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Serum amyloid A (SAA) is one of the acute phase proteins released primarily

from the liver in response to infection, inflammation and trauma. Emerging

evidence indicates that SAA may function as a host-derived damage-

associated molecular pattern (DAMP) protein to sense danger signals in

pregnancy. The plasma SAA levels in maternal circulation are significantly

increased in normal parturition, particularly in postpartum, as well as in

gestational disorders such as premature preterm rupture of membranes, pre-

eclampsia, gestational diabetes, and recurrent spontaneous abortion. It is likely

that SAA acts as a non-specific DAMP molecule in response to inflammation

and trauma experienced under these conditions. Notably, SAA can also be

synthesized locally in virtually all gestational tissues. Within these gestational

tissues, under the induction by bacterial products, pro-inflammatory cytokines

and stress hormone glucocorticoids, SAA may exert tissue-specific effects as a

toll-like receptor 4 (TLR4)-sensed DAMP molecule. SAA may promote

parturition through stimulation of inflammatory reactions via induction of

pro-inflammatory cytokines, chemokines, adhesion molecules and

prostaglandins in the uterus, fetal membranes and placenta. In the fetal

membranes, SAA may also facilitate membrane rupture through induction of

matrix metalloproteases (MMPs)- and autophagy-mediated collagen

breakdown and attenuation of lysyl oxidase-mediated collagen cross-linking.

SAA synthesized in extravillous trophoblasts may promote their invasiveness

into the endometrium in placentation. Here, we summarized the current

understanding of SAA in pregnancy with an aim to stimulate in-depth

investigation of SAA in pregnancy, which may help better understand how

inflammation is initiated in gestational tissues in both normal and

abnormal pregnancies.
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1 Introduction

Inflammationplays a key role inmaintaining tissue homeostasis.

Both exaggeratedor inadequate inflammation can lead todiseases. In

pregnancy, intricately-controlled inflammation is required in

gestational tissues for implantation, gestational maintenance, and

parturition (1–3). Dysregulation of inflammatory reactions in

gestational tissues can lead to reproductive disorders, including

infertility, spontaneous abortion, preterm birth, pre-eclampsia and

gestational diabetes (1–4). Therefore, understanding the regulatory

mechanismof inflammatory reactions ingestational tissuesmayhelp

understand the normal process of pregnancy as well as the

pathogenesis of diseases associated with pregnancy. The role of

classical inflammatory mediators such as cytokines, chemokines,

and prostaglandins in pregnancy has been extensively covered in a

bunch of excellent reviewpapers (1–7).However, how inflammation

is launched in gestational tissues is still not very well understood.

Damage-associated molecular patterns (DAMPs) are

molecules released from damaged or dying cells due to trauma

or infection as a component of the innate immune response.

DAMPs serve as a warning sign for the organism by launching

inflammatory responses (8). Emerging evidence indicates that the

acute phase response (APR) protein serum amyloid A (SAA) may

function as a DAMP molecule in pregnancy. SAA released into

the circulation or synthesized locally in the gestational tissues may

help the mother and fetus sense danger signals in pregnancy by

launching both specific and non-specific effects in gestational

tissues. SAA may be associated with placentation, membrane

rupture, parturition, postpartum recovery as well as gestational

disorders. Herein, we reviewed the current understanding of SAA

in pregnancy by summarizing the available publications in the

literature as well as our own studies. To aid in the better

understanding of SAA in pregnancy, we will first introduce the

general aspects of SAA in the acute phase response briefly.
2 SAA in the acute phase response

Our body responds to infection, inflammation, and trauma

by implementing APR, an innate body defense response which

comprises a range of well-orchestrated physiological and

biochemical reactions, to prevent ongoing tissue damage, to

destroy the invading organism, and to return the body to normal

function (9–11). Central to these reactions is the hepatic

production of acute-phase proteins, particularly C-reactive

protein (CRP), mannan-binding lectin (MBL) and serum

amyloid A (SAA) (11–15). It is known that one of the major

functions of CRP and MBL in APR is to act as soluble opsonin-

like pattern-recognition receptors so that microorganisms can be

tagged for phagocytosis. By contrast, the function of SAA in APR

is not entirely understood. However, SAA must be crucial for

individual survival because SAA has been conserved across all

mammals for several million years (16, 17), and moreover, the
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plasma levels of SAA is increased by 1000-fold from basal 20-50

mg/mL to 1 mg/mL (80 mM) in APR within 24 hours (18). Over

decades of investigations, we are getting to know more about

SAA in APR. Several isoforms of SAA with diversified functions

and multiple mediating receptors have been identified.
2.1 SAA isoforms

SAA family consists of members coded by different genes

which are remarkably conserved across species (13, 16). In

humans, there are three SAA-encoding genes (SAA1, SAA2, and

SAA4) and a pseudo gene SAA3P which contains an early stop

codon (19–21). These four genes are clustered in a 150-kb region

on the short arm of chromosome 11 (13, 19) (Figure 1A). Of the

SAA-encoding genes, SAA1 and SAA2 are the acute phase

responsive genes which are highly inducible, while SAA4 is

constitutively expressed (13, 20, 22). It is widely accepted that

the liver is the primary source of plasma SAA1 and SAA2 in the

acute phase response (13, 16, 20), which can be induced by pro-

inflammatory cytokines like interleukin-6 (IL-6), tumor necrosis

factor-a (TNF-a), interleukin-1b (IL-1b), and interferon-g (IFN-g)
(13, 23–27). Notably, the stress hormone glucocorticoids are also

capable of inducing SAA expression in the liver despite being

generally considered as an anti-inflammatory hormone (28).

However, it has been shown that glucocorticoids preferentially

stimulate the transcription of SAA1 but not SAA2 because only

SAA1 promoter harbors a glucocorticoid response element (GRE)

(29). The mouse SAA genes were mapped to chromosome 7, a

region which is analogous to the region of human chromosome 11

(13). Likewise, the expression of Saa1 and Saa2 is inducible, while

Saa4 is constitutively expressed in the mouse (13). By contrast, the

mouse Saa3 is not a pseudogene but encodes an inducible SAA3

protein which is believed to be expressed mainly in extrahepatic

tissues (13). Instead, Saa5 is a pseudogene in the mouse (13).

The human SAA1 and 2 are small proteins consisting of 104

amino acids and share 92% of amino acids, while SAA4 carries an

additional 8 amino acids inserted between amino acids 69 and 70

of the inducible SAAs (13, 20) (Figure 1B). The N-terminal of

SAA harbors a hydrophobic a-helical domain, while the C-

terminal is essential for the maintenance of SAA structure (13,

17). Proteolytic cleavage of the C-terminal results in the formation

of a 76 amino acid N-terminal fragment, which is subject to

aggregation and formation of highly-ordered b-sheets, a structure
commonly seen in microfibrils of the amyloid deposit (13, 17, 30).
2.2 Functions of SAA in APR

The SAA molecule is amphipathic, but mostly lipophilic in

circulation (31). Like the transportation of other lipophilic

hormones such as the steroid and thyroid hormones, SAA is

also transported by a carrier in the blood (31). The water-
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insoluble N-terminal a-helical domain of SAA carries a binding

site for the high-density lipoprotein (HDL). It has been

estimated that 95% of SAA released from the liver is

transported in HDL despite that a small fraction of lipid-free

form (about 50 mg/mL) also exists in the circulation, which may

be in equilibrium with the fraction partitioned in HDL (31–33).

Since HDL binding sequesters SAA from its biological activities,

HDL is considered as a natural inhibitor of SAA biological

activities (13, 34, 35). In addition, capture of SAA displaces the

original apolipoproteins (Apo-AI) and cholesterol in HDL, and

this alteration in HDL composition will increase the affinity of

HDL for macrophages (36). It is known that macrophages are

engaged in the clearance of dead cells at the injury site, which

may overload the macrophages with cholesterol from the

engulfed cell debris. Studies have shown that capture of SAA

not only increases the affinity of HDL for macrophages, but also

facilitates cholesterol efflux from the cholesterol-loaded

macrophages to HDL. By this way, the phagocytic activity of

macrophages can be restored, and the evacuated cholesterol can

be recycled to be used by newly regenerated cells for the

repairment damaged tissues (16, 37, 38). Therefore, it is

suggested that increased proportion of SAA-containing HDL

in the circulation in APR is to ensure individual survival at the

early stage.

In addition to the liver-derived SAA, cells in the inflamed

tissue including immune cells, fibroblasts, endothelial cells,

epithelial cells, adipocytes, and smooth muscle cells are also

capable of producing SAA (22, 39–44), which may contribute to

a pool of lipid-free SAA together with the liver-derived SAA in
Frontiers in Immunology 03
the local tissue. This pool of free SAA has been shown to

participate in immunomodulation, immunosurveillance and

tissue remodeling in the inflamed tissue. SAA has been shown

to act as a humoral DAMP molecule to enhance the chemotaxis

of neutrophils, monocytes, mast cells, and T lymphocytes, as well

as the production of a wide array of inflammatory mediators,

including pro-inflammatory cytokines, prostaglandins and

matrix metalloproteinases (MMPs) (13, 40, 41, 45–54). In

addition, SAA has also been shown to induce macrophage

polarization toward both pro-inflammatory M1 phenotype and

anti-inflammatory M2 phenotype (55–57). The M2 phenotype

helps resolve inflammation by secreting anti-inflammatory

cytokines and clearing dead cell debris. Given all these

properties of SAA in the inflamed tissue, it is likely that SAA

helps the body survive the traumatic insults through reversible

homeostatic inflammatory reactions by functioning as an early

responsive host-derived DAMP molecule.
2.3 SAA receptors

The apparent importance of SAA in APR has aroused great

interest in the identification of its mediating receptors, but the

delineation develops slowly. To date, several cell surface

receptors have been identified, including the G protein-

coupled FPRL1 (formyl peptide receptor like–1) receptor, the

pattern recognition receptors RAGE (receptor for advanced

glycation end products) and TLR2/4 (toll-like receptor 2/4),

and the scavenger receptors CD36 (cluster of differentiation 36)
BA

FIGURE 1

Schematic depiction of human SAA gene locations and protein sequences. (A). Human SAA genes including SAA1, SAA2, SAA4 and pseudogene
SAA3P clustered in a 150-kb region on the short arm of chromosome 11. (B). Comparison of the amino acid sequences encoded by the human
SAA1, SAA2 and SAA4 genes based on UniProt Knowledgebase entries P0DJI8, P0DJI9 and P35542. Amino acid residue variations compared to
SAA1 are marked in light blue and an additional 8 amino acids inserted between amino acid residues 69 and 70 of the SAA1/2 in SAA4 are
marked in dark blue.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.978929
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2022.978929
and CLA-1 (CD36 and LIMPII Analogous-1) (35, 54, 58–64).

Activation of FPRL1, RAGE and TLR2/4 has been shown to be

responsible for SAA-induced inflammatory reactions including

macrophage activation, chemotaxis, cytokine expression, MMP9

and nitric oxide production with the activation of ERK and p38

MAPK and NF-kB pathways (35, 54, 58–61, 63). The scavenger

receptor CLA-1 and CD36 have been demonstrated to mediate

the effect of HDL-SAA on cholesterol efflux from cells (64, 65)

and SAA-induced pro-inflammatory cytokine secretion (62)

respectively. Although multiple SAA receptors have been

identified, it is unclear whether these receptors are expressed

in a cell-specific manner or multiple SAA receptors are jointly

expressed in the same cell.

In summary, there are three SAA isoforms in humans, and

the predominant role of the inducible SAAs in APRmay help the

body overcome traumatic insults by launching reversible

homeostatic inflammatory reactions as an early host-derived

DAMP molecule. For a comprehensive description of SAA in

APR, the reader is referred to a wealth of elegant reviews in this

area (13, 16, 20, 22, 52). Here, in the subsequent sections, we will

focus on SAA in pregnancy, a subject that has not received

adequate attention.
3 SAA in pregnancy

Inflammation is implicated in both normal and abnormal

pregnancies (1–4). While optimal inflammation in gestational

tissues is an indispensable event of implantation and parturition

processes, aberrant inflammation is associated with pregnancy

disorders such as abortion, premature preterm rupture of

membranes (PPROM), preterm birth, gestational diabetes

(GDM) and pre-eclampsia (66–69). In view of the role of SAA

in inflammation in APR and the inflammatory states of normal

and abnormal pregnancies, investigators have been trying to

disclose the role of SAA in pregnancy for some time. Evidence

gathered so far indicates that SAA in maternal circulation may

function as a non-specific DAMP molecule in response to tissue

inflammation and damage incurred in parturition and

gestational disorders. However, SAA synthesized locally in

gestational tissues may function as an early host-derived

DAMP molecule exerting more specific effects in placentation,

membrane rupture and parturition, thereby helping the embryo

implant into the endometrium and aiding the fetus to escape

from the endangered in-utero environment.
3.1 Changes of maternal plasma SAA in
normal pregnancy

In view of the inflammatory effects of SAA and the dramatic

hormonal changes in pregnancy, earlier studies assumed that

maternal plasma SAA levels in normal pregnancy should differ
Frontiers in Immunology 04
from that in non-pregnancy. Ostensen et al. measured SAA levels

in the serial plasma samples collected from the same pregnant

woman, and found that maternal plasma SAA levels remained

unaltered in the first, second and third trimesters, but manifested

a dramatic increase immediately after parturition, which resumed

normalization within the first 2 weeks postpartum (70).

Subsequent studies confirmed the findings by Ostensen et al.

(71, 72). These later studies established that maternal plasma SAA

levels stayed unaltered during pregnancy but began to rise

immediately after parturition and reached a plateau at 24 hours

postpartum (71, 72). Of interest, these studies also revealed that

SAA concentrations in the maternal blood were much higher than

that in umbilical cord blood (71, 72), indicating that there is a lack

of transplacental transfer of SAA, and any increases in SAA levels

in cord blood may reflect increased fetal production in conditions

such as fetal infection or trauma. However, only a few studies

addressed whether SAA has already manifested a change at the

onset of labor. Cicarelli et al. found that some but not all of the

cases they examined displayed a rise of SAA levels in maternal

circulation at the moment of delivery (72). By measuring SAA

levels in the serial maternal venous blood samples collected before

(1–2 days before labor onset) and after onset of labor as well as 24

hours after delivery, we found that there was a significant increase

in SAA1 levels in maternal circulation after onset of labor, but this

increase was much less than the increase 24 hours after delivery

(40). It remains unsettled whether this increase after onset of labor

is part of the initiating mechanism of parturition or a mere non-

specific reflection of the inflammatory state of gestational tissues

at parturition. Nonetheless, all these studies including ours

showed a marked increase in maternal blood SAA levels at

postpartum. It is very likely that this postpartum SAA elevation

in maternal circulation is part of the non-specific acute phase

response of the body to tissue inflammation and damage

experienced in parturition (70), which may help the mother

enhance host defense and repair the tissue damage.
3.2 Changes of maternal plasma SAA in
gestational disorders

3.2.1 PPROM and chorioamnionitis
Fetal membranes are consisted of amnion and chorion

layers, which enclose the amniotic fluid, and function as a

barrier to ascending infections for the protection of the fetus.

Preterm premature rupture of membranes (PPROM) occurs in

8–10% of all pregnancies (4, 73). Ruptured membranes are

exposed to ascending infections with a high likelihood of the

development of chorioamnionitis. Chorioamnionitis is a major

cause of preterm birth, and unrestrained chorioamnionitis can

spread infection to both mother and fetus leading to deadly

outcomes (4, 74). It is estimated that PPROM accounts for

approximately one-third of preterm birth and 18–20% of

perinatal deaths (5, 6, 9). Therefore, understanding the cause
frontiersin.org
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of PPROM and chorioamnionitis is of utmost importance for the

prevention of preterm birth as well as for the safety of both

mother and fetus. In view of the tissue damage incurred and the

high risk of chorioamnionitis in PPROM, SAA was expected to

rise in PPROM, particularly those with infection. Yang et al.

found that SAA 1 and 2 were among the proteins which were

significantly elevated in maternal blood in lipopolysaccharide

(LPS)-induced preterm birth in the mouse (75). In human

studies, Koseoglu et al. found that SAA levels in maternal

blood were significantly elevated in the PPROM group

compared to the control group (76), and Kayabas et al.

demonstrated that SAA levels in maternal circulation were

further increased in patients with clinical chorioamnionitis

(107 µg/mL) when compared with patients with only PPROM

but not chorioamnionitis (21 µg/mL) (77). We also found that

SAA1 levels were markedly increased in maternal circulation in

preterm birth with chorioamnionitis when compared with

gestational age-matched iatrogenic preterm birth (40). In

addition to the rise of SAA levels in maternal circulation, SAA

levels in cord blood were also significantly higher in patients

with PPROM (115 µg/mL) than in patients without PPROM (26

µg/mL) (77). These results suggest that both mother and fetus

may respond to PPROM, and the response may be particularly

strong when chorioamnionitis is present. However, the exact

role of increased SAA levels in PPROM and chorioamnionitis is

not well understood. It is likely that increased SAA levels in

maternal circulation in PPROM and chorioamnionitis are the

acute phase response of the body to the mediators released from

damaged and infected membranes.

3.2.2 Pre-eclampsia and placenta accreta
Pre-eclampsia is a hypertensive disease that develops during

pregnancy, which accounts for 2% to 8% of pregnancy-related

complications (78). The exact cause for pre-eclampsia remains

elusive. Apart from majorly insufficient blood flow to the

placenta due to shallow invasion of extravillous trophoblasts

(EVT) into the endometrium (79), vascular endothelial

dysfunction associated with maternal systemic inflammation

has also been suggested to account for the pathogenesis of pre-

eclampsia (68, 69, 80). It has been shown that maternal plasma

SAA levels were significantly increased in pre-eclampsia, and

were further increased in eclampsia and HELLP (hemolysis,

elevated liver enzymes, low platelet count) syndrome (81–83).

However, there is also a study that failed to show any changes of

SAA levels in patients with pre-eclampsia irrespective of severity

(84). It is not known what causes the disparity. The early or late

onset of the disease may affect the results. Although these studies

described that the recruited patients were diagnosed pre-

eclampsia after 20 weeks’ gestation, they did not mention

when patients develop hypertension.

In contrast to the shallow invasiveness of EVTs in pre-

eclampsia, excessive invasion of EVTs can result in placenta

accreta, which may lead to deadly bleeding at parturition.
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Zakaria et al. reported that SAA levels in maternal blood were

significantly increased in patients with placenta accreta (85). As

SAA levels were elevated in situations of both shallow and

excessive invasiveness of EVTs, it is likely that the alteration of

SAA levels in maternal blood in pre-eclampsia and placenta

accreta are the non-specific reflection of the inflammatory and

injury states of the diseases.

3.2.3 Gestational diabetes
The prevalence of gestational diabetes mellitus (GDM) is

about 3 to 15% of pregnancies, which is thought to arise from

adaptive failures to pregnancy with maternal obesity as an

important contributor (66, 86). Pregnancies complicated with

GDM are more likely to develop maternal and fetal

complications, such as hypertensive disorders, pre-eclampsia,

preterm birth, and increased risk of developing diabetes in later

lives. Accumulating evidence indicates that both obesity and

GDM may be associated with a state of low-grade chronic

inflammation (66, 67). As a sensitive marker of inflammatory

diseases, SAA is hypothesized to contribute to the inflammatory

state of patients with GDM. Erin et al. found that maternal

circulating SAA levels were significantly higher in women with

GDM when compared with healthy pregnant controls (87).

Their correlation analysis showed that SAA levels were

significantly correlated with age, BMI, mean arterial blood

pressure, glucose tolerance and carotid intima-media thickness

(CIMT) (87), a valid predictor of atherosclerosis. Thus, they

suggested that increased maternal plasma SAA levels in GDM

might be an indicator of an increased risk of subclinical

atherosclerosis and future atherosclerotic heart disease (87). In

contrast to the findings by Erin et al., Pöyhönen-Alho et al.

showed that both SAA and CRP levels (SAA: 1.24 ± 0.27 mg/L,

CRP: 0.60 ± 0.37 mg/L) were reluctant to change in pregnant

women with GDM when compared with normal pregnant

women (SAA: 1.32 ± 0.38 mg/L, CRP: 0.59 ± 0.61 mg/L) (88).

Notably, their CRP data were also in contradiction with previous

studies which showed elevated CRP levels in GDM (89, 90).

Further investigations may be required to affirm the change of

maternal blood SAA levels and its significance in GDM.

3.2.4 Recurrent spontaneous abortion
Recurrent spontaneous abortion (RSA) is defined as three or

more consecutive spontaneous pregnancy losses (91), which

occurs in approximately 1% of pregnancies (92). However,

about half of the RSA cases are unexplained pregnancy losses

(93, 94). Ibrahim et al. demonstrated that plasma SAA levels

were significantly increased in women with unexplained RSA

(Median 50.0 mg/mL, interquartile range 26.0-69.0) when

compared with the control group (Median 11.6 mg/mL,

interquartile range 6.2-15.5; P<0.001) (95). These findings

were confirmed by an independent group (96). However, the

significance of SAA elevation in RSA was not investigated, but it

was suggested that SAA might be a biomarker of RSA (95).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.978929
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2022.978929
The reported changes of SAA levels in the circulation in

different gestational disorders are summarized in Table 1. It

appears that SAA levels in maternal circulation may not be an

ideal biomarker for specific pregnancy complications, but the extent

of SAA elevation may reflect the severity of gestational disorders.
4 SAA synthesized within
gestational tissues

It is widely accepted that the liver is the major source of

acute phase SAA in the circulation. However, accumulating

evidence indicates that a wide range of cells in extrahepatic

tissues including immune cells, fibroblasts, endothelial cells,

epithelial cells, adipocytes, and smooth muscle cells are

capable of de novo synthesis of SAA (22, 39–44). SAA

produced locally in extrahepatic tissues may be more efficient

than the liver-derived SAA in launching inflammatory reactions

within the tissue. In pregnancy, almost all gestational tissues

including the placenta, fetal membranes and uterus are capable

of SAA synthesis, and SAA synthesized in these gestational

tissues has been shown to be implicated in the initiation of

inflammatory processes as well as specific actions involved in

placentation, membrane rupture and parturition.
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4.1 Placenta

The placenta is a temporary fetal organ in pregnancy, which

plays critical roles in nutrient, gas, and waste exchange between

maternal and fetal circulations (97, 98). The placental

cytotrophoblasts can either differentiate into villous

syncytiotrophoblasts or EVTs. The villous syncytiotrophoblasts

serve as an important endocrine organ producing critical

hormones which not only maintain pregnancy, but also

promote parturition. In contrast to the villous trophoblasts,

EVTs invade into the endometrium whereby they remodel

uterine spiral arteries for the establishment of implantation (99).

Sandri et al. demonstrated that SAA was expressed in EVTs and

decidual cells at the maternal-fetal interface in humans (100),

where SAA promoted the invasion of EVTs into the endometrium

through toll-like receptor 4 (TLR4)-mediated induction of MMP2

and 9 (100). This function of SAA in EVTs mimics very much the

situation of tumor cells in metastasis. Both circulatory and local

SAA levels have been shown to be increased in many tumors (101,

102), and SAA has been shown to aid in tumor cell invasion and

metastasis by enhancing ECM degradation through induction of

MMPs (49, 58, 103).

In addition to EVTs, we and others demonstrated that SAA

was also synthesized in human placental villous trophoblasts (40,
TABLE 1 SAA levels in the circulation in gestational disorders.

Gestational disor-
ders

Sample SAA concentration Statistics Authors References

Disorder group Control group

PPROM Maternal serum 905.16 ± 2652.79 ng/mL 78.71 ± 100.09 ng/mL Mean ± SD Koseoglu et al. (76)

Maternal serum 80 ± 44 mg/mL 10 ± 7.2 mg/mL Mean ± SD Kayabas et al. (77)

Umbilical cord
serum

84 ± 40 mg/mL 7.4 ± 3.0 mg/mL Mean ± SD

Chorioamnionitis Maternal serum 107 ± 8.4 mg/mL 21 ± 4.5 mg/mL Mean ± SD Kayabas et al. (77)

Umbilical cord
serum

115 ± 12 mg/mL 26 ± 32 mg/mL Mean ± SD

Maternal serum 25.88 ± 5.91 mg/mL 1.48 ± 1.52 mg/mL Mean ± SEM Gan et al.* (40)

Pre-eclampsia Maternal serum 28.2 (7.2-135) ng/L 7.8 (4.65-24.6) ng/L Mean (Min-Max) Engin-Ustun
et al.

(81)

Maternal serum 9.0 ± 3 mg/mL 4.7 ± 2.6 mg/mL Mean ± SD Uckan et al. (82)

Maternal plasma 3.94 (1.05-33.00) mg/L 4.31 (0.95–24.98) mg/L Median (2.5-97.5th

percentiles)
Kristensen et al. (84)

HELLP Maternal serum 12.1 ± 1 mg/mL 4.7 ± 2.6 mg/mL Mean ± SD Uckan et al. (82)

Maternal plasma 7.41 (3.57–10.26) mg/L 2.28 (1.68–3.09) mg/L Mean (Min-Max) Heitner et al. (83)

Eclampsia Maternal serum 12.2 ± 0.4 mg/mL 4.7 ± 2.6 mg/mL Mean ± SD Uckan et al. (82)

Placenta accreta Maternal serum 19.86 ± 5.72 mg/mL 11.56 ± 2.19 mg/mL Mean ± SD Zakaria et al. (85)

Gestational diabetes Maternal serum 531.7 ± 91.7 ng/mL 465.6 ± 77.6 ng/mL Mean ± SD Eren et al. (87)

Maternal plasma 1.24 ± 0.27 mg/L 1.32 ± 0.38 mg/L Mean ± SD Poyhonen-Alho
et al.

(88)

Recurrent spontaneous
abortion

Maternal serum 50.0 (26.0-69.0) mg/mL 11.6 (6.2-15.5) mg/mL # Median (25-75th

percentiles)
Ibrahim et al. (95)

Maternal serum 32.92 ± 14.45 mg/mL 15.89 ± 6.12 mg/mL Mean ± SD Ming et al. (96)
fr
*SAA1 was measured specifically; # Spontaneous abortion but not diagnosed with RSA.
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100, 104, 105), and its expression was significantly increased

upon syncytialization of trophoblasts (40). However, it appeared

that SAA played no role in the syncytialization of villous

trophoblasts. SAA treatment of BeWo cells (a trophoblast cell

line) did not significantly increase the number of multinucleated

syncytiotrophoblasts as observed with F-actin staining, and

instead, SAA inhibited the secretion of hCG, a hormone

synthesized primarily by syncytiotrophoblasts, in BeWo cells

(100). However, SAA may participate in parturition by

launching inflammatory reactions through sensing the

inflammatory stimuli as well as by executing specific actions

within gestational tissues.

As previously described, inflammation of gestational tissues is

indispensable in parturition (1, 3, 106). Depending on the presence

or absence of infection, inflammation of the gestational tissues can

be classified into infectious and sterile inflammation (1, 3, 7, 106,

107). While infectious inflammation plays an important role in

infection-induced preterm birth, sterile inflammation is more

crucial in normal parturition. Although oxidative stress and cell

senescence have been suggested to play a role in the initiation of

sterile inflammation in parturition (7, 108), it remains elusive

whether there exists any humoral factor involved in the initiation

of sterile inflammation in gestational tissues. We found that SAA1

expression was significantly increased in the placenta villous tissue

in normal spontaneous deliveries without infection at term

compared with elective c section without labor at term (40).

SAA1 in maternal blood was also significantly increased in

infection-induced preterm birth compared with iatrogenic

preterm birth without labor and histologic chorioamnionitis (40).

Further investigation showed that inflammatory stimuli such as

LPS and pro-inflammatory cytokines could stimulate the

expression of SAA1 in placenta villous trophoblasts, and in turn,

SAA1 increased the expression of inflammatory mediators

including IL-1b, IL-8, TNF-a and cyclooxygenase 2 (COX-2)

with concomitantly increased prostaglandin F2a (PGF2a)
production (40), a major prostaglandin isoform synthesized by

the placenta (109). Prostaglandins E2 (PGE2) and PGF2a are

regarded as the final common mediators of labor onset in virtually

all species, and they are not only potent stimulators of myometrial

contraction, but also strong inducers of cervical ripening (109).

Given the crucial role of prostaglandins and inflammation in

parturition, we believe that SAA1 in the placenta is implicated in

the creation of an inflammatory environment resulting in the

increased prostaglandin production for parturition. Studies in the

mouse support such a notion (40). SAA1 was found in the

junctional zone of the mouse placenta, which was significantly

increased by LPS administration. Moreover, intraperitoneal

injection of SAA1 (8 mg/kg body weight) on gestational day 16.5

induced preterm birth with concurrently increased abundance of

IL-1b, TNF-a, and COX-2 in the mouse placenta (40). These data

gathered in the placenta suggest that SAAmay be a humoral factor

involved in the initiation of both sterile and infectious

inflammation in gestational tissues in parturition.
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In addition to inflammatory mediators, the stress hormone

glucocorticoids also stimulated SAA1 expression in placental

villous trophoblasts (40). The findings in the placenta are in line

with the findings in the liver where glucocorticoids have been

shown to stimulate SAA1 expression either on their own or in

synergy with pro-inflammatory cytokines (24, 28). It is widely

accepted that glucocorticoids play an important role in the

initiation of parturition across different species including

humans (110–114). Despite the differences in their origins and

target issues, induction of COX-2 expression with concomitantly

increased PGE2 and PGF2a production comprises one of the

key effects of glucocorticoids in parturition in virtually all species

(115–119). The finding that glucocorticoids stimulated the

expression of SAA1 in human placental villous trophoblasts

indicates that induction of SAA1 expression in gestational

tissues may also play a role in glucocorticoid-induced

parturition. In addition to the induction of SAA expression in

the placenta, glucocorticoids also induce SAA expression either

on their own or in synergy with SAA in the fetal membranes,

which will be described in the following section.
4.2 Fetal membranes

As previously described, the fetal membranes make up the

amniotic sac which provides protection for the fetus (120). Of the

amnion and chorion layers, the amnion is known to be more

tensile (114, 120–122). Toward the end of gestation, the amnion

layer normally undergoes extensive extracellular matrix (ECM)

remodeling as well as cell apoptosis and senescence in order to

rupture in parturition (7, 108, 121, 122). However, premature

preterm rupture of membranes may predispose the membranes to

ascending infection resulting in the development of

chorioamnionitis and preterm birth. In addition to the

protective role described above, the fetal membranes are also

known as a rich source of vital biochemicals which plays a pivotal

role in parturition (108, 109, 114). Among these biochemicals,

PGE2 and cortisol should be emphasized particularly (109). The

fetal membranes not only produce the most PGE2 in pregnancy

(109, 123, 124) but also possess the highest capacity of cortisol

regeneration through 11b-hydroxysteroid dehydrogenase 1 (11b-
HSD1) among fetal tissues (114, 125–127). Moreover, both PGE2

and cortisol can stimulate the expression of COX-2 and 11b-
HSD1, the enzymes responsible for their respective production in

the fetal membranes (115, 117–119, 128–131), thus forming a

feedforward loop of mutual enhancement between cortisol and

PGE2 production, which is believed to be a crucial feedforward

mechanism underlying membrane activation at parturition

(114, 125).

In addition to the identified biochemicals, we discovered that

almost all cell types including amnion fibroblasts, epithelial cells

and chorion trophoblasts in human fetal membranes are capable of

de novo synthesis of SAA1 (41). Interestingly, by using cultured
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human amnion fibroblasts, a major site of cortisol regeneration

and PGE2 production, we demonstrated that cortisol and SAA1

synergistically induced the expression of not only 11b-HSD1 but

also SAA1 per se (132, 133), and in turn, SAA1 produced by

fibroblasts might induce the expression of a number of

inflammatory mediators including IL-1b, IL-6 as well as COX-2

with increased PGE2 production in fibroblasts in an autocrine or

paracrine manner (41). Our data suggest that SAA1 may be part of

the feedforward loop described above in membrane activation at

parturition. Further investigation revealed that the synergistic

induction of 11b-HSD1 and SAA1 expression by cortisol and

SAA1 involved the participation of the transcription factor STAT3

in amnion fibroblasts (132). Of interest, STAT3 has been shown to

mediate the transcription of several acute phase genes including

SAA1 in the liver (134, 135). Previously, we also demonstrated that

STAT3 was a key transcription factor mediating the induction of

COX-2 expression by glucocorticoids in amnion fibroblasts (119).

Given all these transcriptive effects in amnion fibroblasts, STAT3

appears to be a central transcription factor orchestrating the

expression of multiple biochemicals of the feedforward loop in

the activation of membranes at parturition (Figure 2).

In preparation for membrane rupture, the amnion undergoes

profound ECM remodeling. Interestingly, SAA synthesized locally
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in synovial cells was found to be a stimulator of the expression of

collagenase and other MMPs, which might be responsible for joint

destruction in rheumatism (51, 136, 137). We found that SAA1

was also involved in ECM remodeling in the amnion by inducing

the expression of several MMPs including MMP-1, MMP-2,

MMP-8, MMP-9 and MMP-13 (138, 139), and decreasing the

expression of lysyl oxidase‐like 1 (LOXL1) (139), a collagen cross-

linking enzyme, in amnion fibroblasts. In addition to the

enhancement of enzymatic cleavage of collagens by MMPs, we

also found that SAA1 induced autophagy-mediated collagen

breakdown in amnion fibroblasts (138). These findings highlight

that upon sensing danger signals, increased SAA synthesis locally

in the amnion may participate in parturition by launching the

feedforward loop of membrane activation as well as membrane

rupture through multiple ECM remodeling approaches.
4.3 Uterus

It is within the uterus that the conception is established and

the fetus develops. A successful implantation of the fertilized egg

requires the proper timing of decidualization of the

endometrium (140). Impairment of this process can lead to a
FIGURE 2

Schematic drawing depicting the feedforward loop among SAA, cortisol and prostaglandins in the activation of fetal membranes with STAT3 as a
central transcription factor. Through phosphorylation of STAT3, cortisol and SAA1 can induce the expression of not only 11b-HSD1 but also SAA1
per se synergistically in amnion fibroblasts, and in turn, 11b-HSD1 converts biologically inactive cortisone to cortisol. Cortisol and SAA1 further
stimulate the expression of COX-2 (encoded by PTGS2) with subsequent increased PGE2 and PGF2a synthesis. In addition, SAA1 also increases
the expression of a number of pro-inflammatory cytokines and MMPs in amnion fibroblasts. All these effects will lead to membrane activation
and ECM remodeling in parturition.
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series of pregnancy disorders (140–142). Recently, Goolam et al.

demonstrated that SAA3 is robustly upregulated (272-fold) in

the decidua of a mouse model with defective formation of

primary decidual zone (143). In view of the role of SAA in the

invasiveness of EVTs and in the inflammatory reactions of

gestational tissues (40, 41, 100, 132, 139), it is possible that

SAA synthesized locally at the fetal-maternal interface plays a

crucial role in the fine regulation of inflammatory reactions and

tissue remodeling for the establishment of pregnancy.

In addition to the endometrium, the myometrium also

undergoes dramatic changes during pregnancy. The myometrium

is distended and quiet during gestation, but becomes highly

contractile in parturition. It has been suggested that inflammation

may be involved in themyometrium transition from a quiescent to a

contractile phenotype (6, 144). Jiang et al. demonstrated that SAA1

expression was significantly increased in human myometrium at

term laboring compared to non-laboring (145), and they found that

SAA1 stimulated the expression of pro-inflammatory cytokines (IL-

8, IL-6), chemokines (CXCL5, CCL2), adhesionmolecules (ICAM1,

ICAM5) and PGE2 via activating the Yes-associated protein (YAP)

pathway in human primary myometrial cells (145). These results

suggest that SAA1 synthesized in the myometrium may help create

an inflammatorymicroenvironment in the myometrium to assist its

transition to the contractile phenotype in parturition.

Notably, almost all the inflammatory, endocrine and ECM

remodeling effects of SAA1 in gestational tissues were mediated by
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the toll-like receptor TLR4 (40, 41, 100, 132, 138, 139). The toll-like

receptors function as pattern recognition receptors (PRRs) in the

detection of danger signals including a wide range of microbial

products and host-derived DAMP proteins (146, 147). High-

mobility group box 1 (HMGB1) is such a host-derived protein

that interacts with multiple TLRs (148). Given the inflammatory

properties of SAA depicted above, we believe that SAA may be

another host-derived DAMP molecule which can be sensed by

TLR4 in gestational tissues to initiate tissue-controlled

inflammation and tissue remodeling at parturition. The idea is

reinforced by the findings that the abundance of SAA1 was

significantly increased in gestational tissues in parturition with or

without infection, and upon stimulation by bacterial products, pro-

inflammatory cytokines and stress hormone glucocorticoids (40,

41, 132), and in turn, SAA stimulated the production of pro-

inflammatory mediators including SAA per se, tissue remodeling

proteases MMPs as well as prostaglandins PGE2 and PGF2a, the
common mediators of labor onset, in gestational tissues (40, 41,

100, 132, 138, 139).
5 Conclusions and perspectives

SAA is emerging as a host-derived DAMP molecule in the

detection of either sterile or infectious signals in the initiation of

inflammation in gestational tissues. SAA undergoes a modest
FIGURE 3

Schematic drawing depicting functions of SAA synthesized within gestational tissues.De novo SAA synthesis is detected in extravillous trophoblasts and
syncytiotrophoblasts of the placenta, myometrial and decidual cells of the uterus, epithelial and fibroblast cells of the amnion, cytotrophoblasts of the
chorionic membrane. In extravillous trophoblasts, SAA may promote their invasion into the endometrium through induction of metalloproteases 2 and
9 for the establishment of placentation. SAA synthesized within myometrium, placenta and fetal membranes may promote parturition via enhancing
inflammatory reactions through induction of pro-inflammatory cytokines and other inflammatory mediators including prostaglandins PGF2a and
PGE2, ICAM1 and ICAM5, the adhesionmolecules for the infiltrated leukocytes. Moreover, SAAmay also facilitate fetal membrane rupture in parturition
through induction of extracellular matrix remodeling via increasing the expression of metalloproteases 1, 2, 8, 9 and 13, decreasing the expression of
lysyl oxidase‐like 1 and inducing autophagy-mediated collagen breakdown.
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rise during parturition but a dramatic rise in postpartum in

maternal circulation, which may be a non-specific host innate

immune response to the inflammation and trauma experienced

during parturition. In gestational disorders such as PPROM,

infection-induced preterm birth, pre-eclampsia, gestational

diabetes and recurrent spontaneous abortion, maternal plasma

SAA levels may increase non-specifically during pregnancy

possibly due to the inflammatory nature of these diseases.

Thus, SAA levels in maternal circulation may not be an ideal

biomarker for specific pregnancy complications, but the extent

of SAA elevation may reflect the severity of gestational disorders.

Although the liver has been known to be a major source of

plasma SAA in APR, cells in gestational tissues including villous

and extravillous trophoblasts of the placenta, amnion epithelial

and fibroblast cells, and chorion trophoblasts of the fetal

membranes, decidual and myometrial cells of the uterus are all

capable of SAA1 synthesis. SAA produced locally in gestational

tissues may function as a TLR4-sensed DAMP molecule to be

involved in the inflammatory reactions as well as specific actions

associated with placentation, membrane rupture and initiation

of parturition (Figure 3). However, the role of SAA in pregnancy

is just starting to emerge. Several unresolved issues await further

investigation. It is intriguing why our body needs two inducible

SAAs and a constituent SAA4. It is necessary to decipher

whether these isoforms play any differential roles in pregnancy

in the future. Moreover, thorough investigations are required to

understand the exact role of SAA in normal pregnancy,

particularly in postpartum and gestational disorders. We

believe that in-depth investigation of SAA in pregnancy may

help better understand how inflammation is initiated in

gestational tissues in both normal and abnormal pregnancies.
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