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Neural field theory is used to analyze attention by extending an existing model of the

large-scale activity in the corticothalamic system to incorporate local feedbacks that

modulate the gains of neural connectivity as part of the response to incoming stimuli.

Treatment of both activity changes and connectivity changes as part of a generalized

response enables generalized linear transfer functions of the combined response to

be derived. These are then analyzed and interpreted via control theory in terms of

stimulus-driven changes in system resonances that were recently shown to implement

data filtering and prediction of the inputs. Using simple visual stimuli as a test case, it is

shown that the gain response can implement attention by evaluating two main features of

the stimuli: the magnitude and the rate of change, by increasing the weight placed on the

rate of change in response to sudden changes, while reducing the contribution of stimuli

value in tandem. These changes of filter parameters are shown to improve the prediction

of the upcoming stimuli based on its recent time course. This outcome is analogous to

controller-parameter tuning for performance enhancement in engineering control theory.

Keywords: brain dynamics, attention, prediction, cortex, thalamus, neural field theory, control systems, data filter

1. INTRODUCTION

Attention is implemented in brain by dynamically selecting specific neural activities for further
evaluation, in which irrelevant sensory information is filtered out in favor of the behaviorally
relevant. It has been proposed that attention can be viewed as enhancing the weight given to
relevant information in a competitive system (Noudoost et al., 2010). In theory, this can be done
in a number of ways, including strengthening selected signals and reducing noise (Hillyard and
Anllo-Vento, 1998; Hillyard et al., 1998; Barceló et al., 2000; Noudoost et al., 2010).

Morgan et al. (1996) showed that the magnitude of steady-state visual evoke potentials (SSEVPs)
recorded from the scalp of the human subjects who were cued to attend to a stimulus were
significantly enlarged. Luck et al. (2000) studied the same phenomenon for single unit cells in
macaque monkeys and concluded that when several simultaneous stimuli are present, a neuron’s
sensory response to the attended signal is significantly enhanced. This amplification is analogous
to improving the signal-to-noise ratio which enhances the extraction of pertinent features of the
external stimulus (Morgan et al., 1996; Hillyard and Anllo-Vento, 1998; Hillyard et al., 1998). The
examples of such sensory gain control mechanisms involved in visual attention, were measured
via event-related potentials (ERPs) and cerebral blood flow (positron emission tomography known
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as PTE, and functional magnetic resonance imaging known as
fMRI) (Hillyard and Anllo-Vento, 1998; Hillyard et al., 1998;
Barceló et al., 2000; Kastner and Ungerleider, 2001; Vuilleumier
et al., 2001; Pinsk et al., 2004). Furthermore, top-down effects are
suggested to play an important role in the processing of stimuli in
corticothalamic network where they contribute to prediction of
forthcoming inputs (Pessoa et al., 2003; Pinsk et al., 2004; Friston,
2005, 2010; Feldman and Friston, 2010). Engel et al. (2001) and
Engel and Fries (2010) proposed that making such predictions
might involve the temporal structure of both stimulus-driven
and background activity, which suggested that prediction and
attention are processes interconnected through synchronous
oscillations. In psychology, qualitative consciousness models
such Integrated Information Theory (Jerath and Beveridge, 2019)
and Default Space Theory (Jerath et al., 2015) advocate a central
role of corticothalamic system in dynamic and global functions
with oscillations in the corticothalamic system amplifying
relevant stimuli (neural facilitation of attended signals) based on
the current state of internal predictions.

Despite above qualitative proposals regarding the existence
of a gain control mechanisms in attention and its influence
in corticothalamic neural prediction, the basic mechanisms
of such modulation are poorly understood. Examples include
the temporal dynamics of activity modulation (i.e., temporal
corticothalamic processing), the relationship of modulation
to stimulus-driven activity, the relationship of modulations
to brain rhythms (i.e., how slow waves or alpha oscillations
change during attention), and above all, a plausible neuronal
basis by which gain calibration can be implemented. One
example of this point is the Bayesian-based models of prediction
and attention in the brain, motivated by machine learning
applications in neuroscience along with cortical neuroanatomy
and neurophysiology (Feldman and Friston, 2010; Friston, 2010),
including the Kalman-filter approach used by Rao and Ballard
(1999) to explain visual information processing in the brain. This
method assumes linear dynamics and that Gaussian distributions
describe the activities of populations of neurons, but central steps
(such as complex matrix operations) have not yet been shown to
be physiologically realizable in the brain’s tissues.

In previous work, neural field theory (NFT) was used to
determine the dynamics of corticothalamic responses to visual
stimuli and it was shown that their properties are analogous to
those widely used in control systems for prediction, gain tuning,
and control (Babaie-Janvier and Robinson, 2018). NFT of the
corticothalamic system uses the physiological properties of the
brain to describe the dynamics of, and interactions between,
populations of neurons in the cortex and thalamus, including
feedback mechanisms (Robinson et al., 1997, 2002, 2004; Rennie
et al., 2002). The equations of the NFT model are non-
linear in general and they have been successfully employed to
explain highly non-linear phenomena, such as epileptic seizures
(Breakspear et al., 2006). However, normal brain dynamics have
been shown to be able to be approximated by linear perturbations
from spatially uniform steady states (Robinson et al., 1997, 2002,
2004). This approximation enabled a plethora of experimental
phenomena, in cohorts of up to 2,100 subjects, to be reproduced,
including evoked responses (O’Connor and Robinson, 2004;

Robinson et al., 2005; Kerr et al., 2008; Van Albada et al., 2010;
Roberts and Robinson, 2012; Abeysuriya et al., 2015). Neural
field models of firing rate activity have been widely used to
analyse the dynamics of multi-scale properties of spatio-temporal
neural mechanisms (Nunez and Cutillo, 1995; Jirsa and Haken,
1996; Coombes, 2005). Certainly, linear responses account for a
host of phenomena and must be thoroughly understood before
proceeding to non-linear cases.

In recent work (Babaie-Janvier and Robinson, 2018) we
showed that corticothalamic dynamics are dominated by alpha,
beta, and slow-wave resonances, each of which can be considered
as a proportional-integral-derivative (PID) filter (Ogata and
Yang, 1970) that are widely used in engineering control systems
to predict the future course of inputs in their relevant frequency
ranges. The best prediction of the stimuli was found to be
obtained by summing the filter predictions after weighting them
by means of separate gain adjustments (Babaie-Janvier and
Robinson, 2018). The brain, therefore, may be implementing
attention through control and adjustment of input gains, which
suggests that using mismatches between features of internal
models and external stimuli to drive gain changes can be
analogous to implementing attention in this framework. The
objective of these gain adjustments, and the mechanisms by
which they may be implemented in the brain is the focus of the
current study.

The present work uses NFT of the corticothalamic system,
based on the methods developed in (Babaie-Janvier and
Robinson, 2018), to incorporate feedbacks that change synaptic
gains in response to stimuli, driven by changes in pre-
and/or post-synaptic activity (Koch, 1999; Rennie et al.,
1999, 2002). Here we consider them as local feedbacks that
directly affect the local synaptic strength. These local feedbacks
are formulated in a sufficiently general way that a broad
range of specific biophysical mechanisms, such as plasticity,
long-term potentiation/depression, facilitation, habituation, and
sensitization, can be explained by them (Rennie et al., 1999,
2002). Such biophysical effects dynamically alter the synaptic
gains and their influences can be represented by dynamical
equations for the evolution of the gain parameters. This yields
a tractable representation of gain modulations in which the
gains are dynamically adjusted as part of the system’s stimulus
response. We then use control theory to determine when and if
gain adjustments can be interpreted as implementing attention
to salient information in the stimulus by increasing gains that
correspond to relevant input streams. This is done for a simple
spatially unstructured visual stimulus to avoid unnecessary
complexity, and explore the response of themodel to impulse and
step stimuli and resulting attentional changes.

This paper is organized as follows. Section 2 outlines the NFT
of the corticothalamic system, the resulting transfer functions
and their interpretations in terms of resonance filters. A general
form of biophysically plausible mechanism for gain modulation
is also briefly outlined in this section. The effect of these
modulations on dispersion relations are analyzed in section 3
and interpretation of attention by gain adjustment is presented.
Finally, section 4 summarizes the main findings and discusses
future directions.
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FIGURE 1 | Schematics of physiologically based corticothalamic connectivities in which the arrows represent excitatory effects and the circles depict inhibitory ones.

The populations are cortical excitatory (e) and inhibitory (i) neurons, the thalamic reticular nucleus (r), thalamic relay neurons (s) that project to the cortex, and

non-corticothalamic neurons responsible for external inputs (n). The gains for impulses from neurons b incident on neurons of type a are shown as Gab.

2. MATERIALS AND METHODS

2.1. Corticothalamic Model
We first outline our original NFT model, which was developed

and extensively discussed in Babaie-Janvier and Robinson
(2018), and explain its key parameters. Here we briefly

summarize the relevant parts of that work, including essentials

of NFT and its application to a corticothalamic model that

incorporates key anatomic connectivities in the cortex and
the thalamus, and between them. More extensive details is

found in Robinson et al. (2002), Robinson et al. (2004), and
Babaie-Janvier and Robinson (2018).

Figure 1 shows our corticothalamic model which includes

cortical excitatory (e) and inhibitory (i) neurons, the thalamic
reticular nucleus (TRN) (r), thalamic relay neurons (s), and

non-corticothalamic neurons responsible for external inputs
(n). In this study, we consider external inputs as visuals, and
the relevant relay nucleus is the lateral geniculate nucleus
(LGN), where projections are to primary visual cortex (V1). The
model incorporates the visual projection system with reciprocal
corticothalamic feedback projections, excitatory projections to
TRN from LGN-V1 feedforward axons and then V1-LGN
feedback axons, and inhibitory projections from TRN onto LGN
relay neurons.

NFT finds equations for evolution of dynamical variables
of neural populations a, which are the local mean cell-body
potentials Va, the mean rate of firing Qa, and the propagating
axonal pulse rate fields φa, by averaging over short spatial and
temporal scales larger than ≈ 1 mm (Wilson and Cowan, 1973;
Freeman, 1975). Mean firing rates Qa are related to mean cell
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body potentials Va(r, t) through a sigmoid function, denoted by
S, that increases from 0 to Qmax as Va(r, t) increases from −∞
to ∞ and can be approximated by (Wilson and Cowan, 1973;
Freeman, 1975)

Qa(r, t) = S[Va(r, t)], (1)

=
Qmax

1+ exp
{

−[Va(r, t)− θ]/σ ′} , (2)

where θ presents the mean threshold voltage and the standard
deviation of the distribution of the threshold is given by σ ′π/

√
3.

The response of a single neuron is thus smeared out to yield a
sigmoid on the population average.

Neurotransmitter at synapses of neurons type a are released
by arrival of signals from neurons type b which causes the
propagation of post-synaptic voltage changes along dendrites,
and soma charging, and results in the spread of temporal profile
of the signals. The cell body potential at population a, Va(r, t),
can thus be written as

∑

b Vab(r, t), where the subscripts on Vab

determines the combinations of afferent neural types, and

Dab(t)Vab(r, t) =
∑

b

νabφb(r, t − τab), (3)

Dab(t) =
1

αabβab

d2

dt2
+

(

1

αab
+

1

βab

)

d

dt
+ 1, (4)

where the temporal differential operator Dab governs the
temporal response of Vab to afferent axonal pulse rate fields φb,
and βab and αab describe the rise and fall rate of the voltage
at the cell body, respectively. On the right side of Equation (3),
νab presents the overall connection strength between two neural
populations, and is given by νab = Nabsab, where Nab is the
average number of synapses on neurons of type a from neurons
of type b, and sab is the mean time-integrated strength of soma
response per incoming spike, and φb(r, t − τab) is the mean
spike arrival rate from neurons b, delayed by τab due to discrete
anatomical separations between different populations.

In NFTmodel, a filed φa(r, t) formed by the short scale average
of the neural spikes in population a and propagates at a velocity
va, obeys a damped wave equation whose source of spikes is
Qa(r, t), with

Da(r, t)φa(r, t) = Qa(r, t), (5)

Da(r, t) =
1

γ 2
a

∂2

∂t2
+

2

γa

∂

∂t
+ 1− r2a∇2, (6)

where the operator Da(r, t) is a good approximation for the
damping effect (Jirsa andHaken, 1996; Robinson et al., 1997), and
γa is the damping rate defined by γa = va/ra, in which ra is the
mean axon length of the population a, and va is the pulse velocity.
In our model, only the axons of excitatory cortical neurons re
are considered significantly long and cause propagation effects
in Equation (6); in the other populations, we assume ra ≈ 0
and therefore Da ≈ 1 which leads to φa(r, t) = Qa(r, t) in
these populations.

In our model, νie = νee, νii = νei, and νis = νes because
in cortex, the number of synapses is closely proportional to the

TABLE 1 | Estimated brain parameters for normal adults in the alert, eyes-open

state.

Quantity Description Value Unit

Qmax Max firing rate 250 s−1

θ Firing threshold 15 mV

σ ′ Threshold spread 3.3 mV

γe Cortical damping rate 100 s−1

αab Inverse decay time 80 s−1

βab Inverse rise time 320 s−1

τes Forward delay time 20 ms

τse Feedback delay time 60 ms

Firing rate

φ
(0)
e Steady-state firing rate of e neurons 16 s−1

φ
(0)
s Steady-state firing rate of s neurons 16 s−1

φ
(0)
r Steady-state firing rate of r neurons 16 s−1

φ
(0)
n Steady-state firing rate of n neurons 16 s−1

Sigmoid slope

ρe For e neurons 4.2×103 V−1 s−1

ρs For s neurons 4.2×103 V−1 s−1

ρr For r neurons 6.3×103 V−1 s−1

Synaptic gain (dimensionless)

G
(0)
ee Steady-state synaptic gain from e to e 6.8 −

G
(0)
se Steady-state synaptic gain from e to s 2.5 −

G
(0)
ii Steady-state synaptic gain from i to i 8.1 −

G
(0)
sr Steady-state synaptic gain from r to s −1.9 −

G
(0)
es Steady-state synaptic gain from s to e 1.7 −

G
(0)
sn Steady-state synaptic gain from n to s 0.8 −

G
(0)
ie Steady-state synaptic gain from e to i 6.8 −

G
(0)
re Steady-state synaptic gain from e to r 1.0 −

G
(0)
ei Steady-state synaptic gain from i to e −8.1 −

G
(0)
rs Steady-state synaptic gain from s to r 0.19 −

G
(0)
is Steady-state synaptic gain from s to i 1.7 −

Adapted from Table I in Robinson et al. (2004), the estimated values are a self-consistent

nominal set of parameters and concentrated on mean values.

numbers of source and target neurons (Robinson et al., 1997;
Braitenberg and Schüz, 1998), assuming the strength of synapses
is determined by the source neurons.With regards to time delays,
the forward delays are τes = τis ≈ 20 ms corresponding
to thalamocortical propagation times and the backward delays
are τse = τre ≈ 60 ms, which correspond to corticothalamic
propagation times, while the remained of τab are set to zero.
We use a single form of Dab for all the populations, i.e., the
same αab and βab are assigned to every filed, which corresponds
to the approximation that the mean dendritic dynamics can be
described by a single pair of time constants. Note that time delays
in the long-range excitatory axons in the cortex are included
via Equation (6).

Table 1 lists nominal values of model parameters (Robinson
et al., 2004). These values were estimated for normal adults
and they have been extensively used to generate a plethora of
phenomena and numerical analysis within the field, some in
cohorts of up to 2,100 subjects (Rennie et al., 2002; O’Connor
and Robinson, 2004; Breakspear et al., 2006; Kerr et al., 2008;
Abeysuriya et al., 2015).
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2.2. Steady States and Transfer Functions
The equations in the NFT of the corticothalamic model are non-
linear in general, and helped study highly non-linear phenomena
like seizures (Robinson et al., 2002; Breakspear et al., 2006).
By setting all derivatives of the NFT equations to zero, small
perturbations from spatially uniform steady-states of the system
is found which have been found to correspond to normal
brain states (Robinson et al., 1997, 2002, 2004; Abeysuriya
et al., 2015). Stable steady-state solutions are interpreted as
characterizing the baseline of normal activity, with firing rates
that are in accord with experiments (Robinson et al., 2002,
2004). Linear perturbations from these neuronal steady-states
represent time dependent brain activity by which numerous
experimental phenomena, including evoked responses, have been
reproduced (Robinson et al., 1997, 2002, 2004, 2005; O’Connor
and Robinson, 2004; Kerr et al., 2008; Van Albada et al., 2010;
Roberts and Robinson, 2012; Abeysuriya et al., 2015).

Low φa steady-states have been characterized with normal
states of brain neuronal activity (Robinson et al., 1997) and only
in considerably strong stimulation condition non-linear terms
are found in the brain activities (Herrmann, 2001; Roberts and

Robinson, 2012; Abeysuriya et al., 2015). We use φ
(1)
a and V

(1)
a to

denote linear perturbations of φa and Va from their steady-state

values φ
(0)
a and V

(0)
a . Thus, approximately,

Da(r, t)φ
(1)
a (r, t) = ρaV

(1)
a (r, t), (7)

where ρa = dS
(

V
(1)
a

)

/dV
(1)
a , evaluated at the steady state value

V
(0)
a . The stimulus signal φn also has a steady-state component

φ
(0)
n and a time-varying part φ

(1)
n that causes the response. Amore

detailed study of the model with respect to its parameters can be
found in Robinson et al. (2004).

Applying the operator Da on both sides of Equation (7), plus
use of Equation (3), yield

Dab(t)Da(r, t)φa(r, t) =
∑

b

Gabφb(r, t − τab), (8)

where linear gain Gab = ρaνab = ρaNabsab is the response in
population of neurons a due to unit input from neurons b; i.e.,
the number of extra spikes out for each additional one in. The net
gain of more than two populations of neurons connected serially
is denoted by Gabc = GabGbc.

2.2.1. Transfer Functions

A linear transfer function is the ratio of the output of a
linear system to its input. To obtain transfer functions one can
apply either the Laplace or Fourier transform to both sides of
Equation (8) for every population in the corticothalaimc system
and transform it from time domain t to frequency domain � or
s. We use single-sided Laplace transform (Ogata and Yang, 1970)

L[f (t)](s) = f (s) =
∫ ∞

0
f (t)e−stdt, (9)

where the response est is parameterized by the complex frequency
s = −iω = Ŵ− i�. We define the inverse of Laplace transformed
operator in Equation (3) by

Lab(s) = D−1
ab

(s) =
(

1+
s

αab

)−1 (

1+
s

βab

)−1

, (10)

where the serial filters of connected populations are
Labc = LabLbc. The Laplace transform of damping operator
in Equation (6) is

Da(k, s) =
(

1+
s

γa

)2

+ k2r2a , (11)

where we have Fourier transformed the spatial Laplacian
operator via ∇2 → −k2 where k is the wave number.

In the Laplace domain, the transfer functions to
thalamus, TRN, and cortex from retina, respectively, are
given by Babaie-Janvier and Robinson (2018)

Tsn(k, s) =
φ
(1)
s (k, s)

φ
(1)
n (k, s)

=
GsnLsnMc(s)

Mc(s)Pt(s)− Pc(s)
, (12)

Trn(k, s) =
φ
(1)
r (k, s)

φ
(1)
n (k, s)

=
GsnLsnPr(s)

Mc(s)Pt(s)− Pc(s)
, (13)

Ten(k, s) =
φ
(1)
e (k, s)

φ
(1)
n (k, s)

=
GsnLsnNs(s)

Mc(s)Pt(s)− Pc(s)
, (14)

with

Mc(s) = Dee(1− GeiLii)− GeeLee, (15)

Pt(s) = 1− GsrsLsrs, (16)

Pc(s) = (GeseLese + GesreLesre) exp [−s (τes + τes)], (17)

Ns(s) = GesLes exp (−sτes), (18)

Pr(s) = GresLres exp
[

−s(τes + τse)
]

+ GrsLrsMc(s). (19)

More details of the calculation is found in Babaie-Janvier and
Robinson (2018).

Here, we calculated the transfer functions that relate
corticothalamic activities to stimuli. These allow us to investigate
the linear response of each population to any external input. One
key feature of the transfer functions is the denominator which
represents the characteristic dispersion equation of the system.
Setting this equation to zero yields system’s eigenvalues and mark
the poles which determine the basic modes into which the system
response can be decomposed. Furthermore, all transfer functions
have their poles in common, as seen in Equations (12, 13), as a
result of the interconnectedness of the system.

2.3. Corticothalamic Data Filters
The transfer functions can be decomposed into basic modes
whose behaviors are shown to be associated with well-known
data filters (Babaie-Janvier and Robinson, 2018). Here, we briefly
outline the resulting data filters obtained for corticothalamic
populations; the details are found in Babaie-Janvier and
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TABLE 2 | Characteristic parameters estimated for slow, alpha, and beta filters of corticothalamic transfer functions Tan, for a = s, r, e, using parameters for normal

healthy adults in alert, eyes-open state, adapted from Table 3 in Babaie-Janvier and Robinson (2018).

Ten Trn Tsn

Quantity Description Ten
ℓ Ten

A Ten
B Trn

ℓ Trn
A Trn

B Tsn
ℓ Tsn

A Tsn
B Unit

−Ŵ− Damping rate 1st pole 9.3 14.1 26.9 10.2 13.5 27 15.3 23.8 22.3 −
−Ŵ+ Damping rate 2nd pole 17.2 14.1 26.9 14.5 13.5 27 337 23.8 22.3 −
�c Characteristic frequency 0 57.4 143 0 56.2 101 0 57.9 84 s−1

|K| Gain 1.8 3.82 1.62 7.44 4.3 8.3 52.2 48.8 4.6 −
τp Prediction time 16 28 6 73 7 15 18 23 2 ms

Robinson (2018). Note that only the spatially-uniform effects of
perturbations (i.e., k = 0), were explored in the study.

If we approximate each corticothalamic transfer function
Tab(s), which is a ratio of exponential polynomials of s, by a
rational function of s and decompose it into partial fractions,
we find

Tab(s) =
n

∑

j=1

rj

s+ pj
, (20)

where, the pj = Ŵj ± i�j are all distinct poles of the system
(we do not consider degenerate roots here), and the residues
rj = r ± i�r are given by

rj = (s+ pj)Tab(s)|s=−pj , (21)

we estimate the reduced transfer functions Tr
ab

by seeking the
smallest n that preserves the main dynamics. Babaie-Janvier and
Robinson (2018) showed that a 6-pole approximation (n = 6) is
accurate to within an root-mean-square (rms) fractional error of
0.02 over the frequency range 0–150 Hz for the parameters in
Table 1. These partial fractions then are summed in pairs that
dominate in slow (f . 5 Hz), alpha (5 Hz . f . 15 Hz) and
beta (15 Hz . f ) frequency regimes, respectively. We thus write
(for b = s, r, e)

Tr
bn(s) = Tℓ

bn(s)+ TA

bn + TB

bn(s), (22)

where Tℓ

bn
is the sum of the two real poles and represent

low frequency responses while TA

bn
and TB

bn
are the sums over

complex conjugate pairs of poles that represent oscillatory
responses in the alpha and beta frequency ranges, respectively.
The partial transfer function of the sum of two fractions
associated with poles pj and pj+1 either both real or conjugate
pair, which we denote by T



ab
(s) for  = ℓ,A,B, with

T


ab
(s) =

(

s+ τ−1
p

)

[

K

(s+ pj)(s+ pj+1)

]

, (23)

= H


ba
(s)Ia (s) (24)

respectively, with τp =
(

rj + rj+1

)

/
(

rjpj+1 + rj+1pj
)

and K =
rj + rj+1. If we write rj = r ± i�r for the residues at a conjugate
pair of poles pj = Ŵ ± i�j, we have

τp =
r

−rŴ + �r�j
, (25)

K = 2r. (26)

Similarly, writing rj = r, r′ for the residues at real poles
pj = Ŵ,Ŵ′, we have

τp = −
r + r′

rŴ′ + r′Ŵ
, (27)

K = r + r′. (28)

Table 2 presents the parameters calculated for three transfer
functions to specific nuclei, TRN, and cortex from retina. Each
slow, alpha, and beta filter captures and evaluates part of the
information coming from external world, which is relevant to
their frequency limit, and summing up these parallel responses
results in the total response to stimulus. Each population’s neural
response contains an alpha resonance (7.5–12 Hz for present,
adult human parameters), with peak frequencies ranging from
≈ 8.4 to ≈ 9.3 Hz, and a beta response in the beta band
(12.5–30 Hz) with amplitudes significantly smaller than those
of the alpha resonances (Babaie-Janvier and Robinson, 2018).
Both filters present higher peak amplitudes in thalamus than
cortex. Furthermore, the alpha waves persist longer than beta
waves in populations r, e, and i, which is the direct result of the
damping rates of alpha filters are approximately half of those
of the beta filters. However, the results show that alpha and
beta waves should last for approximately the same time in LGN
structure where their damping rates are similar (Babaie-Janvier
and Robinson, 2018).

2.4. Synaptic Gain Modulation
The NFT model described in the previous section treated
all gains that encode physiology of coupling strengths as
being fixed. However, numerous biophysical processes modulate
neuronal gains, dependent on current or recent level of
activity, including plasticity, long-term potentiation/depression,
facilitation, habituation, and sensitization. Each is considered
here as a form of feedback, whereby pre- or post-synaptic
neuronal activity modulates model parameters that were
previously considered constant. These time-dependent effects
can be included in the NFT of corticothalamic model by
introducing dynamical equations for evolution of the gains; gain
changes are caused by local firing rates or voltages.
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We choose a general form of modulatory response that can
be applied to a wide variety of specific mechanisms (Koch, 1999;
Rennie et al., 1999; Robinson et al., 2002), with

Gab(r, t) = G
(0)
ab

+ G
(1)
ab
, (29)

= G
(0)
ab

+ gabFab(t)⊗
[

φb(r, t)− φ
(0)
b

]

, (30)

where G
(0)
ab

is the steady-state value and G
(1)
ab

represents the
perturbation of gain caused by the feedback, where Fab(t)
describes the temporal form of the modulation and the constant
gab is its strength. The formulation in Equation (30) assumes that:
(i) the perturbations are small enough that a linear equation is
a reasonable approximation, (ii) modulation is local in space,
and (iii) gab and Fab(t) do not vary with position or time. An
alternative possible set of drives are the cell body potentials Va

(Rennie et al., 1999, 2002), but these are also linearly related
to mean firing rates Qa for small amplitude perturbations, so
we do not consider them separately here. For the temporal
form of the modulation we propose Fab(t) = ηab exp(−ηabt)
when t ≥ 0 and zero otherwise to enforce causality. The rate
constant ηba characterizes the response process and ηab > 0.
This form of Fab(t) implies a simple differential equation form
of Equation (30):

(

1

ηab

d

dt
+ 1

)

[

Gab(r, t)− G
(0)
ab

]

= gab

[

φb(r, t)− φ
(0)
b

]

. (31)

The Laplace transform of Equation (31) is

Gab(k, s) = G
(0)
ab

+ gabFab(s)φ
(1)
a (k, s), (32)

where

F(s) =
1

τF
ab
s+ 1

, (33)

τFab =
1

ηab
. (34)

The formulation developed above can be applied to different
biophysical processes that change synaptic gains. For instance,
Equation (32) can represent habituation if appropriate local
feedback strengths gab are adapted so that a decrement in
the neural activity is caused in response to stimuli sustained
over several hundred milliseconds. On the other hand, if the
local feedback strengths gab are tuned to increase the neuronal
response due to current activity it can describe neuronal
sensitisation. We further discuss the effect of feedbacks on
local gains and how they modulate the neural responses in the
Results section.

3. RESULTS

In this section we work on deriving a general neural activity
formulation which involves gain modulations via local feedbacks.
The resulted activity form is then interpreted in terms of
attention to more salient input. Finally, we carry out simulation

using impulse and step stimuli to evaluate the corticothalamic
response to various change in the information coming from
external world.

3.1. Effect of Gain Modulation on Neural
Activity
In a linear regime, the cell body potentials are related to mean
firing rate through Equation (2) which gives rise to field pulses,
obeying the damped wave equation in Equation (5). This results
in the general firing rate equation, to first order in deviations of
the variables from their steady-state values,

Dab(t)Dab(t)
[

φ(0)
a + φ(1)

a (r, t)
]

=
∑

b

Gab(r, t)
[

φ
(0)
b

+ φ
(1)
b
(r, t − τab)

]

. (35)

The Laplace transform of Equation (35) is then

Dab(s)
[

φ(0)
a + φ(1)

a (k, s)
]

= L(s)
∑

b

[

G
(0)
ab

+ gabF(s)φ
(1)
b
(k, s)

]

[

φ
(0)
b

+ φ
(1)
b
(k, s) exp (−sτab)

]

. (36)

By equating orders on both left and right side of Equation (36),
and omitting second order term, we find

φ(0)
a =

∑

b

G
(0)
ab

φ
(0)
b
, (37)

Dab(s)φ
(1)
a (k, s) = L(s)

∑

b

G
(0)
ab

φ
(1)
b
(k, s) exp (−sτab)

+ L(s)
∑

b

gabφ
(0)
b
F(s)φ

(1)
b
(k, s) exp (−sτab), (38)

= L(s)
∑

b

[

G
(0)
ab

+ gabφ
(0)
b
F(s)

]

φ
(1)
b
(k, s) exp (−sτab).

(39)

Equation (37) represents the steady-state relations. Equation (38)
expresses first order responses of two types: the first term
represents the part of response that would occur without change
to the steady-state synaptic gains, whereas the second term
represents the response due to the effect of stimulus induced gain
changes on steady-state activity. Figure 2 presents a schematic of
the gain modulation mechanism achieved in Equation (39).

The linear dispersion Equation (39) differs from Equation (9)
only in their gain terms Gab. While the gains in Equation (9)

comprise only fixed synaptic effect terms; i.e., Gab = G
(0)
ab
, the

synaptic coefficients in the new dispersion Equation (39) contain

an added modulation term gabφ
(0)
b
Fab(s),

Gab = G
(0)
ab

+ gabφ
(0)
b
F(s), (40)

which results in transfer functions of corticothalamic system that
represent adjustment of gains as part of the response. These new
transfer functions are thus derived by substituting the term Gab
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FIGURE 2 | The gain Gab is modulated by φb through Equation (40). (A) Schematic of dispersion of neural activity to population a from population b, where

modulation of the neuronal gain by local feedback is given by Equation (39). (B) Magnitude of Gab vs. frequency for various feedback strengths and τ fab = 40 ms.

(C) Magnitude of Gab vs. frequency for various time constants τ fab and gab = 0.5.

for a, b = n, s, r, e in Equations (18, 19) using their equivalent
modulated form in Equation (40). Studying the response of the
new transfer functions with two modulation terms: (i) feedback
strength gab, and (ii) feedback time constant ηab, requires these
terms to be assigned to appropriate values. To determine a
physiologically applicable range for these terms, we first focus

on the process where gain is modulated by a local signal φ
(1)
b
,

and explore how reduction or escalation of feedback strength gab
and/or time evolution constant ηab affect the gain. The applicable
estimated values through these examinations can be tested by
experiments, in future works.

To establish a characteristic scale of gain changes, we note

that if a permanent change in φ
(0)
b

occurs, the gain Gab will

eventually settle to a new steady-state G
(new)
ab

, with the time
evolution described by Fab(s),

G
(new)
ab

= Gab(s)|s→0, (41)

= G
(0)
ab

+ gabφ
(0)
b
. (42)

Thus the new steady-state gain depends on the magnitude and
sign of gab. We define a relative coefficient of modulation,
denoted by 1, which is the magnitude of the fractional change

in G
(new)
ab

relative to G
(0)
ab

1 =
G
(new)
ab

G
(0)
ab

− 1, (43)

to investigate a variety of changes. We then choose various
1 in Equation (42) and calculate corresponding values of gab
needed to produce them in the steady state. Figure 2B shows
the magnitude of gains Gab vs. frequency as in Equation (40)

for G
(0)
ab

= 1, time constant η−1 = 40 ms and two positive

and negative feedback strengths gab = ±0.5. As φ
(1)
b

is elicited,
the gain Gab begins either increasing, for gab = +0.5, or
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TABLE 3 | Gain modulation allocated to gab for various level 1 of increased or decreased gain modulation, using parameters in Table 1 and η−1
ab = 40 ms.

Quantity Description 1 = −0.5 1 = −0.2 1 = +0.2 1 = +0.5 Unit

Modulation gains

gsn Feedback strength −0.025 −0.010 +0.010 +0.025 –

gsr Feedback strength +0.039 +0.015 −0.015 −0.039 –

gse Feedback strength −0.078 −0.031 +0.031 +0.078 –

Tsn
ℓ Tsn

A Tsn
B Tsn

ℓ Tsn
A Tsn

B Tsn
ℓ Tsn

A Tsn
B Tsn

ℓ Tsn
A Tsn

B

Filter parameters

−Ŵ− Damping coefficient 137 11.1 12.1 26.1 24.2 19.18 11.5 21.4 24.8 8.7 17.7 27.2 –

−Ŵ+ Damping coefficient 259 11.1 12.1 334 24.2 19.18 338 21.4 24.8 339 17.7 27.2 –

�c Cut-off frequency 0 55.7 108 0 54 87.5 0 59 83 0 58.3 83.6 s−1

|K| Gain 11.5 363 3.9 45.9 44.8 2.21 51.9 39.1 14.1 49.9 25.7 25.6 –

τp Prediction time 1 363 40 9 61.3 2 19.7 16 7 18.5 12.4 23 ms

Parameters obtained for slow, alpha, and beta filters of corticothalamic transfer functions Tan using the filter identification method developed in section 3.

decreasing for gab = −0.5 and within 40 ms reaches its new
steady-state value Gnew

ab
= +1.5 or Gnew

ab
= −1.5, respectively.

Figure 2C shows the magnitude of gain Gab vs. frequency as in

Equation (40) for G
(0)
ab

= 1, gab = 0.5, and various time evolving

constant η−1. The smaller the ηab the faster Gab settles to G
new
ab

.
In this study we select the transfer function to specific nuclei

from retina, to investigate the effect of gain modulations. The
same course can be used for studying other populations. We
select a mild modulation 1 = ±0.2 and a significant one 1 =
±0.5 to cover a significant range of both increased and decreased
modulation effects. Table 3 presents the calculated feedback
strengths gsn, gsr , and gse (these are gains involved in transfer
function Tsn), that cause these amount of modulation. It should
be noted that the amount of modulation, 1, is not necessarily
equal for various neuronal populations during any particular gain
adjustment process, but for simplicity, we assign the same 1 in
the present work. A reasonable choice for the time constant η−1

ab
was made at 40 ms (Rennie et al., 1999; Robinson et al., 2002).
Figure 3A shows the magnitude of transfer function Tsn vs.
frequency for various values of involved local feedback gains as
presented inTable 3, and usingTable 1 for the rest of parameters.
Figures 3B–D show slow, alpha, and beta filters calculated for
these transfer functions. We use the Control System Toolbox of
Matlab 2018a to carry out the calculations.

3.2. Interpreting Attention as Gain
Adjustment
We have incorporated gain modulation into the corticothalamic
system and showed that systems’ transfer functions, and
consequently its dynamics, are influenced by local feedbacks
that adjust the local gains. Here we discuss how this gain
adjustment can be interpreted as implementing attention in the
corticothalamic system. We can write

φ(1)
a = φℓ

a + φA
a + φB

a , (44)

=
(

Tℓ

an + TA
an + TB

an

)

φ(1)
n . (45)

Considering the part of response associated with the filter φ
J
a for J

of ℓ,A, and B, in Equation (45), and replacing the filter’s transfer
function from Equation (23), we have

φJ
a(s) =

(

s+ τ−1
p

)

[

K

(s+ pj)(s+ pj+1)

]

φ(1)
n (s), (46)

= K
(

s+ τ−1
p

)

IJa(s)φ
(1)
n (s), (47)

= k1sφ
J
I (s)+ k0φ

J
I (s), (48)

where

φ
J
I (s) = IJ(s)φ(1)

n , (49)

k0 = Kτ−1
p , (50)

k1 = K. (51)

The term IJ(s) is a second-order low-pass convolution filter
whose function is to allow external stimuli of a given band of
frequencies to pass while attenuating or weakening all others that
are not favored. In Babaie-Janvier and Robinson (2018), it was
shown that Iℓ(s) is a low-pass filter while IA(s) and IB(s) are
resonance filters exhibiting damped oscillations at alpha and beta
rhythms, respectively.

Equation (48) shows that the convolved signal φ
J
I (s) is then

modulated by two coefficients k0 and k1s, independently, where
each generates a partial response. The inverse Laplace transform
of Equation (48) yields

φ
J
b
(t) = K

[

1

τp
+

d

dt

]

φ
J
I (t), (52)

which shows the partial responses are the intensity and its rate
of change, weighted by k0 = Kτ−1

p and k1 = K, respectively.
The coefficients k0 and k1 determine which parts of the incoming
information should be emphasized and which parts can be
discarded by actively weighting the features of the stimulus, i.e.,
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FIGURE 3 | Magnitude of transfer functions Tsn and their derived slow, alpha, and beta-frequency filters, vs. frequency. We used varying local feedback gains gsn, gsr ,

and gse as presented in Table 3 and the rest of parameters from Table 1. (A) |Tsn|. (B) |Tℓ

sn|. (C) |TA
sn |. (D) |TB

sn |.

its value and rate of change. The modulation signal caused by
filter gains k0 and k1, are given by

K
J
0(t) = M

{

k
J
0φ

J
I (t)

}

, (53)

K
J
1(t) = M

{

k
J
1

[

d

dt
φ
J
I (t)

]}

, (54)

where M is defined as the envelop of the signals. This envelope
generalizes the concept of a constant amplitude obtained for each

data filter. Therefore, KJ
0(t) and K

J
1(t) are the modulation signals

of the magnitude and the rate of change components.
Figure 4 shows the filter parameters τp and K and

corresponding k0 and k1 of slow, alpha, and beta filter, calculated
for various level of synaptic gain changes of −0.5 ≤ 1 ≤ +0.5,
using parameters in Table 3. The results show that high-
frequency gains; i.e., the beta filter’s k0 and k1, show inverse
behavior to those of the slow and alpha filters for most 1. For
example, k1 is reduced for slow and alpha filters when 1 is
increased from 0 to 0.5, whereas this weight increases for the
beta filter; however, the k0 values show the opposite behavior,
increasing slightly for the alpha filter and significantly for the
slow filter, while decreasing for the beta filter. This confirms
that by increasing the synaptic gains, the emphasis on the high
frequencies is increased. The effect of these changes are explored
in more detail in the next section.

The sum of slow, alpha, and beta-range responses constitute
the total response to the stimulus, with

φ(1)
a = φℓ

a + φA
a + φB

a , (55)

=
(

kℓ

0I
ℓ

a(s)+ kA0 IAa (s)+ kB0 I
B
a (s)

)

φ(1)
n (56)

+
(

kℓ

1I
ℓ

a(s)+ kA1 IAa (s)+ kB1 I
B
a (s)

)

φ(1)
n . (57)

The inverse Laplace transform of Equations (56, 57) yields

φ(1)
a (t) =

∑

J

KJ

[

1

τ
J
p

+
d

dt

]

φ
J
I (t). (58)

Equation (58) shows the total response is a superposition of
all partial responses each scaled by a particular gain. Once a

perturbation, i.e., φ
(1)
n , occurs in sensory input the rate of change,

i.e., d
dt

φ
J
I (t), is significant and therefore a large part of the total

response is induced by this change, whereas when the rate of

change declines, i.e., d
dt

φ
J
I (t) approaches zero, the total response

is largely proportional to the magnitude of sensory input.

3.3. Impulse and Step Responses
Aside from the issue of how to interpret corticothalamic
dynamics in terms of gain adjustment per se, there is the central
question of how well these adjustments enable the system to
pay attention to more important information in its input signals
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FIGURE 4 | Slow, alpha, and beta filters properties change by synaptic gain changes. (A) Prediction time of filter Tℓ
sn vs. varying 1. (B) Magnitude of gain kℓ

0 vs.

varying 1. (C) Magnitude of gain kℓ
1 vs. varying 1. (D) Same as (A) for TAsn. (E) Same as (B) for kA0 . (F) Same as (C) for kA1 . (G) Same as (A) for TBsn. (H) Same as (B) for

kB0 . (I) Same as (C) for kB1 .

by increasing or decreasing the gains in the relevant frequency
ranges. To investigate the time varying effect of local feedback
in adjusting gains, we stimulate the system separately with
impulse and step stimuli and track the specific nuclei’s slow,
alpha, and beta-frequency range responses and consequently,
total firing φsn. In the visual system, the impulse response
is neural activity provoked by a sudden change in either the
intensity (magnitude) or the rate of change (frequency) of the
external stimulus that only lasts for a minimal time. It therefore
corresponds to Evoked Related Potentials. A step response is
neural activity stimulated by a sudden change in visual field that
stays in the new level; therefore, it enables the study of steady
state properties of the error signal between the external stimulus
and internal model’s prediction. We use varying local feedback
strengths from Table 3, the system parameters from Table 1,
and the Control System Toolbox Matlab 2018a to carry out
the calculations.

3.3.1. Impulse Response

We first drive the system with a unit impulse signal at time
200 ms. Figures 5A–F present the reticular and excitatory cortex
responses when the corticothalamic system is stimulated by
an impulse stimulus at time 20 ms and the signals projected

in LGN through Gsn, Gsr , and Gse. These show varying
local feedback gains cause changes in both magnitude and
latency of the evoked responses. In particular, the feedback
signal from excitatory cortex shows more sensitivity to varying
gains; with 50% increase in Gse causing the feedback signal
φe to last 40 ms longer. Furthermore, the first peak is
∼ 50% enlarged while the second peak is approximately
tripled. This data supports theories in both physiological and
behavioral studies (Hillyard and Anllo-Vento, 1998; Hillyard
et al., 1998), which suggested that the amplitudes of stimulus-
driven neural activity in sensory pathways are adjusted
when tasks require attention. Gazzaley et al. (2005) provided
evidence that attention not only modulates the magnitude of
neural activity but also shortens the time to reach maximal
response, which suggested that attention modifies the speed of
neural processing.

In order to uncover the effect of local gain modulation, we
compare the response for the fixed-gain Tsn with the response
for the modulated-gain transfer function to a sudden change,
an impulse signal. We choose the parameters for the fixed gain
transfer function from Table 2 and parameters of 1 = 0.5 for
the modulated transfer function from Table 3. We stimulate both
systems with a unit impulse signal and in each case, we calculate
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FIGURE 5 | The signals that drive specific nuclei when an impulse stimulus drives the system, for varying feedback strengths presented in Table 3. (A) Impulse drive,

φn, at time 20 ms. (B) The response due to Gsn and φn. (C) Impulse response of TRN, φr . (D) The response due to Gsr and φr . (E) The impulse response of excitatory

cortex, φe. (F) The response due to Gse and φe.

the contribution of the individual slow, alpha, and beta filters
and the total response φs. Figure 6 shows the result in which
the black curve in every plot corresponds to the original filters
without gain modulation and the red curve corresponds to the
modulated filters.

Once the stimulus onsets, second order convolution filters
Iℓ, IA, and IB generate specific frequency-range response; each
exhibits their resonant properties. These are then scaled by kℓ

0,
kA0 , and kB0 , respectively. Figures 6A,F,D show these signals
for both fixed and modulated transfer functions. The rate of
change of these specific frequency-range responses are also
measured by the filters and weighted by kℓ

1, k
A
1 , and kB1 , shown

in Figures 6B,G,L. Filter parameters plotted in Figure 4 show
that the high-frequency weight kB0 significantly decreased in the
modulated filter compared to the fixed filter while its weight
for rate of change kB1 has increased. The slow filter wights kℓ

0
and kℓ

1 have shown the reverse behavior; i.e., kℓ
0 has increased

while kℓ
1 decreased. This results in a modulated response that

has less contribution from the rate of change. Similar behavior
is observed for alpha filter waves, albeit less significantly. The
dynamics of weights of rate of change are caused by prediction
time τp, which determine how in advance the filters estimate the
future values. The prediction time of modulated high-frequency
filter has increased to 23 ms from 2 ms for fixed gain filter,
which shows the rapid changes are predicted sooner in advance.
The alpha filter prediction time is similar in both cases. The
magnitude and rate of change signals vs. time are plotted in
Figures 6D,I,N.

The sum of adjusted magnitude and rate of change constitute
the output of each filter, as shown in Figures 6C,H,M. As
seen in these figures, once a sudden change happens (i.e., the
onset of impulse function), the contribution from the rate of
change component is significant at the early stage as it is
seen at times between 20 and 25 ms. As the rate of change
decreases, the contribution from its component also declines
and the full responses of filters are mostly proportional to the
value of its input. Figures 6E,J,O show the power spectra of the
corresponding signals which show that modulation of both slow
and alpha filters has improved the power of their corresponding
rhythm bandwidth while the modulation of high-frequency (i.e.,
beta) filter has decreased the power of beta frequency range.

Ultimately, the total response of specific nuclei is obtained
by summing the responses generated by each filter, shown in
Figure 6P. The power spectra of the responses are plotted in
Figure 6Qwhich confirms that the modulated gain filters contain
more information about the stimulus. The synaptic gain changes
vs. time, for those involved in specific nuclei, are plotted in
Figure 6R.

3.3.2. Step Response

Another aspect of stimulus-driven responses and their relation
to attention, is how visual evoked potentials are related to a
sudden change from an initial uniform steady state input to a
new level. Hence, we drive the system by a step-function stimulus
at t = 20 ms and again plot the specific nuclei’s slow, alpha,
and beta-frequency filter responses to obtain the total response
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FIGURE 6 | The response of transfer function Tsn to an impulse stimulus onsetting at t = 200 ms. The responses for fixed-gain transfer function (i.e., no modulation)

are in black and the responses for the transfer function with modulated gains of 1 = +0, 0.5 are in red. (A) Slow wave response φℓ

I generated by convolution filter

Iℓsn(s), scaled by kℓ

0. (B) The rate of change φ̇ℓ

I , scaled by kℓ

1. (C) The slow filter response obtained by the sum of the two scaled signals. (D) Amplitude modulations vs.

time for both magnitude and the rate of change of slow wave. (E) Power spectra of response signals obtained for φℓ

s . (F) Same as (A) for φA
I . (G) Same as (B) for φA

I .

(H) Same as (C) for φA
I . (I) Same as (D) for k. (J) Same as (E) for φA

s . (K) Same as (A) for φB
I . (L) Same as (B) for φB

I . (M) Same as (C) for φB
I . (N) Same as (D) for k.

(O) Same as (E) for φB
s . (P) The total impulse response φs. (Q) Power spectra of total response φs. (R) The changes of synaptic gains involved in specific nuclei,

vs. time.

φsn. This enables us to study how gain modulation can modify
the prediction error when a sudden change in input occurs. The
Control System Toolbox of Matlab 2018a is used to carry out the
calculations of time responses for both fixed and modulated gain

transfer function Tsn using the equations and parameters from
previous sections.

Figure 7 shows the detailed responses of modulated-
gain transfer function Tsn and compares it with responses
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FIGURE 7 | The response of transfer function Tsn to a step stimulus onsetting at t = 200 ms. The responses for fixed-gain transfer function (i.e., no modulation) are in

black and the responses for the transfer function with modulated gains of 1 = +0, 0.5 are in red. (A) Slow wave response φℓ

I generated by convolution filter Iℓsn(s),

scaled by kℓ

0. (B) The rate of change φ̇ℓ

I , scaled by kℓ

1. (C) The slow filter response obtained by the sum of the two scaled signals. (D) Amplitude modulations vs. time

for both magnitude and the rate of change of slow wave. (E) The residual signals obtained for φℓ

s . (F) Same as (A) for φA
I . (G) Same as (B) for φA

I . (H) Same as (C) for

φA
I . (I) Same as (D) for k. (J) Same as (E) for φA

s . (K) Same as (A) for φB
I . (L) Same as (B) for φB

I . (M) Same as (C) for φB
I . (N) Same as (D) for k. (O) Same as (E) for

φB
s . (P) The total step response φs. (Q) The residual signals obtained of total response φs. (R) The changes of synaptic gains vs. time.

calculated for fixed-gain transfer function. Similar to the
impulse response, each resonance filter collects a specific
range of stimulus and measures the amplitude and rate of

change of corresponding part of the stimulus. Figures 7A,F,K
show the weighted amplitude and Figures 7B,G,L show
the weighted rate of changes for each filter. The slow,
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alpha, and beta responses are evoked in the way similar
to the impulse responses; i.e., same weights are applied to
the waves. The modulation signals as the envelop of the
magnitude and rate of change signals vs. time are plotted
in Figures 7D,I,N. The output of filters are plotted in
Figures 7C,H,M. Although both impulse and step stimuli
provide similar results in transient time, because the step drive
does not return to zero but remains at a new intensity, it
enables the analysis of the steady-state error of the response
in time domain. The errors between the stimulus and each
filter’s output are plotted in Figures 7E,J,O which confirms
that in all three filters the error is reduced by the modulated-
gain transfer function compared to the fixed-gain transfer
function. The individual error reductions result in the overall
error between the total response φsn, plotted in Figure 7P,
and stimulus being reduced, as seen in Figure 7Q. The
synaptic gains changes induced by the step response are
plotted in Figure 7R.

Overall, comparing the responses of the systems with
and without modulation terms reveals that the key effect of
modulation is to adjust the weights on features of input: its
value (modulating amplification) and rate of change (modulating
the latency by changing the prediction time) in such a way
that new information from the external world is emphasized.
These results support theories of attention that suggested that
the magnitude and the processing time of stimulus-driven neural
activity can be modified by attention and can provide a basis for
mechanisms that explain attentional suppression and facilitation
of unattended and attended inputs, respectively (Hillyard and
Anllo-Vento, 1998; Hillyard et al., 1998; Gazzaley et al., 2005;
Noudoost et al., 2010).

4. SUMMARY AND DISCUSSION

Starting with the brain’s physical characteristics we have
used a neural field corticothalamic model, with modulation
of neuronal gains, to evaluate the linear responses of
corticothalamic neural populations to stimuli and interpret
the results in terms of signal prediction and attention via
control theory. In particular, control theory allows stimulus-
evoked synaptic gain modulations to be interpreted as
implementing attention such that salient stimulus features
are emphasized, especially by increasing high-frequency
gains in response to sudden stimulus changes. The main
results are:

(i) We extended the NFT of corticothalamic system by
incorporating an expression for neural gain modulation
that is sufficiently general to encompass a variety
of synaptic modulation mechanisms, such as long-
term potentiation/depression, facilitation, habituation,
and sensitization.

(ii) Once gain modulation was incorporated as part of the
system response, the system transfer functions witch were
shown to differ from fixed term transfer functions only in
their now-dynamic gain coefficients. These contain a fixed

part, as in previous analyses, plus a gain change that occurs
in response to the stimulus.

(iii) The modulated transfer functions were then used to
calculate the dominant resonant response modes that
are excited by external signals. As in recent work
(Babaie-Janvier and Robinson, 2018), these corresponded
to slow-wave, alpha, and beta responses each of which
can be interpreted as being a standard second-order PID
filter, but the gain parameters of these filters can change
dynamically in response to stimuli.

(iv) Notably, it was shown that each resonance can be
interpreted as a filter that responds to two features of
the incoming stimulus in its resonant frequency range:
the stimulus value and rate of change. These responses
are then separately scaled and summed to generate the
filter output, with the scalings tuned by the gain changes
that occur as part of the system response. Gain increases
tend to increase the weight placed on the stimulus’s
rate of change at the expense of its value, which we
interpret as a form of attention that focuses on the feature
that will better enable the future course of the stimulus
to be predicted. This type of attention is fundamental,
in that it involves an implicit model of stimuli as
following second-order differential equations, as embodied
in the transfer function’s poles; understanding it is
essential before progressing to more complex circumstances
and stimuli.

(v) It was further found that weight changes of the slow and
alpha filters tend to be anticorrelated with those of the beta
filter, which further enhances the shift of attention from
stimulus value to rate of change when there is a sudden
change in the stimulus. This enables the system to respond
even faster to changes in the input stimulus. These gain
changes alter the strengths of the various resonances, an
effect that can potentially be tested against correlations
observed in evoked response experiments.

(vi) Simulations of responses to impulse and step-function
stimulus changes, with and without dynamic gain changes,
verify the above points and demonstrate that attention shifts
to emphasize rate of change when sudden stimulus changes
occur, then back to emphasize stimulus value under static
conditions. Errors in stimulus tracking and prediction were
significantly reduced by dynamic gain responses relative to
the fixed-gain case.

Overall, this study has demonstrated that corticothalamic
responses to time-varying visual signals can be interpreted
as implementing data filters that collectively span a wide

frequency range, and whose parameters are dynamically
adjusted, to enable estimation of incoming signals.
Attention is interpreted as being due to dynamic gain
changes that increase the weight attached to stimulus rate
of change when sudden changes occur, and to stimulus
value under static conditions. Future work will extend
these insights to incorporate spatially varying stimuli, for
example, and to the use of resulting stimulus predictions in
decision processes.
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