structural elements when
bound to particular binding partners,
we feel that an initial approach to
their taxonomy beings with an assess-
ment of their structural propensities
in isolation.

It is important to note that while these
classes above apply to entire proteins, they
just easily can be applied to regions of pro-
teins. As the authors of the aforemen-
tioned review stated, “A majority of
eukaryotic protein sequences are chimeras
of ordered and disordered regions. . ..”
Further sub-classifications can be con-
structed using data that provide clues as to
the preferred types of secondary structural
elements sampled by the IDP of interest.
Such information can be garnered from
experimental observables such as second-
ary chemical shifts and/or molecular mod-
els constructed with the aid of
experimental data.12-14

Our goal in writing this comment is to
further the dialog regarding the taxonomy
of disordered proteins. By no means do we
intend to proffer a definitive naming con-
vention.We only propose that further nam-
ing conventions for disordered proteins
should in someway follow the existing para-
digm for ordered (or folded) proteins.
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