
����������
�������
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Simple Summary: Orchids are commonly used in folk medicine for the treatment of infections and
tumors but little is known about the actual chemical composition of these plants and their anticancer
properties. In this paper, the most recent literature on orchid-derived bioactive substances with
anticancer properties is reviewed. According to the published data, numerous species of orchids
contain potential antitumor chemicals. Still, a relatively insignificant number of species of orchids
have been tested for their bioactive properties and most of those studies were on Asian taxa. Broader
research, ’including American and African species, as well as the correct identification of samples, is
essential for evaluating the usefulness of orchids as a plant family with huge anticancer potential.

Abstract: Species of orchids, which belong to the largest family of flowering plants, are commonly
used in folk medicine for the treatment of infections and tumors. However, little is known about the
actual chemical composition of these plants and their anticancer properties. In this paper, the most
recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. For
the assessment, previous papers on the anticancer activity of Orchidaceae published since 2015 were
considered. The papers were found by exploring electronic databases. According to the available
data, many species of orchids contain potential antitumor chemicals. The bioactive substances in a
relatively insignificant number of orchids are identified, and most studies are on Asian taxa. Broader
research on American and African species and the correct identification of samples included in
the experiments are essential for evaluating the usefulness of orchids as a plant family with vast
anticancer potential.

Keywords: orchids; secondary metabolites; anticancer

1. Introduction

According to the World Health Organization (WHO) “Guidelines on Safety Monitoring
of Herbal Medicines in Pharmacovigilance Systems”, up to 80% of the world’s population
rely on herbal medicines as a primary source of healthcare. As summarized by Ekor [1], the
use of herbal medicines is increasing also in developed countries [2,3]. It is not surprising
that the utilization of plants in medicine is as old as mankind itself and even modern
pharmacotherapy includes numerous herb-derived drugs [4,5]. Noteworthy, about 10%
of known vascular plants are currently used as therapeutics [6]. In 2019 alone, almost
2000 new species of plants were discovered according to the “State of the World’s Plants
and Fungi 2020” report, published by the Royal Botanic Gardens Kew. These plants could
be potential sources of new phytochemicals that can be used in medicine [7].
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Cancer ranks as a leading cause of premature death around the globe. In 2020,
19.3 million new cases of cancer cases and almost 10 million cancer deaths were reported
worldwide [8]. The most common were female breast tumor (11.7%), lung cancer (11.4%),
and colorectal cancer (10.0%) [8]. Moreover, about a 47% increase in the yearly diagnosed
cancer cases is expected to occur in 2040 [8]. Cancer treatments include various medical
procedures, e.g., surgical treatment, radiotherapy, and chemotherapy. However, conven-
tional chemotherapeutic agents can fail as a result of chemoresistance development [9,10]
and about 80–90% of the deaths from cancer are assigned to this resistance [11,12]. Natural
products have the potential for overcoming drug resistance [13–16]. Obviously, plants serve
as an important source of useful anticancer bioactive compounds and previous records
indicated that about 60% of the currently used antitumor drugs are derived from natural
products [17–20].

The aim of the present study is to summarize recent advances in research on orchid
metabolites with anticancer properties.

2. Criteria for Selection of Experimental Papers

This review includes papers regarding the anticancer activity of orchid compounds
published since 2015. The papers were found using electronic databases PubMed/MEDLINE,
Scopus, Web of Science, and Google Scholar. The quest terms included Orchidaceae alone
and as well as with the following: plant extract, derived compounds, tumor, cancer, lung
cancer cells, colon cancer cells, breast cancer cells, prostate cancer cells. Experiments on
extracts and secondary metabolites of orchids with in vitro activity against various cancer
cell lines were also included in the review. Research published in languages other than
English and Spanish or without abstracts in these languages, without full access to the
complete text, lacking the identification of the taxon at the species level or without a
clear objective and methodology were not analyzed. The removal of duplicates of articles
obtained from the electronic databases was followed by the verification of other criteria
listed above.

3. Orchidaceae

Orchidaceae is one of the largest families of flowering plants with more than 27,000 ac-
cepted species [21] and more than 31,000–35,000 species are estimated to exist in total [22,23].
This is a cosmopolitan group growing in almost every habitat except deserts and glaciers.
The plants are found above the Arctic Circle, in Patagonia, and even on Macquarie Is-
land [24,25]. However, the greatest diversity of orchids is recorded in tropical regions,
especially in mountainous areas [26].

Orchids can grow as epiphytes, lithophytes, or terrestrial perennial herbaceous plants
that lack any permanent woody structures. Adult plants are mostly able to acquire carbon
through photosynthesis, but some taxa are mycoheterotrophic [27]. Orchids are extremely
diverse and their growth can be sympodial or monopodial. Many species produce storage
organs like bulbs or pseudobulbs. Their flat or pleated leaves may be variously arranged on
the stem (alternate, opposite, arranged spirally), or may grow only at the base of the plant.
Orchid flowers are extremely diverse, usually zygomorphic, and most often containing
both male and female reproductive organs. The outer whorl has three sepals and the
inner whorl has three petals; however, one petal (lip) is usually modified and differs in
appearance from the other two. A central flower structure called the column comprises
both the male (anther) and female (stigma) parts of the flower. The ovary is composed of
three carpels.

Orchids are often called “masters of deception” due to the diversity of deceptive
mechanisms for attracting pollinators, e.g., generalized food deception, food-deceptive
floral mimicry, brood-site imitation, shelter imitation, pseudo antagonism, rendezvous
attraction, and sexual deception [28,29]. Many nectar-less orchids mimic other pollinator-
rewarding plants [30] or produce various pseudo pollen or pollen-like papillae to lure
insects [31]. A large group of species is able even to produce chemicals similar to insect sex
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pheromones [32–35] and this means of pollination, called pseudo copulation, is found only
in orchids.

Noteworthy, throughout their life orchids, are associated with mycorrhizal and non-
mycorrhizal fungi [36–40]. These endophytes most probably increase or modify the pro-
duction of plant secondary metabolites [40–44].

Orchids became one of the most popular ornamental plants in the Victorian era and
currently, the official global orchid trade is estimated to ca. 72 million specimens per
year [45]. These plants are widely used as medicines, food, and as herbs with other
cultural values [46,47]. Currently vanilla together with salep and chikanda are globally
and regionally important food products [45]. Orchids were first used in Chinese traditional
medicine [48,49], but they are also popular in Ayurvedic therapies [50] and are commonly
used by native tribes in tropical America as well as in Africa [51,52].

Noteworthy, despite a long history of orchid research, scientists are still finding many
new species in the tropical areas e.g., [53–55]—only in 2020 more than 100 orchids were de-
scribed, most of them from South America [56–63] and tropical Asia [64–69]. Unfortunately,
the taxonomists did not analyze the chemical properties of their secondary metabolites and
their potential medicinal usefulness remains unrecognized.

3.1. Importance of Symbiosis

As mentioned before, all orchids are associated with specific mycobiota and dif-
ferent fungi species are found in various plant parts [40,70–73]. Preliminary studies al-
ready proved that some of these microorganisms are characterized by antimicrobial activ-
ities [74,75] and that interactions of symbiotic fungi with plants contribute to secondary
metabolites production .

Unfortunately, the comparative studies on compounds extracted from fungi-infected
and in vitro cultivated, fungi-free orchids were not conducted so far. Considering the
enormous number of orchid species, their symbionts remain poorly recognized. Note-
worthy, most of the experiments on orchid endophytic fungi included only root tis-
sue, [76,77] while in traditional medicine, stems, and leaves are organs usually used for
therapies [43,48,49,78–81]. The importance of recognition of orchid endophytic fungi for sec-
ondary metabolites synthesis and their potential application in medicine were summarized
by Sarsaiya et al. [39] and Pant et al. [82].

Interestingly, some of the bioactive compounds were found in an invasive orchid
species, Arundina graminifolia, which is an Asian native herb. It would be important to
study also the populations of this species which are currently invading Central and South
America [83] in the context of the differences in symbiotic mycobiota of non-native plants as
well as the similarity of secondary metabolites produced by native and invasive populations.
Similarly, the compounds produced by Liparis nervosa which grows in Asia, Africa, and
America should be compared with plants collected in various geographical regions.

3.2. Importance of Taxonomy and Plant Material Preservation

In this study, as experts in orchid taxonomy [84–87], it is crucial to emphasize the
fundamental role of the correct identification of plants for further studies on the usefulness
of phytochemicals in cancer therapy [88–90]. The diversity of orchids and superficial
similarity of related species often leads to erroneous identification of taxa [91,92]. The
detailed studies on various orchids revealed that numerous commonly recognized species
are actually species-complexes that include several distinct species [93–95].

Most of the reports reviewed in this paper were on Dendrobium, which is one of the
most complicated taxa in terms of species nomenclature and classification [96]. Currently,
there are more than 1000 species in this genus, and new species and varieties are described
frequently from tropical Asia [97,98]. Diagnostic characters which allow to identify par-
ticular Dendrobium species are related to flower morphology and therefore plants cannot
be correctly classified in the vegetative stage [99]. To further investigate orchids used for
treating cancer, it is vitally important that they are correctly identified. Initial identification
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of a plant should not only be confirmed by expert taxonomists but also voucher material
further verified and preserved in the form of dried herbarium specimens [100] and prefer-
ably complemented with DNA barcodes [101–103]. The molecular identification without
properly preserved plant material can be doubtful [104,105]. Unfortunately, the good
practices summarized by Bussmann [91] are rarely applied in studies on orchid secondary
metabolites, therefore it is not possible to confirm the identification of examined species.

4. Secondary Metabolites of Orchids

The basic knowledge on the diversity of orchid secondary metabolites was summa-
rized by Sut et al. [71], Teoh [106], and Pant et al. [82] but the authors of these papers did
not present data on the action mechanism of particular secondary metabolites, the impor-
tance of symbiotic fungi or other issues related with using orchid-derived biocompounds.
Experiments on alkaloids, terpenes, stilbenoids, bibenzyls, phenanthrenes, flavonoids, and
polysaccharides isolated from Orchidaceae indicated their potential medical usefulness [106].

Gigantol and batatasin III are the main bibenzyls occurring in orchids with cyto-
toxic activity [107,108]. Phenanthrenes are common metabolites of orchids used in tradi-
tional medicine [106]. Many of them are cytotoxic and kill human cancer cell lines and
possess antiallergic, antimicrobial, antiinflammatory, antioxidant, antiplatelet, and spas-
molytic properties [109]. Antitumour properties are reported for monomeric phenanthrenes,
biphenanthrenes, and triphenanthrenes [106]. It is also reported that phenanthroquinone
(denbinobin) and dihydroxymethoxy phenanthrene (lusianthridin) are cytotoxic [110–112].
Bibenzyl derivatives of phenanthrenes are effective anti-tumor chemicals [113–115]. Alka-
loids are another group commonly isolated from orchidis that are important in a medicinal
context [48]. Orchid alkaloids are usually classified either as the pyrrolizidine type or
the dendrobine-type [106]. Denbinobin triggers apoptosis of numerous human cancer
cell lines [70,109,116,117]. A large number of compounds, estimated to exceed 10 000, are
aromatics flavonoids, phenols, and tannins [71]. These chemicals have a broad range of
pharmacological activities that involve i.a. antioxidant, antimicrobial, antiinflammatory,
antimutagenic, antitumour, and immuno-modulatory activities [106,118–120].

Noteworthy, some of the bioactive compounds can be actually produced by the
symbiotic microbes associated with orchids [121].

It should be emphasized that our team is also currently working on the identification
of phytochemicals in the orchid species described for the first time and on the determination
of their biological properties, including anticancer activity.

5. Biotechnological Methods for Orchidaceae Family

As shown, plants of the Orchidaceae family can be a source of many valuable, biologi-
cally active compounds that can be widely used as a basis or a supplement to the modern
forms of oncological therapy. Plants growing in natural habitats are often the only source
of these valuable compounds. Due to the fact that these plants usually do not synthesize
large amounts of these compounds, it is very difficult to meet the constantly growing
demand for these metabolites. What is more, many species capable of their synthesis are
under strict protection. The solution to this problem is the use of biotechnological methods
allowing constant access to valuable biomass from in vitro cultivation and, in many cases,
increasing the level of their synthesis and accumulation. For this purpose, efficient in vitro
propagation protocols have already been developed for many medically valuable orchid
species. Such an approach often involves the induction of callus tissue which can then
be stimulated to differentiate to give rise to new shoots, or in the case of embryogenic
callus, it may be the start of somatic embryos. Pujari et al. described three simple, fast,
and economical in vitro tissue culture protocols for Dendrobium ovatum that can be used
to develop the right amount of material for biological research in an endangered orchid.
Additionally, the authors also demonstrated the enhancement of moscatilin production in
the in vitro cultures of this valuable plant [122]. Another type of culture that has found
application for the Orchidaceae is the protoplast or thin cell layer (TCL) culture. Vudala
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et al. developed an effective micropropagation protocol for Hadrolaelia grandis with thin
cell layer culture systems that can be the starting point for in vitro plant breeding, even
on a large scale [123]. Additionally, Brattacharyya et al. developed a protocol for the
regeneration of Dendrobium aphyllum, an important therapeutic orchid by the t-TCL method.
For this purpose, Murashige and Skooga (MS) medium was supplemented with 15 µM
meta-topoline along with 10 µM TDZ and 10 µM AgNO3. This combination was found to
be the most optimal for shoot proliferation [124]. In addition, an adventitious shoot can
also be a valuable strategy, which in a relatively short time, using appropriate growth regu-
lators, allows to multiply valuable plant material. As presented by Mahendran et al. who
developed a protocol for induction of direct somatic embryogenesis and subsequent plant
regeneration for the medicinally important and endangered plant of Malaxis densiflora. In
these in vitro studies, seed-derived protocorm explants were cultured on 1/2 Murashige
and Skoog medium with 2,4-D, Picloram, and Dicamba alone or in combination with BAP,
TDZ, and Kn. It was shown that the best results were obtained on 1/2 MS with 3.39 µM
of 2,4-D and 6.80 µM of TDZ. This protocol is another example of work on the possibility
of efficient in vitro culture of human-important members of the Orchidaceae family [125].
Another strategy worth considering, among the sources of extremely valuable compounds,
is the cultivation of various tissue and cell cultures in special bioreactors [126,127]. These
devices, which allow for the maintenance of plant material in sterile conditions in vitro,
often allow the optimization of the entire breeding process, which is extremely important
from a technological and economic point of view. Bioreactors ensuring optimal conditions
for growth and development by strict control of many key parameters have long been used
even on an industrial scale in many other plant families. In addition, the possibility of
stimulating production with various physical and chemical factors, combined with genetic
modifications in the future, will certainly allow the development of efficient and compre-
hensive solutions allowing the use of the Orchidaceae family as a kind of mini-factories
producing compounds desired in many areas of life.

6. The Anticancer Activity of Plant Extracts from Orchidaceae

Extracts of many species of orchids have anticancer properties. Isolates from various
plant parts exhibit cytotoxic activity against leukemia and melanoma, as well as against
brain, breast, cervical, gastric, liver, and lung cancer cells.

Extracts of several species of Dendrobium (Figure 1) have a cytotoxic effect and in-
hibit the growth of cervical cancer and glioblastoma brain tumor cells [128–132]. It is
hypothesized that polyphenol compounds found in orchid extracts inhibit cancer cells by
xenobiotic-metabolizing enzymes altering the metabolic activation of potential carcino-
gens [133]. On the other hand, flavonoids can modify hormone production and prevent the
growth of cancer cells [133]. In contrast, phenolics can interrupt cellular division during
the telophase stage of mitosis. These chemicals also affect cell proliferation by reducing the
amount of cellular protein, the mitotic index, and colony formation [131]. The ethanolic
extract of Dendrobium chrysanthum perturbs cell cycle progression and results in a delay in
the growth of cells. It also exerts anticancer activity [129]. A similar situation for extracts of
D. venustum in which phoyunnanin E triggered apoptosis of lung cancer cells by suppres-
sion of survivin [134]. Another Dendrobium species, D. crepidatum, is significantly cytotoxic
against both cervical cancer (HeLa) and glioblastoma brain tumor (U251) cell lines [128].

Joshi et al. [130] indicate that Vanda cristata (Figure 1) is both cytotoxic against cervical
cancer (HeLa) and glioblastoma brain tumor (U251) cell lines, while Vanda cristata, Pholidota
articulate, and Papillionanthe uniflora exhibited significant cytotoxic activity against cervical
cancer (HeLa) cells.
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Figure 1. Some orchids with bioactive, antitumor compounds. (A)—Dendrobium moniliforme,
(B)—Dendrobium nobile, (C)—Dendrobium venustum, (D)—Vanda cristata

Another promising genus with anticancer properties is Bulbophyllum. B. kwangtungense,
and shows antitumour activity against cervical cancer (HeLa) and leukemia (K562) cell
lines [130,135]. Bulbophyllum odoratissimum is also cytotoxic against leukemia cell lines
(K562, HL-60), hepatoma (BEL-7402), lung adenocarcinoma (A549), and stomach cancer
(SGC-7901) cell lines [136]. Extracts of Bulbophyllum sterile bulbs and roots cause apoptosis in
human colon cancer (HCT116) cell lines by arresting the G2/M phase of the cell cycle [137].

The volatile oil of Anoectochilus roxburghii induces apoptosis in tumor cells and triggers
an enzyme cascade resulting in the apoptosis of lung cancer cells (NCI-H446) [138]. The
ethyl acetate extract of Anoectochilus formosanus induces apoptosis in human breast cancer
cells (MCF-7) and the aqueous extract effectively inhibits the growth of colon cancer cells
in mice [138].

Some studies on Pleione by Liu et al. [139] indicate that an ethyl acetate extract of
Pleione bulbocodiodes inhibits the growth of mice cancer cells LA795 (lung adenocarcinoma).
Wang et al. [140] also indicate that some components of the extract of Pleione yunnanensis
strongly inhibit the growth of lung adenocarcinoma cells. Other compounds obtained
from this species are very cytotoxic against colon cancer cells (HepG2), liver cancer cells
(BGC-823), and breast cancer cells (MCF-7).

Other orchid extracts that are effective against breast cancer (MCF-7) are those from
Eulophia nuda tubers [141], leaves of Aerides odorata [142], and leaves of Vanilla [143]. It is
hypothesized that the cytotoxic activity is related to the synergistic action of the phytocon-
stituents present in these species [141]. Other studies are presented in Table 1.
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Table 1. Cytotoxic effect and potential mechanism of action of Orchid extracts.

Name of Species Part of the Plant Type of Extract Active Compounds/
Class of Compounds Cancer Cell Lines

Cytotoxic
Effect/Potential

Mechanism of Action
Ref

Acampe praemorsa (Roxb.)
Blatt. & McCann Leaves Methanol, ethyl acetate - The HeLa and MCF-7 Cytotoxic effect (range

49.27–76.94 µg/mL) [144]

Aeridis odarata Lour. Leaves Methanol, ethyl acetate - HeLa and MCF-7 Cytotoxic effect
(range 26.21–59.06 µg/mL) [144]

Eulophia nuda Lindl. Tubers Methanol - MCF-7 Cytotoxic effect
(1000 µg/mL) [145]

Luisia zeylanica Lindl. Leaves
Hexane, chloroform,

ethyl acetate
and methanol

coumarins, flavonoids, glycosides,
phenols, saponins, tannins,

and terpenoids
(2,2-Dimethyl-3-propyloxirane,

Hydroperoxide, 1-ethylbutyl, Ethanone,
1-cyclohexyl, Cyclopentanol, 1, methyl,

9,12,15-Octadecatrien-1-ol,
4-Methyl-1,3-dioxane,

5-Oxotetrahydrofuran-2- carboxylic
acid, Methyl cis-10-heptadecenoate,
(E)9-Octadecenoic acid ethyl ester,

Triacontane, Methyl
15-methyl-hexadecanoate€(E)-1-Bis(E)-

but-2-enoxy methoxy but-2-ene,
Kaempferol 3-glucoside, n-Tridecanoic

acid methyl ester, 1,
4-Dimethyl-1,4,6,7-tetrahydroimidazo 4,

5-e 1,4 diazepine-5,8-dione, Phthalic
acid, butyl hexyl ester, (Z)-Icos-13-enoic

acid, Octadecanoic acid, ethyl ester

MCF-7 and HeLa

Cytotoxic effect (values
ranging between
18.36 µg/ml to
67.914 µg/mL)

[146]

Vanda Tessellata Hook.
Ex G.Don Roots Methanol n-hexane and

ethyl acetate

flavonoids, tannins,
saponins, terpenoids, steroids

and alkaloids
Hep-G2 and B16-F10 Cytotoxic effect (range

95.3–145.9 µg/mL) [147]

Acampe praemorsa (Roxb.) Leaves Ethanol - A549 - [148]
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Table 1. Cont.

Name of Species Part of the Plant Type of Extract Active Compounds/
Class of Compounds Cancer Cell Lines

Cytotoxic
Effect/Potential

Mechanism of Action
Ref

Dendrobium officinale
Kimura et. Migo Whole plant Ethanol polysaccharide MCF-7

(the possible mechanism
may be that, extract

up-regulates the
LC3-II expression,

down-regulates the
LC3-I expression and

p62 expression. In
addition, extract

inhibits the expression of
PI3K and Akt and their
phosphorylation, and

promotes the expression
of PTEN)

[149]

Eulophia nuda Lindl. Tubers Alcohol, hydro alcoholic
and aqueous - MCF-7 Cytotoxic effect

(285.1 µg/mL) [150]

Dendrobium lasianthera
J.J. Sm

Leaves, stem
and roots

Chloroform, methanol,
and aqueous terpenoid and phenolic T47D Cytotoxic effect

(117–628 µg/mL) [151]

Arachnis flos-aeris (L.)
Rchb. f.

Leaves, stem
and roots

Chloroform, methanol,
and aqueous terpenoid and phenolic T47D Cytotoxic effect

(139–1436 µg/mL) [151]

Phaius mishmensis Rchb. Whole plants n-hexane, chloroform,
and ethyl acetate - MCF-7, NCI-H460,

and SF-268
Cytotoxic effect
(1–134 µg/mL) [152]

Dendrobium candidum
Wall. ex Lindl. Whole plant Methanol - SMMC-7721

and BEL-7404

Cytotoxic effect (about
1mg/mL)

It is likely that this
extract suppressed cell
growth by activating

mitochondria apoptosis
pathway and inducing

inhibition of
Wnt/β-catenin pathway

[153]
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Table 1. Cont.

Name of Species Part of the Plant Type of Extract Active Compounds/
Class of Compounds Cancer Cell Lines

Cytotoxic
Effect/Potential

Mechanism of Action
Ref

Dendrobium candidum
Wall. ex Lindl. Whole plant - - MCF-7

Cytotoxic effect
(2 mg/mL)

Extract decreased the cell
viability of MCF-7 cells
by inducing cell cycle

arrest at the G2/M phase
and regulating the

key biomarkers

[154]

Dendrobium crepidatum
Lindl. & Paxton and

Dendrobium chrysanthum
Wallich ex Lindley

Leaves Ethanol -

Dalton’s lymphoma
(DL), a murine
transplantable

T-cell lymphoma

Cytotoxic effect of
extract of D. crepidatum

at 325 µg/mL, while that
for the extract of D.

chrysanthum was
400 µg/mL.

[155]

Anoectochilus
formosanus Hayata Whole plants Methanol - SCC-25

Cell viability assay
indicates that 1 mg/mL

extract inhibited oral
cancer SCC-25 cell

proliferation by more
than 82%

[156]

Malaxis rheedii Sw. Whole plants Methanol - MCF-7 and HeLa
Cytotoxic effect (value of
M. rheedii on MCF-7 cells

was 167.76 µg/mL)
[157]
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7. The Anticancer Effect—Potential Mechanism of Action and Activation of Signalling
Pathways of Pure Compounds from Orchids

Several classes of phytoconstituents of great chemical diversity have been isolated
from therapeutically-used orchids [71].

Various stilbene-based derivatives from orchids, e.g., pholidonone [158], bletilols [159]
are cytotoxic against cancer cell lines. The former compound triggers apoptotic cell death in
human gastric cancer cells, by inducing ER stress, probably via PERK and IRE1α signalling
pathways [158].

Another group of orchid metabolites that have antitumor activities are phenanthropy-
rans and phenanthrenes [160–166]. Nudol isolated from Dendrobium nobile arrests the cell
cycle of osteosarcoma (U2OS) cells, induces cell apoptosis via the caspase-dependent path-
way and suppresses the migration of these cells [161]. Cypripedin isolated from Dendrobium
densiflorum is effective against lung cancer by activating caspase-3 and downregulating
the antiapoptotic proteins Bcl-2 and Bcl-xL in cells [167]. Denbinobin also isolated from
Dendrobium and Ephemerantha also promotes caspase-3 activity in lung adenocarcinoma
cells [168,169] and a polysaccharide extracted from Anoectochilus roxburghii inhibits in this
way the growth and proliferation of human prostate cancer (PC-3) cells [138].

Spiranthesphenanthrene isolated from Spiranthes sinensis is cytotoxic against gastric
cancer (SGC-7901), hepatocellular carcinoma (HepG2), and melanoma tumor (B16−F10)
cell lines [170]. Moreover, this compound significantly inhibits the migration of melanoma
tumor (B16−F10) cancer cells [170].

Bulbocodioidins extracted from Pleione bulbocodiodes, which are phenanthrene and
phenanthrene/bibenzyl atropisomers, and according to Wang et al. [171], are cytotoxic
activity against colon cancer (HCT-116), liver cancer (HepG2), and breast cancer (MCF-7)
cell lines. Previously the bibenzyls isolated from this plant were shown to significantly
inhibit the growth of leukemia cells (K562, HL-60), liver cancer cells (BEL-7402), gastric
cancer cells (SGC-7901), lung cancer cells (A569, H460), and melanoma cells (M14).

Isoviolanthin isolated from Dendrobium officinale reverses TGF-β1-mediated epithelial-
mesenchymal transition in hepatocellular carcinoma (HCC) cells by deactivating the TGF-
β/Smad and PI3K/Akt/mTOR signalling pathways [172].

Phenanthrene and bibenzyl derivatives isolated from Cremastra appendiculata are cy-
totoxic against colon cancer (HCT-116), liver cancer (HepG2), stomach cancer (BGC-823),
lung cancer (A549), and glioma cancer (U251) cell lines [163,173].

One of the most extensively studied orchid compounds is dendrobine and its deriva-
tives [174,175]. This chemical induces apoptotic cell death via a mitochondrial-mediated
pathway in lung cancer cells (A549). The combination of dendrobine with cisplatin enhances
their cytotoxicity by stimulating JNK/p38 stress signalling pathways and, consequently,
inducing apoptosis involving the pro-apoptotic proteins Bax and Bim [176].

ViceninII, which is flavonoid glycoside extracted from Dendrobium officinale, inhibits
transforming growth factor-β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT)
by deactivating TGF-β/Smad and PI3K/Akt/mTOR signalling pathways in lung adeno-
carcinoma A549 and H1299 cells [177].

Recent experiments indicate that erianin isolated from Dendrobium induces ferroptotic
cell death in lung cancer cells (H460 and H1299). This action is accompanied by ROS
accumulation, lipid peroxidation, and GSH depletion [178,179]. Other research examples
are presented in Table 2.



Cancers 2022, 14, 754 11 of 31

Table 2. Cytotoxic effect and potential mechanism of action of pure compounds or fractions from Orchids.

Name of Species Part of the Plant Active Compounds/Isolated Cancer Cell Line Cytotoxic Effect/
Mechanism of Action Ref

Dendrobium signatum
Rchb. f. Whole plant

3,4-dihydroxy-3,4-dimethoxybibenzyl,
dendrocandin B, dendrocandin I

and dendrofalconerol
MDA-231, HepG2 and HT-29 Cytotoxic effect (25.2–137.8 µM) [180]

Cymbidium
finlaysonianum Lindl

Whole plants
(without flowers)

1-(4-Hydroxybenzyl)-4,6-dimethoxy-
9,10-dihydrophenanthrene-2,7-Diol,

ephemeranthoquinone
B, flavanthridin,

2,4-dimethoxyphenanthrene-
3,7-diol, 3,4,6-

trimethoxyphenanthrene-2,7-diol,
coelonin, lusianthridin, cymbinodin-A

NCI-H187 Cytotoxic effect (3.73 µM) [181]

Dendrobium nobile Lindl. Stems

Dendroside, isorhamentin-3-O-β-d-
rutinoside, adenosine,

4-methoxy-2,5,9R-trihydroxy-9,10-
dihydrophenanthrene

2-O-β-d-glucopyranoside, (7S,8R)
dehydrodiconiferyl alcohol

9′-β-glucopyranoside,
koaburaside, uniperoside,

dehydrodiconiferylalcohol-4-β-
d-glucoside

HeLa, MCF-7 and A549 Cytotoxic effect
(from 16.8 to >100 µM) [182]

Dendrobium williamsonii J. Day
& Rchb. f. Whole plants Aloifol I, moscatilin,

moniliformine, balanophonin, HL-60 Cytotoxic effect
(4.48 to 11.04 µM) [183]

Liparis nervosa (Thunb.) Lindl. Whole plant Nervosine VII (alkaloid) HCT116

Nervosine VII simultaneously
induced autophagy and

apoptosis by activating MAPKs
signalling pathway including

JNK, ERK1/2 and p38,
suppressing the p53
signalling pathway

[184]
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Table 2. Cont.

Name of Species Part of the Plant Active Compounds/Isolated Cancer Cell Line Cytotoxic Effect/
Mechanism of Action Ref

Dendrobium officinale Kimura
et. Migo Leaves

Denofficin, dendrocandin B,
dendrocandin U, 3,4-dihydroxy-

5,4′-dimethoxy bibenzyl, moscatilin,
4,4′-dihydroxy-3,5-dimethoxy

Bibenzyl, gigantol

HeLa Cytotoxic effect (8.0 to 92.4 µM) [185]

Liparis nervosa (Thunb.) Lindl. The whole plants
with roots

Liparisphenanthrenes A,
2,7,2′-trihydroxy-

4,4′,7′-trimethoxy-1,1′-
biphenanthrene, 2,2′-dihydroxy-

4,4′,7,7′-tetramethoxy-
1,1′-biphenanthrene

HGC-27 and HT-29
Cytotoxic effect

(8.21–9.95 µmol/L),
(8.53–9.27 µmol/L)

[186]

Paphiopedilum callosum
(Rchb.f.) Roots

3′-hydroxy-2,6,5′-trimethoxystilbene,
3′- hydroxy-2,5′-

dimethoxystilbene, galangin,
2,3′-dihydroxy-5′-methoxystilbene

MCF-7 and NCI-H187 Cytotoxic effect
(62.82–182.48 µM) [187]

Dendrobium thyrsiflorum
Rchb.f. Whole plants

2,7-Dihydroxy-4-
methoxyphenanthrene,

2,7-Dihydroxy-4-methoxy-9-
fluorenone,

2,3,5-Trihydroxy-4-
methoxyphenanthrene,

3,7-Dihydroxy-2,4-
dimethoxyphenanthrene,

2,7-Dihydroxy-1,5,6-
trimethoxyphenanthrene,

2,5-Dihydroxy-3,4,9-
trimethoxyphenanthrene,

2,3,5-Trihydroxy-4-methoxy-9,10-
dihydrophenanthrene, Dengibsin,
Denchrysan B, 2,5-Dihydroxy-4-

methoxy-9,10-dihydrophenanthrene

HL-60 and BEL-7402 Cytotoxic effect
(1.61 to 17.25 µM) [188]

Dendrobium brymerianum
Rchb.f. Whole plant moscatilin, gigantol, lusianthridin,

and dendroflorin H460 Cytotoxic effect (196.7, 23.4, 65.0,
and 125.8 µg/mL) [189]
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Table 2. Cont.

Name of Species Part of the Plant Active Compounds/Isolated Cancer Cell Line Cytotoxic Effect/
Mechanism of Action Ref

Paphiopedilum godefroyae
(God.-Leb.) Stein Roots

2-(3′,5′-dimethoxyphenyl)-
6-hydroxy-5-methoxybenzofuran,
3-hydroxy-2,5′-dimethoxystilbene,

2-(E)-2-(3,5-dimethoxyphenyl)-
vinyl-phenol,

5,6-dimethoxy-2-(3-hydroxy-5-
methoxyphenyl) benzofuran,

2,3′-dihydroxy-5′-methoxystilbene,
2-(5′-hydroxy-3′-methoxyphenyl)-6-

hydroxy- 5-methoxybenzofuran,
2,3′-dihydroxy-5,5′-
dimethoxystilbene,
trans-pinostilbene,

NCI-H187 Cytotoxic effect (5.10–168.02 µM) [190]

Dendrobium findlayanum
Par. & Rchb.f Stems

(R)-3, α-dihydroxy-4, 4′, 5
-trimethoxybibenzyl., 3, 4-dihydroxy-

3′, 4′, 5-Trimethoxybibenzyl, 3′, 4-
dihydroxy-3, 5-dimethoxy bibenzyl, 4,

4′- dihydroxy-3, 3′, 5-trimethoxy
bibenzyl, 3, 3′- dihydroxy-5-methoxy

bibenzyl, 3, 3′- dihydroxy-
4, 5′-dimethoxy bibenzyl, 4,

4′-dihydroxy-3, 5-dimethoxy bibenzyl

A172, SHSY5Y, and Hela Cytotoxic effect (1.65–50 µM) [191]

Dendrobium falconeri Hook. f. Aerial parts Dendrofalconerol A H460 Cytotoxic effect (0.5–5 µM) [192]

Dendrobium nobile Lindl. Stems
dendronbibisline D, dendronbibisline

C, dendronbibisline B,
dendronbibisline A

HepG2 Cytotoxic effect (1.25, 4.81,
11.99, 19.47 µM) [193]

Eulophia macrobulbon
(C.S.P.Parish & Rchb.f.)

Hook.f.
Roots

4-methoxy-9,10-dihydro-2,7-
phenanthrenediol, 4-methoxy-2,7-

phenanthrenediol,
1,5-dimethoxy-2,7-phenanthrenediol,

1,5,7-trimethoxy-2,6-
phenanthrenediol,

1-(4-hydroxybenzyl)-
4,8-dimethoxy-2,7-phenanthrenediol

HeLa, CaCo-2 and MCF-7 Cytotoxic effect (17–100 µg/mL) [194]
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Table 2. Cont.

Name of Species Part of the Plant Active Compounds/Isolated Cancer Cell Line Cytotoxic Effect/
Mechanism of Action Ref

Cremastra appendiculata
(D. Don) Makino Tubers Cremaphenanthrene L (1)-P HCT-116, Hela, MCF-7 and

MDA-MB-231
Cytotoxic effect ((1)

15.84–68.81 µM) [195]

Dendrobium nobile Lindl. Stems

decumbic acid A, decumbic acid B, (−)-
decumbic acid, (−)- and (+)-dendrolactone,

4-(3-hydroxyphenyl)-2- butanone, 3-hydroxy-
1(3-methoxy-4-hydroxyphenyl)-propan1-one,

3′,4′,5′,-trimethoxycinnamyl acetate

HeLa, MCF-7 and A549 Cytotoxic effect
(from 15.3 to 30.0 µM) [196]

Dendrobium findlayanum
Par. et Rchb. f Stems dendrobine-type alkaloids HL60, SMMC-7721, A-549

and MCF-7 Cytotoxic effect ( above 40 µM) [197]

Arundina graminifolia
(D.Don) Hochr. Aerial parts

s 7-hydroxy-2,9-dimethoxy-1,4-
phenanthrenequinone named arundiquinone,
5,7-dimethoxy-9,10-dihydrophenanthrene-1,2-

diol, rac-syringaresinol,
ephemeranthoquinone, coelonin

PC12 Cytotoxic effect (about 50 µM) [198]

Liparis nervosa
(Thunb. ex A. Murray) Lindl. Whole plant nervosine VII, nervosine VIII and nervosine IX A549, MCF-7and H460 Cytotoxic effect ( >100 mmol/L) [199]

Pholidota chinensis Lind. Whole plant polysaccharide Caco-2 Cytotoxic effect (69.54 µg/mL) [200]

Dendrobium plicatile Lindl. Aerial parts

2-chloro-3,
4’-dihydroxy-3’,5-dimethoxybibenzyl,

3-methylgiganto (1),
3’-hydroxy-3,4,4’,5-tetramethoxybibenzyl,

batatasinIII, moscatilin, erianthridin, coelonin,
2,5-dihydroxy-4-methoxy-9,10-

dihydrophenanthrene, lusianthridin,
1,4,7-trihydroxy-2-methoxy9,10-

dihydrophenanthrene, emphernathol A,
3,7-dihydroxy-2,4-dimethoxy-9,10-

dihydrophenanthrene and calanhydroquinone
C three known phenanthrene,

3,7-dihydroxy-2,4-dimethoxy-phenanthrene,
nudol and denthyrsinin

MDA-MB231, HepG2 and A549 Cytotoxic effect ((1) 3.41, 3.02,
2.80 µM) [201]
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Table 2. Cont.

Name of Species Part of the Plant Active Compounds/Isolated Cancer Cell Line Cytotoxic Effect/
Mechanism of Action Ref

Cymbidium faberi Rolfe Roots

Coelonin, Shancidin,
1-(4-hydroxybenzyl)-5,7-dimethoxy-

phenanthrene-2,6- diol, 5,7-
dimethoxyphenanthrene-2,6-diol

SMMC-7721, A549 and MGC80-3 Cytotoxic effect (Shancidin 12.57,
18.21, 11.60 µM) [165]

Dendrobium wardianum
Warner Stems

dendrocandin V, phenanthrenes (denbinobin,
9,10-dihydro-denbinobin, mostatin,

loddigesiinols A

HL-60, A-549, SMMC-7721,
MCF-7, and SW-480 Cytotoxic effect (2.33–38.48 µM) [202]

Dendrobium officinale
Kimura et. Migo Stems Fraction polysaccharides MDA-MB-231, A549 and HepG2 Cytotoxic effect (0.25–3 mg/mL) [203]

Dendrobium officinale
Kimura et. Migo Leaves polysaccharides U2OS and Saos-2

Cytotoxic effect (ranged 12.5, 25,
50, 100, and 200 µg/mL )

induced cell apoptosis mediated
by the mitochondrial pathway by
up-regulating P53, Bax, and Bak

expression; down-regulating
Bcl-2 and Mcl-1 expression; and

increasing Cleaved
caspase9/Caspase9, Cleaved

caspase3/Caspase3, and Cleaved
PARP/PARP ratio

[204]

Dendrobium offcinale Lindl. Stems Polysaccharide fraction HepG2

Cytotoxic effect (400 µg/ mL)
Fraction decreased the expression
level of Bcl-2 and increased that

of Bax in HepG2 cells

[205]

Dendrobium venustum
Teijsm. & Binn. Whole plant Phoyunnanin E H460, H292, and A549

Compound inhibit the motility of
lung cancer cells via the
suppression of EMT and

metastasis-related integrins

[206]

Dendrobium offcinale Lindl. Stems

dendrocandin P1, dendrocandin P2,
ephemeranthol A, orchinol,

2, 4, 7-trihydroxy-9, 10-dihydrophenanthrene,
confusarin, gigantol and tristin

HL-60 and THP-1
Strongest cytotoxic effect

(orchinol values of 11.96 and
8.92 µM)

[207]
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Table 2. Cont.

Name of Species Part of the Plant Active Compounds/Isolated Cancer Cell Line Cytotoxic Effect/
Mechanism of Action Ref

Nervilia concolor
(Blume) Schltr. Whole plant

Nervisides I–J
3β-O-d-xylopyranosyl-1α,24R,31-
trihydroxylcycloartan- 28-oic acid,

3β-O-d-xylopyranosyl-31-O-acetyl-1α,24R-
dihydroxycycloartan-28-oic acid

K562 and MCF-7

Cytotoxic effect (Both
compounds 1 and 2 exerted

moderate activity against these
two cancer cell lines, with

respective values of 20.5 and 20.6
µg/mL for 1 and 40.1 and

90.5 µg/mL for 2

[208]

Dendrobium aurantiacum var.
denneanum (Kerr) Z.H. Tsi - Moscatilin MG-63, A549, SK-N-SH, HCT116,

HeLa, HepG2, Panc-1 and BxPc-3

Cytotoxic effect (25 µM, the
strongest effect for

pancreatic cells)
Compound induced apoptosis of

pancreatic cancer cells via
reactive oxygen species and the

JNK/SAPK pathway

[209]

Goodyera schlechtendaliana
Reichb.f. Whole grass Goodyschle A SGC-7901 and HepG2 Cytotoxic effect (74.9 and

89.80 µM, respectively) [210]

Dendrobium draconis
Rchb.f Stems Gigantol NCI-H460 Cytotoxic effect (above 50 µM) [211]

Dendrobium nobile Lindl. Stems nobilin E, dendrocandin V SGC-7901, K562, A549, BEL-7402,
and Hela

Cytotoxic effect (Nobilin E values
of 17.30, 10.39, 29.03, 20.13, and

22.19 µM, respectively) and
cytotoxic effects against K562

with 28.23 µM for
dendrocandin V

[212]

Dendrobium infundibulum
(Lindl.) Kuntze Whole plant Ephemeranthol A NCI-H460 Cytotoxic effect (100 µM) [169]

Cattleya tigrina A. Rich. Whole plant triterpene 24-methylenecycloartanol,
gigantol, phocantone HeLa Cytotoxic effect

(86.43–90.67 µg/mL) [166]
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Table 2. Cont.

Name of Species Part of the Plant Active Compounds/Isolated Cancer Cell Line Cytotoxic Effect/
Mechanism of Action Ref

Dendrobium draconis Rchb.f. Stems Batatasin III NCI-H460

Cytotoxic effect (25–100 µM) after
48h. Inhibition of cell

proliferation (25–100 µM),
migration and invasion by

suppressing EMT and
FAK/AKT/CDC42 pathway.

[108]

Dendrobium draconis Rchb.f. Stems Gigantol NCI-H460

Cytotoxic effect (50 µM).
Reduction of

anchorage-independent growth
and in the survival of the cancer
cells. Reduction in the ability of
the cancer cells to form tumor

spheroids, a critical hallmark of
CSCs. Reduction of lung CSCs
markers, including CD133 and

ALDH1A1. Decrease stemness in
the cancer cells by suppressing

the activation of protein kinase B
(Akt) signal which decreased the

cellular levels of pluripotency
and self-renewal factors Oct4

and Nanog.

[211]

Dendrobium draconis Rchb. f. Stems Gigantol NCI-H460

Cytotoxic effect (50 µM).
Attenuation of the EMT process

in lung cancer cells. The
reduction of AKT activity.

Decreased transcription and the
stability of Slug. Reduction of

β-catenin activity and Slug
transcription. Enhancing GSK-3β
ubiquitination of Slug, resulting

in decreased Slug levels and
thereby suppressing the

EMT process

[213]
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Table 2. Cont.

Name of Species Part of the Plant Active Compounds/Isolated Cancer Cell Line Cytotoxic Effect/
Mechanism of Action Ref

Dendrobium venustum
Teijsm. & Binn. Whole plant Phoyunnanin E NCI-H460

Cytotoxic effect (25.7 µM).
Induction of apoptosis indicated
by condensed and fragmented

nuclei with the activation of
caspase-3 and -9 and poly
(ADP-ribose) polymerase
cleavage. Phoyunnanin E

mediated apoptosis via a p53-
dependent pathway by

increasing the accumulation of
cellular p53 protein. Depletion of
antiapoptotic proteins including
MCL1 and Bcl2, upregulation of

Bax protein. Reduction in the
survival of cells.

[134]

Dendrobium densiflorum Lindl. Whole plant Cypripedin NCI-H460

The induction of apoptosis at a
concentration of >50 µM with the

appearance of morphological
changes, including DNA

condensation and chromatin
fragmentation. Activation of

caspase-3 and downregulation of
the Bcl-2 and Bcl-xL.

[167]
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Table 2. Cont.

Name of Species Part of the Plant Active Compounds/Isolated Cancer Cell Line Cytotoxic Effect/
Mechanism of Action Ref

Dendrobium
infundibulum Lindl. Whole plant Ephemeranthol A NCI-H460

Cytotoxic effect (>50 µM).
Concentration-dependent cell

apoptosis. At non-toxic
concentrations inhibition of

anchorage-independent growth
of the cancer cells, as indicated

by the decreased colony size and
number. Ephemeranthol A also

had an inhibitory effect on
migration. We further found that

ephemeranthol A exerts its
antimetastatic effects via

inhibition of EMT, as indicated
by the marked decrease in

N-cadherin, vimentin, and Slug.
Furthermore, this compound

suppressed the activation of focal
adhesion kinase (FAK) and

protein kinase B (Akt) proteins,
which are key regulators of cell
migration. As for the anticancer

activity, ephemeranthol A
induced apoptosis by decreasing
Bcl-2 followed by the activation

of caspase 3 and caspase 9.

[169]

Dendrobium officinale
Kimura et. Migo Leaves ViceninII A549 and H1299

Cytotoxic effect effect (>10 µM).
ViceninII targets
the TGF-_/Smad

and PI3K/Akt/mTOR pathways
and inhibit TGF-1-induced EMT

phenotypes in lung
adenocarcinoma A549 and

H1299 cells.

[177]



Cancers 2022, 14, 754 20 of 31

Table 2. Cont.

Name of Species Part of the Plant Active Compounds/Isolated Cancer Cell Line Cytotoxic Effect/
Mechanism of Action Ref

Liparis nervosa
(Thunb.) Lindl. Whole plant Nervosine VII HCT116

Cytotoxic effect (11.27 to 33.8
µmol·L−1). Apoptosis associated
with the activation of an intrinsic
pathway by caspase-9, -3 and -7.
Autophagy- increase of LC3-II
and beclin 1 proteins, and the

decrease of p62 protein.
Induction autophagy and

apoptosis activated by MAPKs
signalling pathway including

JNK, ERK1/2 and p38,
suppressing the p53
signalling pathway.

[184]

Dendrobium venustum
Teijsm. & Binn. Whole plant phoyunnanin E H460, H292 and A549

Cytotoxic effect (50 to 100 µM)
Inhibition of the motility of lung
cancer cells via the suppression

of EMT and
metastasis-related integrins.

[206]
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8. In Vivo Studies of Extracts and Pure Compounds from the Orchidaceae Family

In vivo studies are the next important step after in vitro and involve testing com-
pounds and assessing the safety of their efficacy on living organisms such as animals,
plants or whole cells. The Orchidaceae family is a valuable source of secondary metabolites
(selected presented on Figure 2), and despite the limited number of studies meeting our
criteria, this is also applicable to the in vivo studies which are presented below.

Figure 2. Selected compounds from the Orchidaceae family with anticancer activity.

In the in vivo studies, Su et al. [214] evaluated the antitumour effects of moscatilin, a
natural compound isolated from the orchid Dendrobium moscatum in the mouse xenograft
model. MDA-MB-231 cells were axillary injected into nude mice to establish the mouse
model of breast cancer. These data suggested that moscatilin suppresses breast cancer
growth and progression in vivo, and therefore can be used as a potential therapeutic
agent for the treatment of breast cancer [214]. Sun et al. investigated the possibility of
erianin (a natural compound derived from Dendrobium candidum), as a potential therapy in
colorectal cancer (CRC). The authors tested the function of erianin on tumor growth in
a mouse model by injection of SW480 cells into NOD/SCID mice. These data indicated
that erianin inhibited tumor growth via β-catenin in vivo [215]. On the other hand, Zhang
et al. investigated the inhibitory effect of Dendrobium officinale polysaccharide (DOPA) on
human gastric cancer cell SGC-7901 xenografts in nude mice, where the nude mice with
SGC-7901 xenografts were randomly divided into model, 5-fluorouracil (5-Fu), low-dose
DOPA, middle-dose DOPA, and high-dose DOPA group. DOPA inhibited the growth
of SGC-7901 cell xenografts in nude mice. The authors suspect that the mechanism may
be related to its increase of serum TNF-α and IL-2 levels, up-regulation of Bax protein
expression, and down-regulation of Bcl-2 protein expression [216]. Zhao et al. tested
Dendrobium officinale extracts (4.8 and 2.4 g/kg) which were administered orally to rats
from the gastric carcinogenesis model. Compared to the cancer model group, the high-dose
of Dendrobium officinale extracts significantly inhibited the rate of carcinogenesis. Further
analysis showed that Dendrobium officinale extracts regulated DNA damage, oxidative stress,
and carcinogenesis-related cytokines, and induced cell apoptosis to prevent gastric can-
cer [217]. Song et al. noted that dendrobine (an alkaloid isolated from Dendrobium nobile)
enhanced the chemotoxicity of cisplatin against A549 xenograft tumor female BALB/c mice.
Treatment with dendrobine or cisplatin resulted in an obvious reduction of tumour size,
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whereas combination treatment dramatically decreased the tumor size. Additionally, the
authors showed that dendrobine chemo-sensitized A549 cells to cisplatin induced apoptosis
through the JNK/p38 pathway in vivo [176]. In turn, Fang et al. investigated if polysaccha-
rides isolated from Rhizoma pleionis (PRP) suppress H22 tumor growth in vivo in a model
of malignant ascites in BALB/c mice. H22 cells were transplanted into the left abdominal
cavity of mice, and then animals were treated either with PRP in saline at various doses (75,
150, and 300 mg/kg) or with cyclophosphamide (CTX) (20 mg/kg) or cyclophosphamide
(CTX) (20 mg/kg). The authors revealed that on the tenth day after tumor cell inoculation,
the mouse abdominal perimeter and weight in the PRP treatment group were significantly
smaller than those in the control group. Collectively, these results demonstrated that
PRP has significant antitumour properties in the H22 tumor model [218]. Other studies
in xenograft analysis showed that chrysotoxene (phenanthrene derivative that was first
isolated from Dendrobium chrysotoxum) (20 mg/kg) indicated that it significantly (p < 0.01)
the inhibited growth of HepG2 cell-induced tumors by regulating the aforementioned
apoptotic proteins (Smac, Cytochrome c, Survivin, Bcl-2, Bax, Apaf-1, c-caspase-9, and
c-caspase-3), compared with the control group. Finally, the authors suggested that chryso-
toxene may be a potential candidate drug for treating patients with hepatoblastoma [219].
Biswas et al. showed that Bulbophyllum sterile petroleum ether fraction ameliorates tumour
progression in Ehrlich ascites carcinoma model in vivo. The authors revealed that the
petroleum fraction of bulbs (PFB) and petroleum fraction of roots (PFR) at the dose of
200 mg/kg reduced the body weight compared to control. Cisplatin, which served as
control, was injected on the first day and reduced the increase in body weight as com-
pared to control. Additionally, the results suggested that the active fractions of bulbs and
roots possess anticancer activity, likely by inducing apoptosis through the phospho-p53
dependent pathway [137]. A similar antitumour effect in an in vivo model was also shown
by Jia et al. These results of antitumour activity demonstrated that the tumor weight of
mice in three different dosage groups was significantly lower than that of the model group
(p < 0.05, p < 0.01). Moreover, the authors exhibited that the polysaccharide from the fibrous
root of Bletilla striata had a significant inhibitory effect on the tumor growth on S180 tumor
bearing mice. For this reason, the authors suggest that the mechanism of antitumour
might be that it could enhance the immune function by regulating the levels of TNF and
IL-2 in serum [220]. Kim et al. showed that dendrobine inhibited γ-irradiation-induced
migration and invasion of A549 cells by suppressing sulfatase2 (SULF2) expression, thus
inhibiting IR-induced signalling. To investigate the inhibitory effects of dendrobine in vivo,
a mouse model of IR-induced metastasis, by injecting BALB/c nude mice with γ-irradiated
A549 cells via the tail vein, has been established. These results noted that the number of
pulmonary metastatic nodules in mice significantly reduced with dendrobine treatment
(2 Gy/Dendrobine, 10.87 ± 0.71), by prevention of IR-induced signalling. For this reason,
the authors report that this compound may serve as a therapeutic enhancer in non-small
cell lung cancer (NSCLC) patients [221].

The studies presented above confirm the enormous anticancer potential of the com-
pounds contained in this family, which makes them potential candidates for future anti-
cancer therapies.

9. Conclusions

The review of the literature revealed that orchids have not been equally well studied
throughout the world. The largest number of studies refers to Asian orchids, and little
is known about the chemical constituents of American and African plants, except the
pantropical Vanilla.

The literature reports that both extracts and pure compounds extracted from orchids
have a strong cytotoxic effect on various cancer cell lines by inducing intrinsic and extrinsic
apoptotic pathways. In addition, in vivo studies have shown that pure compounds or
extracts can be used as a potential therapeutic agent in anti-cancer therapies. Considering
the very low percentage of orchids examined in terms of their secondary metabolites,
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further analyses are very likely to reveal the existence of numerous new substances suitable
for anticancer therapy.

Author Contributions: Conceptualization, M.K., T.Ś., T.K. and P.S.; Methodology, M.K., T.Ś.; Valida-
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