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Pharmacogenetics seeks to explain interpatient variability in response to medications by investigating genotype-phenotype
correlations. There is a small but growing body of data regarding the pharmacogenetics of both nonexudative and exudative age-
related macular degeneration. Most reported data concern polymorphisms in the complement factor H and age-related maculopathy
susceptibility 2 genes. At this time, the data are not consistent and no definite conclusions may be drawn. As clinical trials data
continue to accumulate, these relationships may become more apparent.

1. Introduction

Pharmacogenetics, an evolving research discipline within
ophthalmology, investigates genotype-phenotype correla-
tions in an attempt to explain interpatient variability in
response to medications. While the earliest ophthalmic phar-
macogenetic reports involved the treatment of open-angle
glaucoma [1, 2], there is now a growing body of data con-
cerning various treatments for age-related macular degener-
ation (AMD).

The combination of antioxidants and zinc studied by
the Age-Related Eye Disease Study (AREDS) was reported to
reduce disease progression and visual loss in certain patients
with nonexudative AMD [3]. These supplements remain
the only clinically proven treatment for nonexudative AMD.
A variety of treatments have demonstrated efficacy in the
treatment of choroidal neovascularization (CNV) secondary
to exudative AMD, including photodynamic therapy (PDT)
with verteporfin (Visudyne, Novartis, Basel, Switzerland)
and the antivascular endothelial growth factor (VEGF)
agents. Currently, there are three anti-VEGF agents in clinical
use in the US: pegaptanib (Macugen, Eyetech, Palm Beach
Gardens, Fla) [4], ranibizumab (Lucentis, Genentech, South
San Francisco, Calif) [5, 6], and bevacizumab (Avastin,
Genentech, South San Francisco, Calif) [7]. Despite the

overall efficacy of these treatments, there remains a persistent
and unexplained variability in treatment response with cer-
tain patients, especially those treated with anti-VEGF agents
[8]. Intravitreal triamcinolone acetonide has been reported
to show some efficacy as an adjunctive therapy in some
patients with CNV, especially when combined with PDT [9]
or bevacizumab [10]. Unfortunately, elevation of intraocular
pressure is an important adverse event associated with this
treatment [11].

Pharmacogenetics may help to explain some of this vari-
ability in treatment efficacy and toxicity.

2. Studied Genotypes

The complement system appears to play an important role
in the pathogenesis of AMD [12]. Recent studies demon-
strated that a single nucleotide polymorphism (SNP) in the
complement factor H (CFH) gene is strongly linked with
AMD [13–16]. As a primary regulator of the complement
cascade, CFH plays an important role in innate immunity
and inflammatory response. In these studies, individuals
with one risk allele for this SNP (genotype TC) had a
significantly increased risk of AMD (odds ratios (ORs)
ranging from 2.5 to 4.6), and two risk alleles (genotype
CC) conferred a correspondingly higher risk (ORs ranging
from 3.3 to 7.4). Multiple reports have confirmed this
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association in different populations [17–21]. The influence
of the complement pathway on AMD was further validated
when polymorphisms in the complement factor B/C2 (CFB),
C3, factor I (FI), and CFH-related proteins 1 and 3 were also
shown to influence AMD susceptibility [22–27].

A second locus, encompassing the ARMS2 (age-related
maculopathy susceptibility 2, also called LOC387715) and
HTRA1 (HtrA serine peptidase 1) genes on chromosome
10q26, has also been consistently associated with AMD [28–
31]. It has proven difficult to determine whether variants in
ARMS2 or HTRA1 are responsible for the association with
AMD because they are in strong linkage disequilibrium and
their effects are statistically indistinguishable. The function
of the ARMS2 protein is unknown. There is some evidence
that the HTRA1 polymorphism is functional and influences
gene expression, but these data have been inconsistent, and
this continues to be debated [32–38].

Polymorphisms in numerous other genes may exert
smaller effects on AMD susceptibility. Two recent genome-
wide association studies (GWAS) showed that the hepatic
lipase (LIPC) and tissue inhibitor of metalloprotease 3
(TIMP3) genes may influence AMD risk [39, 40].

Apolipoprotein E levels, encoded by APOE, also have
been associated with AMD [41]. Although VEGF (also
known as VEGFA) has not been reported to be a major
AMD susceptibility locus, polymorphisms within this gene
have been associated with exudative AMD in some studies
[42, 43]. Similarly, VEGF receptor 2, encoded by kinase insert
domain receptor (KDR), may play a role in the development
of CNV [44]. Plasma levels of C-reactive protein, encoded
by C-reactive protein (CRP), have been associated with AMD
[45, 46]. Low-density lipoprotein receptor-related protein 5
(LRP5) and frizzled homolog 4 (FZD4) have been associated
with retinal vascularization but not specifically with AMD
[47]. Pigment epithelium-derived factor (PEDF) polymor-
phisms have also been studied in AMD patients [48].

The glucocorticoid receptor gene (GR) has six well-
studied polymorphisms: ER22/23EK [49], N363S [50], BclI
[51], N766N, a substitution within intron 3, and a substi-
tution within intron 4 [52]. None of these SNPs is reported
to represent an AMD susceptibility locus, but several have
been associated with altered sensitivity to glucocorticoids in
nonophthalmic studies.

3. Pharmacogenomics of AREDS Vitamins

A subset of patients studied in the AREDS trials was
evaluated for a pharmacogenetic response with respect to
polymorphisms in CFH Y402H and ARMS2/LOC387715
A69S (Table 1). A total of 264 of 876 AREDS category 3 and
4 patients (30.1%) progressed to advanced AMD over five
years. In these patients, the CFH TT genotype was associated
with a significantly more favorable treatment response than
was the CFH CC genotype. Specifically, AREDS supple-
mentation was associated with a greater reduction in AMD
progression (68%) in those with the low-risk TT genotype
compared with those with the high-risk CC genotype (11%)
[53]. No significant associations with AMD progression were
seen for the ARMS2 A69S variant.

Table 1: Pharmacogenetics of AREDS vitamins and intravitreal
triamcinolone acetonide.

Treatment Genes Result

AREDS vitamins
CFH and
ARMS2

CFH TT associated with greater
reduction in disease progression;
no effect with ARMS2 [53]

IVTA Multiple
No association between IOP
elevation and any gene [54]

AREDS: Age-Related Eye Disease Study; IOP: intraocular pressure; IVTA:
intravitreal triamcinolone acetonide.

4. Pharmacogenetics of PDT

Several studies have investigated the relationship between
genetic variants and response to PDT (Table 2). The majority
of these have focused on the AMD-associated variants CFH
Y402H and ARMS2 A69S. Other genes, such as those related
to the angiogenesis and coagulation pathways, have also been
examined.

The first AMD pharmacogenetic study involved a small
series of 27 English patients treated with PDT and genotyped
for CFH Y402H. Following treatment, patients with CFH CC
lost a median of 12 letters of visual acuity (VA) (P = 0.038
compared to CFH TT), while patients with CFH CT lost a
median of 3.5 letters (P = 0.087). This study suggested that
patients with two CFH Y402H risk alleles fared worse with
PDT than those with one risk allele. However, the analysis
was limited by having only two treated patients with the CFH
Y402H TT genotype, making it difficult to draw conclusions
[55].

A subsequent study examined a series of 69 US patients
treated with PDT and genotyped for CFH Y402H [56].
Adjusting for lesion type, lesion size, and pretreatment VA,
the mean VA after PDT in this study was significantly worse
for patients with the CFH TT genotype than for the CFH TC
or CFH CC genotypes. This difference was significant for all
patients (P = 0.05), as well as for the subgroup of patients
with predominantly classic CNV (P = 0.04), but not for
patients with occult CNV (P = 0.22). This suggests that the
association between PDT outcome and CFH genotype in this
study was driven by those patients with predominantly clas-
sic lesions. The authors examined ARMS2 A69S genotypes as
well and found no statistically significant differences among
treatment outcomes with respect to genotype.

Other studies investigating PDT and CFH Y402H have
shown no associations between this polymorphism and
treatment outcome. A series of 88 Finnish patients treated
with PDT was evaluated for an association with the
CFH Y402H SNP [57]. This study used a binary respon-
der/nonresponder outcome classification. Patients were con-
sidered to be PDT responders if the treating physician
deemed the neovascular lesion to be dry without leakage
on fluorescein angiography at least 12 weeks after the
last treatment. PDT nonresponders were patients whose
lesions did not meet this criterion. The investigators found
no statistically significant differences among CFH Y402H
genotypes with respect to PDT response or the median
number of treatments required.
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Table 2: Pharmacogenetics of photodynamic therapy.

Treatment Genes Result

PDT CFH CFH CC associated with worse visual outcomes [55]

PDT CFH and ARMS2
CFH TT associated with worse visual outcomes, especially in predominantly
classic CNV; no association with ARMS2 [56]

PDT CFH No association with PDT responders versus nonresponders [57]

PDT CFH No association with visual acuity outcomes [58]

PDT ARMS2 and HTRA1
No association with visual acuity outcomes or number of PDT sessions with
either gene [59]

PDT CFH and CRP
No effect with CFH; 2 of 9 CRP polymorphisms associated with more
favorable response to treatment [60]

PDT
CFH, HTRA1, VEGF,

and PEDF

HTRA1 GG associated with more favorable treatment outcomes; combination
of 2 CFH genotypes associated with reduced time interval until disease
recurrence; no association with other genes [61]

PDT VEGF 2 polymorphisms associated with response to treatment [62]

PDT Multiple

In classic CNV, prothrombin and MTFHR associated with PDT responders;
factor XIII-A associated with PDT nonresponders; factor V, methionine
synthase; methionine synthase reductase not associated with PDT response
[63]

In occult CNV, combination of factor V and prothrombin associated with
PDT responders; factor XIII-A associated with PDT nonresponders; MTFHR,
methionine synthase; methionine synthase reductase not associated with PDT
response [64]

CNV: choroidal neovascularization, PDT: photodynamic therapy.

A study including 131 Israeli patients who were treated
with PDT and genotyped for the CFH Y402H polymorphism
used posttreatment VA as the outcome measure. In this
series, there were no statistically significant differences in
treatment outcomes by CFH Y402H genotype, with respect
to initial VA, post-PDT VA, or number of PDT sessions
required [58]. The same group subsequently published a
series of 143 patients treated with PDT and reported that
genotypes at both ARMS2 A69S and HTRA1 (rs11200638)
were not associated with treatment outcomes, in terms of
final VA or number of PDT sessions [59].

In a series of 273 Australian patients treated with PDT
and genotyped for CFH Y402H, participants were divided
into responders and nonresponders based on posttreatment
VA. Positive responders were those patients who at the
final visit had either an improved or unchanged VA or
those who lost fewer than 3 lines of vision (provided their
final VA was better than or equal to 20/200). Negative
responders were those with a final VA of worse than 20/200
or those who lost 3 or more lines of VA. In this study,
there were no statistically significant differences in treatment
outcomes with respect to the CFH Y402H genotype. Nine
polymorphisms in CRP were also investigated in this study,
and two of the nine (rs2808635 GG and rs876538 AA) were
significantly correlated with more favorable response to PDT
(P = 0.048 and P = 0.048, resp.) [60].

A series of 110 Japanese patients treated with PDT
was screened for multiple polymorphisms in CFH, HTRA1,
VEGF, and PEDF. The HTRA1 rs11200638 GG genotype
was associated with significantly improved visual acuity
outcomes and significantly less risk of recurrent disease
following treatment (P = 0.029). The combination of two

CFH genotypes (rs1410996 and rs2274700) was associated
with a statistically significant reduction in the time interval
until disease recurrence following PDT (P = 0.0085). In this
study, there was no association between PDT response and
CFH SNPs rs1061170 (Y402H) and rs800292, 3 VEGF SNPs
(rs699947, rs1570360, and rs2010963), or four PEDF SNPs
(rs12150053, rs12948385, rs9913583, and rs1136287) [61].

A series of 86 Finnish patients treated with PDT was
examined in the context of three VEGF polymorphisms
using a binary responder/nonresponder classification. As in
this group’s earlier study, patients were considered PDT
responders if the lesion was deemed to be dry at least
12 weeks after the last treatment and PDT nonresponders
failed to meet this criterion. Two VEGF polymorphisms
(rs699947 and rs2146323) showed a statistically significant
relationship to treatment, while one (rs3025033) did not.
Regarding the rs699947 genotype, the C allele was associated
with a significantly higher percentage of nonresponders (P =
0.0003). For the rs2146323 genotype, the C allele was again
linked to a higher percentage of PDT nonresponders (P =
0.0036) [62].

Ninety patients treated with PDT for classic CNV were
screened for polymorphisms in various genes affecting coag-
ulation, including factor V G1691A, prothrombin G20210A,
factor XIII-A G185T, MTHFR C677T, methionine synthase
A2756G, and methionine synthase reductase A66G. Patients
were classified using a binary responders/nonresponders
classification. Responders were significantly associated with
the prothrombin G20210A and MTHFR 677T polymor-
phisms. Nonresponders were significantly associated with
the factor XIII-A 185T polymorphism [63]. The same group
subsequently reported 84 patients treated with PDT for
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Table 3: Pharmacogenetics of antivascular endothelial growth factor therapy.

Treatment Genes Result

Bevacizumab CFH and ARMS2
CFH CC associated with worse visual outcomes; no association with ARMS2
[65]

Bevacizumab CFH CFH CC associated with worse visual outcomes [66]

Ranibizumab CFH CFH CC associated with more injections performed [67]

Ranibizumab CFH and ARMS2
ARMS2 TT associated with worse visual outcomes; CFH CC associated with
relatively worse visual outcomes [68]

Ranibizumab Multiple
CFH CC associated with poor treatment response; combination heterozygotes
at CFH and FZD4 associated with more favorable outcomes; no association
with CFB, HTRA1, ARMS2, VEGFA, KDR, and LRP5 [69]

Ranibizumab
CFH, HTRA1,

and VEGF
CFH TC associated with better visual outcomes; no association with number
of injections with any gene [70]

Bevacizumab and/or
ranibizumab

APOE APOE ε4 associated with better treatment outcomes [71]

occult CNV that were screened for the same six coagula-
tion factor polymorphisms. In this study, nonresponders
were significantly associated with the factor XIII-A G185T
mutation, and responders were significantly associated with
the combination of factor V 1691A and prothrombin
20210A [64]. Of note, the MTHFR 677T polymorphism that
correlated with improved outcomes in patients with classic
CNV did not correlate with improved outcomes in patients
with occult CNV [72].

5. Pharmacogenetics of Anti-VEGF Agents

A recent group of studies has reported relationships between
genetic variation and response to treatment for exudative
AMD with anti-VEGF agents (Table 3). At this time, all of
these reports involve bevacizumab, ranibizumab, or both.

The first study to investigate the association between
genetic variants and anti-VEGF treatment for AMD was
a retrospective series of 86 US patients treated with beva-
cizumab monotherapy. Patients were treated every six weeks
until the CNV was no longer active and genotyped for the
CFH Y402H and ARMS2 A69S polymorphisms. The authors
reported the CFH Y402H genotype to be significantly
correlated with treatment response. Patients with the CFH
TT genotype experienced an average VA improvement from
20/248 to 20/166; patients with the CFH TC genotype
experienced an average VA improvement from 20/206 to
20/170; patients with the CFH CC genotype experienced an
average VA decline from 20/206 to 20/341 (P = 0.016). A
total of 53.7% of patients with CFH TT and TC genotypes
gained VA with treatment, while only 10.5% of patients
with the CFH CC genotype gained VA with treatment
(P = 0.004). In this study, there were no statistically
significant differences in treatment outcomes associated with
the ARMS2/LOC387715 genotype [65].

More recently, similar outcomes were reported by an
Austrian group, which presented a prospective series of 197
patients treated with bevacizumab monotherapy. In this
study, patients were also treated at six week intervals until
inactivity of the lesion. Among patients studied, 41% of
patients with the CFH CC genotype lost 3 or more lines of

distance VA, as compared to 28% of patients with the CFH
TT genotype and 26% of patients with the CFH TC genotype
(P = 0.04) [66].

Four studies have investigated the pharmacogenetics of
ranibizumab monotherapy for AMD. In a retrospective study
of 156 US patients treated pro re nata with ranibizumab, the
CFH Y402H polymorphism correlated with the number of
ranibizumab injections performed. Over a 9-month period,
patients with the CFH TT genotype required a mean of 3.3
injections; patients with the CFH TC genotype required a
mean of 3.8 injections; patients with the CFH CC genotype
required a mean of 3.9 injections. A recurrent event analysis
demonstrated that patients with the CFH CC genotype were
significantly more likely to require reinjections at a follow-up
visit than patients with the CFH TT genotype (OR 1.37, 95%
CI 1.01 to 1.87) [67].

A prospective series of 90 Polish patients treated with
ranibizumab monotherapy was studied with respect to CFH
Y402H and ARMS2 A69S. All patients experienced statisti-
cally significant improvements in VA except patients with the
ARMS2 TT genotype (two risk alleles). In addition, the CFH
CC genotype was associated with a less significant visual
acuity improvement than were the other CFH genotypes
[68].

In an analysis of 243 eyes treated with ranibizumab mon-
otherapy and screened for genotypes at CFH, CFB, HTRA1,
ARMS2, VEGFA, KDR, LRP5, and FZD4, there was a
statistically significant difference in treatment response with
respect to CFH Y402H. In this study, two responder groups
were evaluated: poor responders (≤25th percentile) and
good responders (≥75th percentile). The authors reported
that 38% of poor responders were associated with CFH
CC, while only 15% of good responders were associated
with CFH CC. Individual polymorphisms in the other genes
were not significantly associated with treatment outcomes,
but patients who were heterozygous at both CFH and
FZD4 had significantly more favorable results; this genotype
combination was identified in 36% of good responders
versus 13% of poor responders [69].

A more recent series of 104 patients treated with rani-
bizumab monotherapy was screened for genotypes at CFH,
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HTRA1, and VEGF. There were no significant relationships
between any genotype and the number of reinjections within
the first 6 months. There were nonsignificant trends towards
better visual acuity outcomes with certain genotypes in all 3
loci studied. The percentage of patients with a posttreatment
increase in VA greater 5 letters was significantly greater
among patients with the CFH TC genotype than those with
the CFH TT genotype (P = 0.04), but there was no difference
between the CFH CC and CFH TT genotypes [70].

Finally, a series of 172 patients treated with ranibizumab,
bevacizumab, or a combination of the two agents was
studied for polymorphisms in APOE. The primary endpoint
was two-line improvement in visual acuity. The APOE ε4
allele was associated with significantly improved treatment
outcomes, as compared with the APOE ε2 allele at 3-month
followup (P = 0.02), but not at 12 months (P = 0.06) [71].

6. Pharmacogenetics of Corticosteroids

A series of 52 patients treated with IVTA for a variety of
indications, including AMD, was evaluated for a relation-
ship between IOP elevation and 6 polymorphisms in GR
(ER22/23EK, N363S, BclI, N766N, and polymorphisms with
introns 3 and 4) (Table 1). There were no statistically sig-
nificant associations between any individual polymorphism,
or by haplotype analysis, with IOP elevation following
treatment with IVTA [54].

7. Summary

Several pilot pharmacogenetic studies have reported some
evidence of genotype-phenotype interactions with respect
to treatment outcomes using AREDS vitamins, PDT,
ranibizumab, and bevacizumab. At this point, the data are
conflicting and no definite conclusions may be drawn. The
results may be inconsistent because of underlying differences
in baseline genetic characteristics, differences in underlying
CNV lesion characteristics (classic versus occult, chronicity,
etc.), differences in study endpoints (visual acuity, anatomic
response, number of retreatments required, etc.) statistical
analysis (use of continuous outcome versus dichotomizing
these variables), or other factors.

At this time, pharmacogenetics remains a research tool
rather than an option for daily clinical use. Nevertheless,
there appears to be a relationship between CFH, ARMS2,
and perhaps other genes with respect to treatment outcomes.
As we continue to collect data from clinical trials, these
relationships may become more apparent.
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