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Individual identification based on brain functional network (BFN) has attracted a lot

of research interest in recent years, since it provides a novel biometric for identity

authentication, as well as a feasible way of exploring the brain at an individual level.

Previous studies have shown that an individual can be identified by its BFN fingerprint

estimated from functional magnetic resonance imaging, electroencephalogram, or

magnetoencephalography data. Functional near-infrared spectroscopy (fNIRS) is an

emerging imaging technique that, by measuring the changes in blood oxygen

concentration, can respond to cerebral activities; in this paper, we investigate whether

fNIRS-based BFN could be used as a “fingerprint” to identify individuals. In particular,

Pearson’s correlation is first used to calculate BFN based on the preprocessed fNIRS

signals, and then the nearest neighbor scheme is used to match the estimated BFNs

between different individuals. Through the experiments on an open-access fNIRS

dataset, we have two main findings: (1) under the cases of cross-task (i.e., resting,

right-handed, left-handed finger tapping, and foot tapping), the BFN fingerprints generally

work well for the individual identification, and, more interestingly, (2) the accuracy

under cross-task is well above the accuracy under cross-view (i.e., oxyhemoglobin

and de-oxyhemoglobin). These findings indicate that fNIRS-based BFN fingerprint is a

potential biometric for identifying individual.

Keywords: functional near-infrared spectroscopy, brain functional network (BFN), cross-task, individual

identification, cross-view

1. INTRODUCTION

Identifying individuals from a group is a significant task that has largely related to social security
system and health care system (Ginther et al., 1992; Schmidt et al., 2005; Gershon et al., 2009).
The mainstream identification characteristics, including face, fingerprint, and so on, are easily
counterfeited, unstable in time, and involve privacy implications (Prabhakar et al., 2003; Jain
et al., 2004, 2006). Advanced studies indicate that brain functional network (BFN) estimated
by the temporal correlation between pairs of brain regions has the advantages of anti-imitation
and stability in timing (Hilger et al., 2017, 2020; Wang et al., 2019b; Sastry et al., 2021). More
importantly, the BFN-based “fingerprint” provides a potential way of exploring the brain at the
individual level.
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Up to now, several modalities of data have been utilized
for constructing BFN fingerprints (Finn et al., 2015; Wang
et al., 2019a, 2020; da Silva Castanheira et al., 2021; Sareen
et al., 2021), including functional magnetic resonance (fMRI),
electroencephalography (EEG), and magnetoencephalography
(MEG). Among these modalities, fMRI was first used to
estimate and identify BFN “fingerprint” by Finn et al. (2015).
Their experimental result indicated that the fMRI-based BFN
fingerprint can lead to a high identification accuracy, and
individual functional connectivity is intrinsic and reliable.
After Finn’s work, Wang et al. (2019a) represented EEG
signals as BFNs and used the deep intrinsic features of
BFNs captured by the graph neural network for subject
identification, showing that BFNs demonstrated more robust
biometric traits than univariate features such as power spectral
density functions and coefficients of auto-regressive stochastic
models. Furthermore, da Silva Castanheira et al. (2021) generated
functional connectivity fingerprints fromMEG that measures the
resting-state brain activity, and achieved a similar recognition
rates to fMRI in the individual identification task.

As a complementary functional neuroimaging technique
to fMRI and MEG, the emerging functional near-infrared
spectroscopy (fNIRS) fNIRS has successfully explored the
functional activation of shallow cerebral cortex during
human behavior (Quaresima and Ferrari, 2019). The fNIRS
simultaneously provides the concentration changes in de-
oxyhemoglobin (Deoxy-Hb) and oxyhemoglobin (Oxy-Hb), and
the latter delivers additional information with respect to the fMRI
signal (Irani et al., 2007; Duan et al., 2012). Also, the insensitivity
of fNIRS to movements and the portability of the device make it
possible for long-term monitoring and repeated measurements
of cortical activities possible in various scenarios, such as outdoor
activity or resting state. More importantly, the relatively low-
cost and non-invasive technology makes the fNIRS applicable
among larger groups, including infants and children (Strangman
et al., 2002). Based on these advantages, fNIRS is naturally
suitable for the study of individual identification under motion
stimulating condition.

In this study, we mainly investigate whether the bio-specific
BFNs extracted from fNIRS data are discriminative enough
to identify individuals. More specifically, we use an open-
access fNIRS dataset (Bak et al., 2019) from 30 subjects with
multiple tasks, including resting state (REST), right-handed
tapping (RHT), left-handed tapping (LHT), and foot tapping
(FT) in this study. Note that we regard the resting state as
a special task. The BFN fingerprints corresponding to each
task are first calculated by Pearson’s correlation (PC). Then,
based on the nearest neighbor scheme, we demonstrate that
an individual-specific BFN fingerprint extracted from one task
can be used to match those from another. The results show
that BFN fingerprints estimated from different tasks are strongly
intrinsically linked and that they are stable and reliable biometric
features for individual identification. Additionally, since the
BFNs from different views (i.e., Oxy-Hb and Deoxy- Hb) are
involved, we can naturally design cross-view experiment to
explore the possibility of individual identification. Furthermore,
we believe that BFN fingerprinting has a potential in the brain

exploration and patient identification for medical systems, which
also presents a viable thinking for decoding the brain functional
states at the individual level.

The rest of this paper is organized as follows. In Section
2, we introduce the fNIRS data preparation, BFN fingerprints
estimation, and their identification. In Section 3, we report
the identification accuracy across different tasks. In Section
4, we analyze the experimental results and point out some
limitations of the involved scheme. Finally, we summarize this
paper in Section 5.

2. MATERIALS AND METHODS

In this section, we describe the data preparation (including
acquisition and preprocessing), BFN estimation, and BFN-based
fingerprint identification.

2.1. Data Preparation
2.1.1. Data Acquisition

In this paper, an open-access dataset of fNIRS with three kinds of
tasks (including RHT, LHT, and FT) is used to conduct individual
identification experiments. In particular, 30 subjects (23.4 ± 2.5
years old) participated in the experiment. All of them declared
that they have no psychiatric and neurological disorder that could
affect the experimental results. The data are freely downloaded
from https://figshare.com, and more details about the dataset can
be found in Bak et al. (2019).

Following the literature (Bak et al., 2019), the equipment
used in the experiment was a three-wavelength continuous-time
multi-channel fNIRS system (LIGHTNIRS, Shimadzu, Kyoto,
Japan) consisting of eight light sources and eight detectors,
which formed 20 channels to record changes in blood oxygen
concentration. As shown in Figure 1, the light source and
detector were located 3 cm apart and evenly distributed around
C3 and C4 that represent the motor cortex (Georgopoulos, 1988;
Gratton et al., 2006).

During the data collection, all subjects were informed to seat
in front of a 27-inch monitor and executed random commands
that appeared on the screen. The detection pipeline for a
individual consisted of three sessions. Each session contained
25 trials, and each trial lasted an average of 30 s as shown in
Figure 2. The 30-s trial consisted of three phases: the first 2 s were
the introduction period, during which instructions appeared
randomly on the screen; the next 10 s were the experiment period,
during which the subjects need to make corresponding actions;
and the last 17–19 s were the rest period, during which the brain
returned to the resting state.

2.1.2. Data Preprocessing

The original optical density information is collected using the
multi-channel fNIRS system and need to be converted into the
changes in blood oxygen concentration by modified Lambert–
Beer law (Khan et al., 2020). Due to different motion artifacts
(like heartbeat, respiration, andMayer wave) and the interference
from the instrument, the signals need to be further processed
for the subsequent identification experiment (Delpy et al., 1988).
First, a band-pass filtering is implemented by the third-order
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FIGURE 1 | Arrangement of channels. Light sources and detectors were placed around C3, C4; red circles, blue circles, and green squares represented sources,

detectors, and channels, respectively; total of eight sources and eight detectors, having separation of 3 cm between each source-detector pair, formed 20 channels

to record cerebral activities.

FIGURE 2 | Paradigm for data acquisition. The data acquisition experiment was separated into three sessions, each session contained 25 trials, and each trial lasted

about 30 seconds. As a result, for each subject, 75=25*3 trials were recorded with a complete experiment duration of about 2250 seconds = 75*30 seconds. Three

tasks were involved, and each trial randomly selected one task to perform. A single trial consisted of three stages: 2-second introduction phase followed by

10-second task period and again followed by 17–19 seconds rest stage.

Butterworth filter with a cut-off frequency of 0.01–0.1 Hz to
eliminate the physiological noise (approximately 0.1 Hz for

Mayer wave, 0.25 Hz for respiration, and 1 Hz for a heartbeat).

Then, the baseline correction is used to subtract the global signal

(i.e., the average signals of all channels) from all signals (Nguyen
et al., 2018; Zhang et al., 2021). All the preprocessing mentioned
above is done through the BBCI toolkit (Blankertz et al., 2016).

Note that, in order to maintain data integrity, we
do not abandon any channel signal (even with low

signal-to-noise ratio) since they may contain some
individual variability.

2.2. BFN Fingerprints Estimation and
Identification
2.2.1. BFN Estimation

After data preprocessing, we convert the signals into BFNs
according to the pipeline shown in Figure 3. Since the involved
subjects are treated in a similar way, we only take one subject

Frontiers in Neuroscience | www.frontiersin.org 3 February 2022 | Volume 16 | Article 813293

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Ren et al. Identifying Individuals

FIGURE 3 | The pipeline of converting functional near-infrared spectroscopy (fNIRS) signals to brain functional networks (BFNs) (only take the first subject in the

dataset as an example). The size of the original Oxy-Hb data is 30003*20, where the 30003 is the number of time points, and the 20 is the number of channels. By

segmenting the original data according to the phase of task and resting state for each trial, we obtain 150 data matrices, half of which have a size of 133*20 under

task state, and the remaining have a size of 200*20 under resting state. Note that, when conducting the segmentation operation, we truncate the time points that lie at

task phase and the intermediate of the rest phase, respectively, for ensuring signal purity and eliminating the signal noise caused by task-resting switching. The data

matrix is then used to estimate BFN fingerprint by PC. As a result, the subject obtains 150 BFNs, each of which has a size of 20*20. All BFNs are classified into four

classes according to four tasks (i.e., RHT, LHT, FT, and REST). Each task class contains 25 BFNs and the resting class contains 75 BFNs. Since the size of each BFN

is same, the subject would obtain a new BFN by averaging the element of the corresponding position of all BFNs within one class. Eventually each subject obtains 4

BFNs corresponding to 4 tasks.

under Oxy-Hb view in the dataset as an example to illustrate
the conversion process. The first step is signal segmentation
according to the trials. In consideration of the time point of one
trial consisting of task and resting states, we segment task and
resting data. As a result, we acquire 150 signal matrices, half of
which correspond to task state and the remaining correspond to
resting state. The second step is BFN estimation based on these
signal matrices. In particular, the nodes of the BFN correspond
to 20 channels, and the edge or edge weights are estimated
as the PC between the time series (the columns of the signal
matrix) associated with the channels. Finally, these estimated
BFNs are divided into four groups according to the type of tasks
(including RHT, LHT, FT, and REST), and the BFNs in each
group are then averaged to generate a representative BFN for
each task. Consequently, we acquire four BFNs for each subject,
corresponding to four different tasks.

2.2.2. BFN Identification

Individual identification is performed across tasks based on the
“source set” and “target set,” as shown in Figure 4A. In particular,
given a target BFN x∗t , we calculate its similarity to each BFN

x
(i)
s in the source set, denoted by Sim(x∗t , x

(i)
s ), i = 1, 2, · · · , 30,

where the similarity is defined as PC between two BFNs. Then,

we use the nearest neighbor principle to predict the label ID∗ of
the target BFN as follows:

ID∗ = arg max
i∈{1,2,··· ,30}

Sim(x∗t , x
(i)
s ) (1)

If the predicted label is equal to the actual label, the prediction
score is counted as 1, and 0, otherwise.

After matching all pairs of BFNs in the target-source set, we
can get the recognition accuracy as

ACC =
the sum of prediction scores

the total number of subjects
(2)

Since different tasks are involved in the dataset, we conduct cross-
task individual identification experiment by setting all pairs of
target-source mode, as shown in Figure 4B.

3. RESULTS

We eventually get the prediction accuracies within all
pairs of target-source modes and the experimental results
between the same views are shown in Figure 5. The
accuracy varies from 20/30 (63%) to 30/30 (100%) in
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FIGURE 4 | Individual identification procedure. (A) We calculate the similarity between a given target brain functional network (BFN) and all the source BFNs,

respectively, and the label of the source BFN corresponding to the maximum similarity is the prediction label of the target matrix. (B) After data preprocessing, each

subject obtains four BFNs corresponding to four tasks. By setting all BFNs from one state as source set and another state as target set for identification, we can get

16 possible combinations of the target-source separation.

FIGURE 5 | Accuracy of identification under cross-task condition. Individual identification accuracy for the source set from one task and the target set from another

task. Each row represents the same target set and each column means the same source set. Oxy-Hb is on the left and Deoxy-Hb is on the right.

different modes (REST vs. RHT, REST vs. LHT, REST vs.
FT, RHT vs. LHT, RHT vs. FT, LHT vs. FT for Oxy-Hb and
Deoxy-Hb, respectively).

Since the BFNs from different views are involved, we can
naturally design cross-view experiment to place BFNs from
Oxy-Hb and Deoxy-Hb into source/target sets, respectively.
However, compared to the performance associated with the
same views, the overall recognition accuracy under cross-view
condition shown in Figure 6 changes significantly, ranging from
9/30 (23%) to 23/30 (76%). Meanwhile, we acquire the highest
accuracy in REST–REST mode and the lowest accuracy in
RHT–FT mode.

4. DISCUSSION

4.1. Results Comparison
On the basis of experimental results, we have the following
findings: (1) The identification accuracy under cross-task is

95.69% ± 0.29 for Deoxy-Hb and 86.00% ± 1.87 for Oxy-Hb,
meaning that the identification performance based on Deoxy-
Hb is better and more stable than Oxy-Hb in this experiment.
Meanwhile, the identification accuracy under cross-view of using
Deoxy-Hb as the source set to identify Oxy-Hb as the target set is
higher than the opposite view setting. This finding encourages us
to explore more potential on cross-view identification based on
fNIRS data. (2) The accuracy under cross-task is well above the
accuracy under cross-view. To explain this finding, we retrace the
experimental process, and discover that the similarity between
BFNs estimated under different tasks by one subject is much
higher than the similarity between BFNs estimated under the
same task state by different subjects. That is, the variability of
BFNs is closely related to individual behavioral differences, but
is more dependent on the inherent structure and function of
the brain itself. (3) In most cases, the resting-state BFNs can be
uniquely identified by a given BFN obtained from another task
state. This phenomenon illustrates that the BFN in the rest phase
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FIGURE 6 | Accuracy of identification under cross-view condition. Individual identification accuracy between Oxy-Hb and Deoxy-Hb consists of four tasks. On the left,

each row represents the target set of Deoxy-Hb, and each column represents the source set of Oxy-Hb. On the right side, it is the opposite.

is more suitable for individual identification than the BFNs in the
task phase.

4.2. Limitations
However, there are some limitations that need to be considered.
At the data level, in addition to the unavoidable small sample,
all channels are located in motion cortex, which prevents us
to estimate more representative BFN fingerprints based on the
whole-brain changes in blood oxygen concentration. At the
method level, we combine PC and the nearest neighbor scheme
to conduct the identification experiment. In particular, PC is
the simplest and wildly used method for estimating BFNs, but
it captures the full correlation between pairs of channels and
does not remove the confounding effect of other channels.
According to previous studies (Hiwa et al., 2016; Guo et al.,
2021; Sun et al., 2021; Xue et al., 2022), we can estimate more
discriminative BFNs to identify individual. This is a direction for
future research.

4.3. Additional Considerations
Note that, since the subjects’ behaviors are constantly changing,
BFNs are also vary dynamically and significantly within short
periods of time (Hutchison et al., 2013). Hence, longer
measurement time is one of the prerequisites for obtaining the
discriminative and stable BFNs, and future work should focus
on the correlation between the length of the signal and the
discriminative nature of the BFN. In addition, we find that all
signals of one subject in cross-task experiment are collected on
the same day, and it is unclear to what extent does the interval
between sessions affect the discriminative BFN fingerprints.
Future work should focus on the stability or variability
of BFN fingerprints over several months or years rather
than days.

5. CONCLUSION

In this paper, we conduct individual identification experiments
on fNIRS data under cross-task and cross-view conditions,

respectively. The identification process includes the BFNs
estimation and identification. In particular, we calculate PC
between BFNs as similarity, and then evaluate the feasibility
of subject recognition. The experimental results show that
fNIRS-based BFN fingerprints have good bio-specificity and
the properties of difficulty to imitation, which have the
potential to serve as an alternative biometric feature for
identifying individuals. However, this method, in this paper, only
considers the similarity of BFNs estimated between different
states or views, without mining the association between BFNs.
Therefore, we plan to explore the consistency of BFNs based
on fNIRS from the perspective of multi-task, even multi-view in
the future.
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