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Ion channels are the second largest drug target family. Ion channel dysfunction may
lead to a number of diseases such as Alzheimer’s disease, epilepsy, cephalagra, and
type II diabetes. In the research work for predicting ion channel–drug, computational
approaches are effective and efficient compared with the costly, labor-intensive, and
time-consuming experimental methods. Most of the existing methods can only be used
to deal with the ion channels of knowing 3D structures; however, the 3D structures of
most ion channels are still unknown. Many predictors based on protein sequence were
developed to address the challenge, while most of their results need to be improved,
or predicting web servers are missing. In this paper, a sequence-based classifier, called
“iCDI-W2vCom,” was developed to identify the interactions between ion channels and
drugs. In the predictor, the drug compound was formulated by SMILES-word2vec,
FP2-word2vec, SMILES-node2vec, and ECFPs via a 1184D vector, ion channel was
represented by the word2vec via a 64D vector, and the prediction engine was operated
by the LightGBM classifier. The accuracy and AUC achieved by iCDI-W2vCom via the
fivefold cross validation were 91.95% and 0.9703, which outperformed other existing
predictors in this area. A user-friendly web server for iCDI-W2vCom was established
at http://www.jci-bioinfo.cn/icdiw2v. The proposed method may also be a potential
method for predicting target–drug interaction.

Keywords: ion channels, word2vec, node2vec, data augmentation, LightGBM

INTRODUCTION

Ion channels are pore-forming membrane proteins that mediate the transport of ions in all living
cells (Green, 1999) by controlling cell signaling during the change of the cellular physiology in
organs (Gabashvili et al., 2007). For example, ion channels regulate the membrane potential by
mediating the permeation of specific ion species through their transmembrane pores (Sumino et al.,
2019). On other hand, dysfunction of ion channels may lead to over 55 different channelopathies
(Qiang et al., 2018), such as epilepsy, arrhythmia, and type II diabetes (Tinaquero et al., 2020). It
is also believed that the majority of patients with thyroid diseases and cardiac arrhythmia are ion
channel blockers (Roepke et al., 2009) such that ion channels become important therapeutic targets.

As an essential step of drug discovery procedure, the identification of ion channel–drug
interaction has lately become a hot topic issue since it involves costly, time-consuming, and
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challenging work during the development of new medicine
(Knowles and Gromo, 2003). It has been reported that
ionotropic glutamate receptor subfamily core is formed by
two transmembrane helices and an intracellular reentrant
pore helix (Amin et al., 2018); voltage-gated ion channels,
including potassium channels and calcium channels, consist of
six transmembrane helices (Kaufmann et al., 2019). Therefore,
ion channels may be analyzed by using conventional methods
of protein, and identification of ion channel–drug interactions
inherently is a protein–drug interaction problem. There are many
unpaired small molecule compounds for finding potentially new
medications; many state-of-the-art computational methods have
been developed to discover new drugs in the past few years (Xiao
et al., 2013; Chen et al., 2018; Wang et al., 2020). Yamanishi
et al. (2008) used statistical approach to predict the interaction
between drugs and four targets on the base of the similarity.
Wang et al. (2020) proposed a sequence-based method for
identifying the protein–drug interaction. Since ion channel–drug
interaction involves two substances, the methods that combine
the biological information of ion channels and the chemical
information of drugs are often used, and proper representation of
proteins and drugs is essential to identify ion channel–drug with
high efficiency.

For the feature extraction from protein, there are many
classic algorithms applied to extract the feature from amino
acid sequence, such as one hot encoding (Wang et al., 2019),
composition of k-spaced amino acid pairs (CKSAAP; Chen et al.,
2006), amino acid composition (AAC; Reczko and Bohr, 1994),
and pseudo amino acid composition (PseAAC; Chou, 2005). The
technology of natural language processing (NLP) was used to deal
with secondary-structure prediction and subcellular localization
(Elnaggar et al., 2020) in proteomics area. Furthermore, the
deep learning techniques have been used to extract sequence
features for protein–drug interaction. In order to get a protein
feature (Wang et al., 2020), protein sequences were encoded using
one hot encoding, and the information is then fed into a deep
learning model, such as recurrent neural network (RNN), long
short-term memory (LSTM), and gated recurrent unit (GRU;
Shen et al., 2020).

For the processing of drug molecules, a variety of descriptors
are used to represent drugs to fill the gap in analyzing the 3D
structure for drugs, such as two-dimensional molecule graph
(Bemis and Kuntz, 1992), MOL file (Qiu et al., 2020), simplified
molecular-input line-entry system (SMILES; Jaeger et al., 2017),
fingerprint and global descriptions of molecular by biophysical
and chemical properties including the molecular weight (MW)
and the partition coefficient for lipophilicity (Clark et al., 2019;
Daina and Zoete, 2019). In these descriptors, drug molecules
are usually represented with SMILES or Morgan fingerprint
(Morgan FPs). The representation of SMILES string involves
four overall steps: graph mol structure normalization, canonical
labeling, tree traversal, and SMILES generation (O’Boyle, 2012),
which is usually the start step for many computational methods
such as recurrent neural networks (RNNs; Karimi et al., 2019),
convolutional neural networks (CNNs; Huang et al., 2020),
and graph neural networks (GNN; Tsubaki et al., 2019). Take
extended connectivity fingerprints (ECFPs) as an example for

Morgan FPs; all substructures around all heavy atoms of a
molecule within a defined radius are generated and assigned
to a unique identifier (called Morgan identifier), which would
be compressed into a shorter fixed-length string (Zhou et al.,
2020). The drug’s MOL file or SMILES can be acquired from http:
//www.kegg.jp/kegg/ or https://www.ebi.ac.uk/chembl/, and the
software called OpenBabel1 could be used to convert the MOL file
or SMILES into molecular fingerprint files in multiple formats:
FP2, FP3, FP4, and MACSS.

Some novel encoding techniques were provided for proteins
and drugs based on word2vec algorithm. As word2vec could map
a class X of objects into a latent vector space where the geometric
relationship is characterized by the semantic relationship between
the objects (Grohe, 2020), it has been adapted to classify the
protein sequences of protein families and predict the localization
of proteins and the compound properties of drugs (Jaeger et al.,
2017; Yang et al., 2018). Jaeger et al. (2018) proposed that the
word2vec may identify the interaction between drugs and target
proteins based on the amino acid sequences of proteins and
the Morgan fingerprints of drugs. Zhang et al. (2019) further
proposed a new predictor by using the amino acid sequences of
proteins and the SMILES strings of drugs.

The study of ion channel–drug interaction networks is an
important topic for drug development, while the computational
prediction accuracies cannot meet the practical needs. Although
deep learning methods are widely used in protein-target
prediction, it is still in the exploratory stage for identifying ion
channel–drug interaction. In addition, many research focused

1http://openbabel.org/

TABLE 1 | Five physicochemical property codes for each of the 20 native
amino acids.

Amino acid Five physicochemical property codes

AAindex1 AAindex2 AAindex3 AAindex4 AAindex5

A 1.8 89.09 6.00 9.69 2.34

C 2.5 121.15 5.05 8.35 1.92

D −3.5 133.10 2.77 9.60 1.88

E −3.5 147.13 3.22 9.67 2.10

F 2.8 165.19 5.48 9.18 2.16

G −0.4 75.07 5.97 9.78 2.35

H −3.2 155.16 7.59 9.17 1.82

I 4.5 131.17 6.02 9.68 2.36

K −3.9 146.19 9.74 9.18 2.16

L 3.8 131.17 5.98 9.60 2.36

M 1.9 149.21 5.74 9.21 2.28

N −3.5 132.12 5.41 8.80 2.02

P −1.6 115.13 6.30 10.64 1.95

Q −3.5 146.15 5.65 9.13 2.17

R −4.5 174.20 10.76 8.99 1.82

S −0.8 105.09 5.68 9.21 2.19

T −0.7 119.12 5.66 9.10 2.09

V 4.2 117.15 5.96 9.62 2.32

W −0.9 204.24 5.89 9.44 2.43

Y −1.3 181.19 5.66 9.11 2.20
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on constructing a complex neural network to extract interaction
information, but for a method to encode a sequence, which
is a crucial point of protein and drug representation, it gets
rare attention. Thus, this paper was initiated in an attempt
to develop a new powerful predictor based on the sequences
of ion channels and the SMILES of drugs. There are four
innovative characteristics of this work: (1) To get a better
representation of protein, amino acid sequences were divided
into words (k-grams) and encoded with the AAindex, which
would be fed into word2vec to get distributed representations
vectors of words. (2) To find the best way for the representation,
two major descriptions, SMILES (SMILES_word2vec), and
FP2 (FP2_word2vec), were separately tested for comparison
on the basis of several combined features. (3) To augment
the training dataset and get more information about the
linking between different functional groups, the RDKit2, an

2http://www.rdkit.org/

open source chemistry informatics and machine learning
toolkit, was used to generate different SMILES strings for the
same molecule, and finally note2vec was applied to generate
drug vectors (SMILES_node2vec). (4) To make full use of
the drug and protein features mentioned above, the feature
combination was performed deeply, and the prediction results
improved significantly.

MATERIALS AND METHODS

Benchmark Dataset
As more and more interactive pieces of information are in the
database, such as DrugBank, KEGG, STITCH, ChEMBL, and
TTD, many deep research studies have been carried out in drug
discovery. In this work, the identification of ion channel–drug
interaction is defined as a supervised prediction task in which a
pair of counterparts interact with each other in the drug–target

FIGURE 1 | The processes of constructed (A) Wordbooks-Orig and (B) Wordbooks-AAindex.

FIGURE 2 | The processes of generating protein representation through (A) Orig_word2vec and (B) AAindex_word2vec.
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networks. The established KEGG database is utilized to define
the pair of counterparts as it has an amount of interaction
information of drugs and drug targets.

In this work, the benchmark dataset S is defined by:

S = S+ ∪ S− (1)

where S+ is the set of interactive ion channel–drug pairs,
and S− is the set of non-interactive ion channel–drug pairs,
and the symbol ∪ represents the union in the set theory.
The positive subset S+ contains 1,476 ion channel–drug pairs
collected by Yamanishi et al. (2008).

To build the negative dataset, the approach was performed
with the following steps: (i) Each pair in subset S+ was separated
(drug ID and ion channel ID) into a single ion channel and drug.
(ii) Each of the single ion channels was re-coupled with each
of the single drug; therefore, the drug and ion channel are put
into synthesized pairs in such a way. Those pairs that were in
S+ were removed, and it was made sure that none of the pairs
that were in S+ appeared in S−. (iii) The synthesized pairs were
randomly picked until the number of selected pairs was the same
as the number of pairs in S+. The dataset S− contains 1,476
non-interactive ion channel–drug pairs.

An independent validation test is applied to evaluate the
developed predictor for avoiding the overfitting of data from

FIGURE 3 | Projected the AAindex2_word2vec from 64-dimensional to 3D space. (A–C) The coordinates of points are the values after dimensionality reduction, and
the color is three coefficients derived from the second order gray model. (D–F) The coordinates of points are the values after dimensionality reduction, and the color
is isoelectric point(PI), molecular weight (MW), extinction coefficient of different segments (ECDF).

FIGURE 4 | The processes of generating (A) SMILES_word2vec and (B) FP2_word2vec.
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FIGURE 5 | Generation of different SMILES strings for the same molecule.

the reference (Yamanishi et al., 2008). The validation dataset,
denoted as Check808, contains 404 interactive pairs and 404
non-interactive pairs. These pairs consist of the ion channels in
S and new drug targets taken from the KEGG database. Any pairs
have to be removed from the validation dataset if they appeared
in the benchmark dataset.

Nuclear receptors (NRs) are another frequent target for
drug development, but drug–NR pairs are more difficult in the
protein–drug predict task. The dataset of NRs is used to verify the
feature extraction method and the robustness of iCDI-W2vCom.
The NR dataset contains a positive subset of 86 interactive drug–
NR pairs, taken from the reference (Yamanishi et al., 2008) and
a negative subset of 86 non-interactive pairs. The non-interactive
pairs are different from the interactive pairs.

Measurement
In the experiment, the performances of the predictor were
evaluated with the following four metrics: accuracy (Acc),
sensitivity (Sn), precision (Prec), and Matthews correlation
coefficient (MCC; Jiao and Du, 2016). They were applied to
evaluate the models and are shown in formula (2).

Acc = TP+TN
TP+TN+FP+FN

Sen =
TP

TP+FN
Prec = TP

TP+FP
MCC = TP×TN−FP×FN

√
(TP+FP)(TP+FN)+(TN+FP)(TN+FN)

(2)

Representation of Ion Channel
The ion channel with the sequence length l is formulated in the
following format:

G = R1R2R3R4R5R6 . . .R3j+1R3j+2R3j+3 . . .Rl (3)

where R1 represents the first residue in ion channel sequence, R2
represents the second, . . ., and Rl represents the l-th one. How
can we extract sequence information to represent an ion channel?
We should translate a protein sequence into a digital vector that
can well represent an ion channel.

In the article, three amino acids are divided into one word to
construct the wordbook. As shown in the following example, a
sequence of nine amino acids can be divided into three sets of
non-overlapping 3-gram. Then G would be grouped as:

G = (R1R2R3)(R4R5R6) . . . (R3j+1R3j+2R3j+3) (4)

where G = G1 G2 . . .Gj. . .GL GL+1, L = [l/3], L is a round down
of l/3, and GL+1 may be Ø or only contains one or two residues,
which are due to the remainder of l/3.

FIGURE 6 | The processes of (A) constructing Wordbooks-Orig and (B) generating SMILES_node2vec.
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TABLE 2 | Profile of the six learners.

AAindex1_word2vec SMILES-word2vec FP2-word2vec SMILES-node2vec ECFP Number of features

Learn-1
√ √

128

Learn-2
√ √

128

Learn-3
√ √ √

160

Learn-4
√ √ √

160

Learn-5
√ √ √ √

224

Learn-6
√ √ √ √ √

1,248

ECFP, extended-connectivity fingerprints.

The AAindex database indexes are the biophysical and
chemical properties of amino acids and pairs of amino acids3

(Zhou et al., 2020). In this paper, five groups of AAindex were
selected for the experiment, which are the same as the reference
(Wang et al., 2020), and the corresponding values of amino acids
are shown in Table 1. The AAindex1 physicochemical property
stands for “hydropathy index,” AAindex2 for “molecular weight,”
AAindex3 for “isoelectric point (PI),” AAindex4 for “pK-N,” and
AAindex5 for “pK-C.”

With the AAindex values, the ion channel sequence G would
be encoded into a vector shown as follows:

G = (g1g2 . . . gj . . . gLgL+1), gj =

∑
R∈Gj

ρ(R)

‖Gj‖
(5)

where ρ(R) is the AAindex value of reside R, and ||Gj|| is
the number of residues in group Gj, j = 1,2,. . .,L(L+1 when the

3http://www.genome.jp/aaindex/

TABLE 3 | Performance of different protein representations on the ion
channel dataset.

Protein feature AUC Acc (%) Prec (%) Sen (%) MCC

Orig_word2vec 0.9720 91.29 90.75 91.91 0.8262

AAindex1_word2vec 0.9703 91.95 91.18 92.95 0.8402

AAindex2_word2vec 0.9717 91.69 90.76 92.72 0.8344

AAindex3_word2vec 0.9700 91.77 91.15 92.41 0.8355

AAindex4_word2vec 0.9676 91.22 90.85 91.65 0.8247

AAindex5_word2vec 0.9682 91.22 90.32 92.20 0.8248

All_word2vec 0.9730 92.13 91.17 93.13 0.8430

ACC, accuracy; Prec, precision; Sen, sensitivity; MCC, Matthews
correlation coefficient. Bold values mean that they are the best scores
compared with other methods.

TABLE 4 | Performances of different drug descriptions on the ion channel dataset.

AUC Acc (%) Prec (%) Sen (%) MCC

Learner-1 0.9598 90.24 88.98 91.61 0.8054

Learner-2 0.9675 91.26 90.26 92.33 0.8256

Learner-3 0.9625 91.33 90.41 92.36 0.8271

Learner-4 0.9703 91.25 90.16 92.46 0.8257

Learner-5 0.9696 91.51 90.16 93.03 0.8310

Learner-6 0.9703 91.95 91.18 92.95 0.8402

Bold values mean that they are the best scores compared with other methods.

remainder of l/3 is not equal to zero). Therefore, a new corpus of
words is constructed through AAindex indices. The corpus may
reduce the number of words made of amino acids string. For
example, a word made of AAindex indices may take the place
of a triplet composed of amino acids D, E, and F with a total
of nine words. Such an expression may also combine triplicates
with similar properties together. In particular, the hydrophilic
coefficient is used to code the triplicates; the words “EFG” and
“DFG” will be combined into the same word.

Although word2vec is an unsupervised method, here, an
auxiliary prediction task was defined to train the word
representation model with one of the following two approaches:
(1) continuous bag-of-words (CBOW), which may predict a word
from the context words, and (2) Skip-gram, which predicted the
context based on a word. In CBOW, the order of words in the
context is not important due to the bag-of-words assumption,
while the adjacent words are assigned with higher weights
in Skip-gram. We mainly used the Skip-gram model to train
the word2vec model.

The classical Skip-gram model consists of an input layer,
projection layer, and output layer. The model learns information
from corpus and stores the derived knowledge in weights
θ. The positive samples of Skip-gram model are words gI
and their contexts C(gI). Contexts of a word gI , which
was derived from a window of size k around the word:
C(g) = gi−k,. . .,gi−1,gi+1,. . .,gi+k, where the window size k is a
parameter for word2vec; the negative samples are generated by
relatively simple method called negative sampling.

The hyperparameters of Skip-gram were set as follows: the
embedding dimension is d = 64, the context window size is
k = 4, and the number of negative examples is k = 8. After
training for 30 epochs, we get a final wordbook. The process
of constructing the original triplicate workbooks (Wordbooks-
Orig) is shown in Figure 1A, as a result, each word would
be represented with a 64-dimensional vector, and each word
and its corresponding vector are storied in “Wordbooks-Orig.”
The process of constructing a Wordbooks-AAindex is shown in
Figure 1B. Finally, each word encoded with AAindex indices is
represented with a 64-dimensional vector; the words and their
vectors are storied in “Wordbooks-AAindex.”

Figure 2 illustrates the process of generating protein
representation through Orig_word2vec and AAindex_word2vec,
respectively. In Figure 2A, amino acid sequences were divided
into 3-gram, and then looked up the “Wordbooks-Orig” to
obtain a vector for every word. The representation for a protein
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FIGURE 7 | ROCs of different models on the channel–drug interaction
dataset.

is finally obtained by averaging every word over the length
dimension of the protein. In Figure 2B, every word was encoded
in AAindex_word2vec with AAindex indices, which may help
generate more efficient vectors of words. For example, when
to handle a ion channel sequence through AAindex_word2vec,
we divide it into 3-gram and encode every word with AAindex
indices, then the “Wordbooks-AAindex” were looked up to
obtain a vector for every word. The representation for a protein
is finally obtained by averaging every word over the length
dimension of the protein.

In the word2vec model, the features learned at each layer
are not visual. To explore what information word vectors
imply, t-distributed stochastic neighbor embedding (t-SNE; van

der Maaten and Hinton, 2008), a non-linear dimensionality
reduction algorithm, was used to projected the vectors of ion
channels from 64-dimensional to 3D space. As shown in Figure 3,
the coordinates of points are the values after dimensionality
reduction, and the color of points are termed G_X, G_Y, and
G_Z, respectively, which are three coefficients derived from the
second-order gray model (Xiao et al., 2008). In Figures 3A–C,
the coordinates of points are the values after dimensionality
reduction, and the color is three coefficients derived from the
second-order gray model. In Figures 3D–F, the coordinates of
points are the values after dimensionality reduction, and the color
is the PI, MW, and extinction coefficient of different segments
(ECDF). We can find that word vectors can learn implicitly
the three coefficients derived from the second-order gray model
(G_X, G_Y, and G_Z), PI, MW, and ECDF.

Representation of Drug
Due to the complex three-dimensional structure and unique
properties of drugs, the characterization of drug performance
stored in the computer often lose a lot of information.
Fortunately, there are many approaches to represent drugs
with different characteristics, which involve molecular diagram,
Morgan FPs, SMILES, and so on.

(1) Representing drug with word2vec
The word2vec has been used to generate vectors via SMILES

or FP2. There is still a need to know which one is the best choice
for this issue. As shown in Figure 4A, the SMILES string can
be divided into n-gram. Here, the sequence of the drug was
divided into non-overlapping 3-gram, and word2vec algorithm
was selected to generate the word vector. In addition, the process
to construct FP2_word2vec is shown in Figure 4B.

FIGURE 8 | Flowchart of the iCDI-W2vCom model.
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TABLE 5 | Results of the proposed model in channel–drug interaction dataset.

Test AUC Acc (%) Prec (%) Sen (%) MCC

1 0.9680 90.89 89.98 91.82 0.8180

2 0.9650 90.53 87.50 94.07 0.8132

3 0.9779 92.70 92.73 93.07 0.8579

4 0.9695 93.08 93.04 93.12 0.8615

5 0.9711 92.53 92.65 92.42 0.8506

Average 0.9703 ± 0.0043 91.95 ± 1.03 91.18 ± 2.15 92.95 ± 0.73 0.8402 ± 0.0205

(2) Representing drug with node2vec
The node2vec (Grover and Leskovec, 2016) may also represent

the drug feature, and it captures the information between
nodes in networks (Grohe, 2020; Shen et al., 2021). Here, the
node2vec is applied to obtain node features for a complementary
characteristic of the drug.

Simplified molecular-input line-entry system strings are
divided into functional groups taken as the nodes of the network.
The functional group comprises multiple atoms or atomic
groups, and its physicochemical properties are fundamental in
the pharmacodynamic phase of the mechanisms of action of

TABLE 6 | Performances of different methods on channel–drug interaction
dataset.

RFDT (Wang
et al., 2018)

Wang (Wang
et al., 2020)

The proposed method

AUC 0.8900 ± 0.0200 0.8895 ± 0.0146 0.9703 ± 0.0043

Acc (%) 89.10 ± 1.50 88.82 ± 0.65 91.95 ± 1.03

Prec (%) 87.60 ± 1.60 88.30 ± 0.16 91.18 ± 2.15

Sen (%) 91.20 ± 1.90 89.50 ± 0.73 92.95 ± 0.73

MCC 0.8060 ± 0.024 0.7763 ± 0.0134 0.8402 ± 0.0205

Bold values mean that they are the best scores compared with other methods.

TABLE 7 | Performance comparisons on Check808.

RF DNN GBDT LGB

AUC 0.8916 0.9058 0.9370 0.9630

Acc (%) 81.68 85.64 87.25 90.47

Prec (%) 86.23 82.22 86.16 89.64

Sen (%) 78.10 89.44 88.43 91.35

MCC 0.6388 0.7170 0.7454 0.8096

RF, random forest; DNN, deep neural network; GBDT, gradient boosting decision
tree; LGB, LightGBM. Bold values mean that they are the best scores compared
with other methods.

TABLE 8 | Performances of different methods on NR–drug interaction datasets.

RFDT (Wang
et al., 2018)

Lei (Wang
et al., 2020)

The proposed method

AUC 0.7230 ± 0.0380 0.8074 ± 0.0933 0.9014 ± 0.0325

Acc (%) 71.10 ± 4.60 82.22 ± 3.17 87.14 ± 3.23

Prec (%) 68.00 ± 12.10 84.74 ± 12.53 84.73 ± 4.42

Sen (%) 75.90 ± 10.00 79.98 ± 12.70 83.66 ± 4.55

MCC 0.5790 ± 0.0400 0.6573 ± 0.0699 0.7338 ± 0.0673

Bold values mean that they are the best scores compared with other methods.

many drugs (Silva et al., 2019). In the SMILES, the SMILES strings
are marked: no mark for single key, “ = ” for double key, “#” for
triple key, and “(“ or ”)” for branch chain4. The SMILES of the
drug molecules is separated by the special marks, and every part
is taken as a node.

The node2vec regards a random path generated by a random
walk as a set of words. A data augmentation approach is chosen to
generate more paths and get more information between nodes in
the networks. As shown in Figure 5, RDKit was used to generate
different SMILES strings for the same molecule. These SMILES
strings are all valid structures. RDKit generates different SMILES
strings by rotating the molecular graph to generate different
SMILES strings whose starting atom and the direction of graph
enumeration are randomly selected. In the procedure of training
node2vec, data augmentation approach can better obtain the
connection relation between functional groups and get a better
node vector (Tetko et al., 2020).

The process of generating SMILES_node2vec is shown in
Figure 6. In Figure 6A, the SMILES strings are divided
into function groups, and the Nodebooks-Function Group is
generated by the node2vec model. In Figure 6B, SMILES
strings were first divided into function groups, and then the
“Nodebooks-Function Group” was looked up to obtain a vector
for every word. The representation for a drug is finally obtained
by averaging every word over the length dimension of the drug.

(3) Representing drug with ECFPs
In the drug database, the drugs in SMILES format (Weininger,

1988) may be further fed into RDKit, to extract their ECFPs
(Zhou et al., 2020), such that a drug can be represented by a
1,024-D binary vector.

The multiple ways of representing a molecule and the
different levels of uncertainty regarding those representations
have been a central part of this expertise. In this paper, we
try to improve the accuracy of ion channel–drug interaction
by feature combination. In Rayhan et al. (2019), it is shown
that an ensemble boosting method performs much better
than other methods in DTI prediction. The feature subset
of drugs includes SMILES-word2vec (Feature SMILES), FP2-
word2vec (Feature FP2), SMILES-node2vec (Feature Node),
and ECFP (Feature ECFP). As shown in Table 2, the
subsets of the feature mentioned above are tested with the
LightGBM classifier via fivefold cross-validation, and the
feature dimension of the six learners are shown in the last
column of the table.

4https://www.daylight.com/meetings/summerschool98/course/dave/smiles-
bonds.html
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Prediction Engine
Once the protein and drug were represented by vectors, some
machine learning models would be utilized for the prediction
process. We compared the performance of different algorithms
involved in LightGBM (LGB; Ke et al., 2017), gradient boosting
decision tree (GBDT; Friedman, 2000), random forest (RF; Liaw
and Wiener, 2002), and deep neural networks (DNNs) on the
ion channel dataset (Pedregosa et al., 2011). All these models
were implemented in Python 3 (Python ≥3.6) environment with
LightGBM package (Zhang et al., 2017) and Scikit-learn library
(Pedregosa et al., 2011).

RESULTS AND DISCUSSION

The original triplicates workbooks (Orig_word2vec) were used
for the first experiment, and five AAindex_word2vec were used
for comparison. Results are listed in Table 3. It was found that the
AAindex_word2vec for the proteins improved the performance
of the classifier greatly. As listed in the tables, bold values mean
that they are the best scores compared with other methods.

Comparing the experimental results of original drug
expression PF2, the SMILES string as input, and using word2vec
to extract features in other articles, this work combined the
features of drugs in different descriptions. We can find that
the combination of SMILES_word2vec (Feature SMILES),
SMILES_node2vec (Feature node), FP2_word2vec (Feature
FP2), and ECFP (Feature ECFP) has achieved the optimal effect.
Table 4 shows the result comparison of fivefold cross-validation.
The descriptors of molecules mentioned above are ambiguous
or missing some information, but those descriptors are highly
complementary, and experimental findings show that drug
feature combination is useful.

The AUC curves of LGB, GBDT, RF, and DNN on the
ion channel dataset are shown in Figure 7. The LightGBM
approach performs quite high AUCs in the test such that it is
selected as the predictor. The parameter values of LightGBM
model are num_leaves of 48, max_depth of 9, learning_rate of
0.03, n_estimators of 600, min_child_samples of 3, and other
parameters are set with their default values. The flowchart of
the proposed iCDI-W2vCom model is shown in Figure 8. The
model inputs the SMILES strings of accessible drugs and the
amino acid sequences of ion channels. The feature subsets are fed
into the LightGBM predictor for a final prediction with a fivefold
cross-validation method.

Predictor was optimized by using AAindex1_word2vec for
ion channel and feature combination for drug. Table 5 shows
the results of the proposed model on the ion channel–drug
interaction dataset via fivefold cross-validation. The ICDI-
W2vCom based on both the word2vec model and node2vec
model has an average AUC of 0.9703, Acc of 91.95%, precision
of 91.18%, sensitivity of 92.95%, MCC of 0.8402 vs. other
newly publish methods of 0.8900, 89.10%, 88.30%, 91.20%,
0.8060, respectively. Thus, our performance has been improved,
surpassing other existing classifiers as shown in Table 6.

Using the ion channel–drug interaction benchmark datasets
as training dataset and Check808 as an independent test set,

different algorithms were tested, and the results are listed in
Table 7.

According to the results, the features we generate can very
well characterize the channel–drug interactions, and the default
classifier LGB has a better generation ability by comparison with
RF, DNN, and GBDT.

The proposed method achieved good performance in the NR
dataset. The results are listed in Table 8. Compared with the
previously published articles (Wang et al., 2018; Wang et al.,
2020), the ICDI-W2vCom has great AUC, Acc, Sen, and MCC
values such that it gets good robustness.

CONCLUSION

In the research, the proposed model based on AAindex encoding
sequences and word2vec algorithm significantly improved the
learning ability of predictors. This inspires us that, in small
datasets, coding protein words according to their physical
and chemical properties may reduce the number of words
in the lexicon, which trained the word2vec model faster and
generate a high quality of word. By using conventional protein
processing methods and knowledge, the parameters of deep
learning could be reduced, and the computation would be
simplified. Furthermore, by using the t-SNE algorithm to project
the vectors of ion channels from 64-dimensional to 3D space
vectors, vectors can learn implicitly features represented by other
protein-encoding methods (for example, the gray model) and
physicochemical properties. This work suggests that word2vec
can also be accepted in ML as many previous works do.

The multiple ways of representing a molecule and the different
levels of uncertainty regarding those representations have been
a central part of this expertise. Therefore, we try to fuse
drug information of different descriptions to represent drugs
comprehensively. In this paper, the expression of drugs was
enhanced through the combination of different features, and the
performance of the classifier was improved greatly.
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